47,061 research outputs found

    Review of nondestructive testing techniques for detecting lack of penetration in aluminum fusion welds

    Get PDF
    Nondestructive testing for detecting lack of penetration in aluminum fusion weld

    Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings

    Full text link
    By using a semi-analytical dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E, {\bf 70}, 066107 (2004)], we have studied the synchronization of stochastic, small-world (SW) networks of FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity between results for {\it diffusive} and {\it sigmoid} couplings have been discussed. It has been shown that with introducing the weak heterogeneity to regular networks, the synchronization may be slightly increased for diffusive couplings, while it is decreased for sigmoid couplings. This increase in the synchronization for diffusive couplings is shown to be due to their local, negative feedback contributions, but not due to the shorten average distance in SW networks. Synchronization of SW networks depends not only on their structure but also on the type of couplings.Comment: 17 pages, 8 figures, accepted in Phys. Rev. E with some change

    Turbulence and turbulent mixing in natural fluids

    Full text link
    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until strong-force viscous stresses freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic microwave background temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered as plasma photon-viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales. Turbulent morphologies and viscous-turbulent lengths appear as linear gas-proto-galaxy-clusters in the Hubble ultra-deep-field at z~7. Proto-galaxies fragment into Jeans-mass-clumps of primordial-gas-planets at decoupling: the dark matter of galaxies. Shortly after the plasma to gas transition, planet-mergers produce stars that explode on overfeeding to fertilize and distribute the first life.Comment: 23 pages 12 figures, Turbulent Mixing and Beyond 2009 International Center for Theoretical Physics conference, Trieste, Italy. Revision according to Referee comments. Accepted for Physica Scripta Topical Issue to be published in 201

    Applications of percolation theory to fungal spread with synergy

    Get PDF
    There is increasing interest in the use of the percolation paradigm to analyze and predict the progress of disease spreading in spatially-structured populations of animals and plants. The wider utility of the approach has been limited, however, by several restrictive assumptions, foremost of which is a strict requirement for simple nearest-neighbour transmission, in which the disease history of an individual is in uenced only by that of its neighbours. In a recent paper the percolation paradigm has been generalised to incorporate synergistic interactions in host infectivity and susceptibility and the impact of these interactions on the invasive dynamics of an epidemic has been demonstrated. In the current paper we elicit evidence that such synergistic interactions may underlie transmission dynamics in real-world systems by rst formulating a model for the spread of a ubiquitous parasitic and saprotrophic fungus through replicated populations of nutrient sites and subsequently tting and testing the model using data from experimental microcosms. Using Bayesian computational methods for model tting, we demonstrate that synergistic interactions are necessary to explain the dynamics observed in the replicate experiments. The broader implications of this work in identifying disease control strategies that de ect epidemics from invasive to non-invasive regimes are discussed

    The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitised solar cells

    Get PDF
    Improving the efficiency of p-type dye-sensitized solar cells (DSCs) is an important part of the development of high performance tandem DSCs. The optimization of the conversion efficiency of p-DSCs could make a considerable contribution in the improvement of solar cells at a molecular level. Nickel oxide is the most widely used material in p-DSCs, due to its ease of preparation, chemical and structural stability, and electrical properties. However, improvement of the quality and conductivity of NiO based photocathodes needs to be achieved to bring further improvements to the solar cell efficiency. The subject of this review is to consider the effect of the preparation of NiO surfaces on their efficiency as photocathodes. (C) 2015 Elsevier B.V. All rights reserved

    Two-dimensional oscillating airfoil test apparatus

    Get PDF
    A two dimensional oscillating airfoil test apparatus is presented as a method of measuring unsteady aerodynamic forces on an airfoil or rotor blade section. The oscillating airfoil test rig, which is being built for use in an 11 X 11-foot transonic wind tunnel (speed range M = 0.4 - 1.4), will allow determination of unsteady loadings and detailed pressure distributions on representative airfoil sections undergoing simulated pitching and flapping motions. The design details of the motion generating system and supporting structure are presented. This apparatus is now in the construction phase

    Unlocking the potential of anti-CD33 therapy in adult and childhood acute myeloid leukaemia

    Get PDF
    Acute Myeloid Leukaemia (AML) develops when there is a block in differentiation and uncontrolled proliferation of myeloid precursors, resulting in bone marrow failure. AML is a heterogeneous disease clinically, morphologically, and genetically, and biological differences between adult and childhood AML have been identified. AML comprises 15-20% of all children less than fifteen years diagnosed with acute leukaemia. Relapse occurs in up to 40% of children with AML and is the commonest cause of death.1,2 Relapse arises from leukaemic stem cells (LSCs) that persist after conventional chemotherapy. The treatment of AML is challenging and new strategies to target LSCs are required. The cell surface marker CD33 has been identified as a therapeutic target, and novel anti-CD33 immunotherapies are promising new agents in the treatment of AML. This review will summarise recent developments emphasising the genetic differences in adult and childhood AML, while highlighting the rationale for CD33 as a target for therapy, in all age groups

    A real-time digital computer program for the simulation of a single rotor helicopter

    Get PDF
    A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case

    Unified control/structure design and modeling research

    Get PDF
    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed
    corecore