research

Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings

Abstract

By using a semi-analytical dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E, {\bf 70}, 066107 (2004)], we have studied the synchronization of stochastic, small-world (SW) networks of FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity between results for {\it diffusive} and {\it sigmoid} couplings have been discussed. It has been shown that with introducing the weak heterogeneity to regular networks, the synchronization may be slightly increased for diffusive couplings, while it is decreased for sigmoid couplings. This increase in the synchronization for diffusive couplings is shown to be due to their local, negative feedback contributions, but not due to the shorten average distance in SW networks. Synchronization of SW networks depends not only on their structure but also on the type of couplings.Comment: 17 pages, 8 figures, accepted in Phys. Rev. E with some change

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020