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Abstract

There is increasing interest in the use of the percolation paradigm to analyze and predict the

progress of disease spreading in spatially-structured populations of animals and plants. The wider

utility of the approach has been limited, however, by several restrictive assumptions, foremost of which

is a strict requirement for simple nearest-neighbour transmission, in which the disease history of an

individual is influenced only by that of its neighbours. In a recent paper the percolation paradigm

has been generalised to incorporate synergistic interactions in host infectivity and susceptibility and

the impact of these interactions on the invasive dynamics of an epidemic has been demonstrated.

In the current paper we elicit evidence that such synergistic interactions may underlie transmission

dynamics in real-world systems by first formulating a model for the spread of a ubiquitous parasitic

and saprotrophic fungus through replicated populations of nutrient sites and subsequently fitting and

testing the model using data from experimental microcosms. Using Bayesian computational methods

for model fitting, we demonstrate that synergistic interactions are necessary to explain the dynamics

observed in the replicate experiments. The broader implications of this work in identifying disease

control strategies that deflect epidemics from invasive to non-invasive regimes are discussed.
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1 INTRODUCTION

The statistical analysis of observations of spatial disease spread using contact distribution models and

percolation methods has been recognised as an extremely useful approach for characterizing transmission

mechanisms since it was first applied to virus diseases of citrus [1]. Standard epidemiological models such

as SIR cellular automata can be conveniently considered as percolation processes [2, 3], with concepts

such as the percolation threshold being analogous to the threshold between invasive and non-invasive

behaviour [3]. This enables the properties of large-scale phenomena, in this case an epidemic, to be

related to the interactions among individuals in the population, or vice-versa. Work by Gibson et al. [4]

has advanced this to the stage of obtaining estimates of the percolation parameters using Markov chain

Monte Carlo (MCMC) methods on experimental data, comprising successive spatial snap-shots of infected

and susceptible individuals in plant populations. The use of the percolation paradigm for epidemiological

spread has been advocated for an increasingly wide range of host-pathogen systems. Hence, previous

work has adapted the paradigm not only to the spread of pathogenic fungi through populations of live

hosts in soil [5] but also to the spread of saprotrophic fungi through fragments of organic matter in

soil [6]. Within animal populations, the percolation paradigm has recently been used to analyse the

spread of plague in gerbil populations in Kazakstan [7]. There are, however, certain assumptions that

may restrict the application of the standard percolation paradigm to epidemiology. Foremost amongst

these is the assumption that the challenge presented by an infected to a susceptible site does not depend

upon the state of any other neighbours of these sites. This would suggest that multiple challenges to

a susceptible site from one, two or more neighbouring infected sites are mutually independent. Other

assumptions include the absence of a latent period, whereby infected sites are immediately infectious, and

restrictions to nearest-neighbour transmission of infection. Recently the need for the first assumption

has been removed thanks to a generalisation of the percolation paradigm [8] that includes synergistic

interactions. Here, we focus on methods of inference for this more general model and on applying it

directly in the analysis of experimental data to provide the first demonstration of the potential presence

of synergy in a real system.

We use a tractable experimental model system and a particular type of synergy that relates to fungal

infection in soil-borne plant pathogens [9]. For many soil-borne fungi, infection occurs by mycelial growth

from infected to susceptible sites. Translocation of nutrients along mycelium to hyphal tips is known

to occur for many fungi [10, 11, 12] and hence the connectivity of infected sites may be assumed to

influence the probability of infection of newly encountered susceptible sites. In such a model, the infection

process is therefore assumed to depend upon the number of other infectious individuals connected to the

infectious site (Fig. 1a). We introduce a method for estimation of the parameters defining the infectious

properties of individuals in the presence of synergy by analyzing the large-scale dynamics of an epidemic.

Our experimental methods also apply to saprotrophic dynamics involving soil-borne fungi that spread

by mycelial extension through populations of organic fragments and which are also known to exhibit

translocation and synergy [13]. We have shown previously that the epidemiological paradigm can be

used to analyze the spatial and temporal dynamics of saprotrophic colonization by treating uncolonized,

colonized and nutrient-exhausted sites as the equivalents of susceptible, infected and removed sites in
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epidemiological models [14, 6].

We first introduce a Bayesian computational method to estimate parameters for a percolation model

with synergistic enhancement of infectivity, hereafter referred to, for brevity, as synergy and test the

sensitivity of the inferences using simulated data. Thereafter we apply the methods to data from a

simple experimental system that mimics both the pathogenic and saprotrophic systems. Successive

snapshots for the spread of the fungus Rhizoctonia solani Kühn over a lattice of nutrient sites, are used

to estimate the parameters for a percolation model with synergy and to infer mechanisms underlying

the synergy. Rhizoctonia solani is a ubiquitous soil-borne fungus with both pathogenic and saprotrophic

activity that is representative of a broad range of fungi. It causes damping-off disease of seedlings and root

or stem-base rots in a very broad range of host species that include economically important agricultural

crops as well as species in natural and semi-natural habitats [15]. It is therefore an economically and

ecologically-important fungus in its influence on plant and crop health and in nutrient cycling in soils.

Specifically, we investigate the following biological hypotheses:

1. do the transmission rates depend upon the local state of the infection neighborhood?

2. how does the number of infectious neighbours connected to a site affect the transmission rate?

3. does the relationship change with the nutrient state of the sites?

The consequences of the results for the interpretation and prediction of fungal and pathogen invasion are

briefly discussed together with the robustness of the results to the assumptions that underpin the model

and analyses and the general role of the methodology in epidemiological inference.

2 SYSTEM AND MODEL

The spread of R. solani (R5, AG2-1, IMI385769) was monitored through a lattice of nutrient sites as a

series of spatio-temporal snapshots (cf Fig. 1b). The experimental system is the same as that detailed

in [6] and described in detail in the methods section. In essence, the system consists of a circular

Petri plate with 177 nutrient sites comprising potato dextrose agar available for fungal colonization

arranged in a square lattice. The central site is inoculated with R. solani, and the progress of colonization

during successive 24h periods is mapped for a maximum of 30 days. There were two treatments: one

with high nutrient density (HND) at vertices to encourage sharing of nutrients and enhance synergy in

colonization, and one with lower nutrient density (LND) which is expected to suppress the synergy. Note

that differences in nutrient density at nutrient sites is expected to influence both the standard rate of

transmission as well as an additional synergy parameter. There were 20 replicates of the HND treatment,

and 10 for the LND.

Since synergy depends upon the connectivity between infected sites, the model for the system depends

upon the state of the sites (vertices) and the links (or bonds) between sites. The model is based upon a

standard SIR formulation. Each site is in one of three states: Susceptible, Infectious or Removed. On

becoming infectious, a site remains so for a fixed period τ after which it enters the removed state. During

the infectious period a bond to each neighbour is created as the first event in a Poisson process with
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instantaneous rate λ. Should this first event fall outside of the infectious period, the bond is not created.

Creating a bond between an infectious and a susceptible individual causes the infection of the susceptible.

Bonds can also be created between two infectious sites, enabling sharing of nutrients, possibly changing

the rate of bond creation of each. A site becomes removed a time τ after it has become infected.

We consider two models for synergistic enhancement. In both cases, the transmission rate λ for an

infectious site varies with the number n of infected neighbours to which it is connected. For example, Fig.

1a shows an infectious site that is surrounded by two infectious and two susceptible sites and creates a

bond with each susceptible site independently during its infectious period according to a Poisson process

with rate λ. Since the central infectious site has a connection to only one of its infected neighbours, n = 1.

In the first synergy formulation, λ has the simplest linear dependence whereby λ = α+ (n− 1)β, and α

is the initial rate of infection, and β is a parameter quantifying the amount of synergy. The appearance

of n − 1 in the rate as opposed to n is motivated as follows: initially each infectious site (apart from

the first) has one connected neighbour - the source of the infection. The above definition of λ therefore

ensures that the initial rate of infection is always α, making comparison with the standard percolation

model (which corresponds to β = 0) more convenient. If λ is a constant, this model precisely corresponds

with bond percolation [3].

The second model is a generalization of the first that allows for any specified dependence on n, and

allows us to assess whether the linear model is adequate to describe the synergy. In this case, the rate for

each distinct number of infectious neighbours is estimated independently leading to four parameters, λ(n)

for n ∈ (0, 1, 2, 3). This allows for unknown effects, such as, for example, saturation of the rate. Both

models exemplify the concept of d-synergy as described in [8]. The first corresponds to the linear situation

considered therein [8] while the second provides a more flexible framework for representing synergistic

interactions. The results of this paper suggest that the generality of the latter model may be required to

explain real-world synergistic interactions. The focus on d-synergy is felt to be appropriate as this form

of synergy captures the known ability of fungi to translocate nutrients over considerable distances. A site

with multiple connections to other infectious sites may therefore be expected have access to a greater

supply of nutrients through this mechanism and consequently exhibit greater infectivity.

3 EXPERIMENTS AND MODEL FITTING

The fungal plant pathogen Rhizoctonia solani Kühn (R5, AG2-1, IMI385769) was introduced onto a Petri

plate (140mm diameter) containing a population of potato dextrose agar (PDA) sites. Each site was a

3mm diameter dot of either 10% (w/v) PDA for the LND treatment, or 40% (w/v) PDA for the HND

treatment. The sites were arranged in a square lattice with an inter-site distance of 8mm, extending as

far as the circular boundary of the plate, giving a total of 177 sites. The central site was inoculated

with a single hyphal strand, 1 mm in length, removed from the edge of a 4-day-old colony of R. solani

growing on water agar. To avoid desiccation of the agar, moist filter paper was placed into the lid of

each plate. The plates were sealed and incubated in the dark at 23oC, and assessed daily for 28 d using

a dissecting microscope (magnification ×40) and the number and location of colonised sites recorded.

The LND treatment was replicated 10 times, the HND treatment 20 times. The results of the 10% PDA
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treatment were first published and analysed previously [6], whereas the 40% treatment has not previously

been published. Note that the path of infestation and presence or absence of hyphal links between sites

was not recorded.

To fit the mathematical model to the experimental data, a Bayesian analysis using Markov chain

Monte Carlo (MCMC) methods has been performed. These are a set of algorithms used in this work to

determine a distribution of belief in the values of parameters that underlie the data - in this case, α, β

and τ , or λ(0..3) and τ - by simulating the distribution using a Markov chain whose state space is the

parameter space. A general MCMC calculation requires the use of any prior knowledge of the parameters,

encoded as a probability distribution p(θ) where θ is the set of parameters defined above, and a likelihood

function L(x|θ), where x is the set of observed data. This likelihood is, in essence, the sampling density

of obtaining the data given values of the parameters. In the Bayesian paradigm, these are combined to

produce the posterior density:

π(θ|x) ∝ L(x|θ)p(θ). (1)

The prior distribution represents the beliefs regarding the parameters before the experiment is per-

formed. In these experiments, the spacing and nutrient density of the agar dots were chosen to ensure

the system was close to the critical point separating invasive from non-invasive behaviour. For the linear

model, this corresponds to the value of α being close to the critical point of a pure percolation process,

i.e. αc = ln 2/τ . Similarly for the unconstrained model, this corresponds with λ(1) being close to αc. The

priors on these parameters (α and λ(1)) can therefore be fairly informative, whereas the other parameters

(β and λ(0, 2, 3)) have vaguer priors. In all cases, independent uniform prior distributions have been used

to represent prior belief regarding parameters. The specific hyperparameters used to specify each uniform

distribution are tabulated in table 1.

The likelihood L(x, θ) in this case is the joint probability density of creation times of the bonds

x = {ti} considered as a function of the parameters of the model θ = (α, β, τ). By exploiting the

independence of the Poisson processes underlying bond creation, the likelihood can be expressed as a

product of the individual contributions li from each bond, both created and absent:

L(x, θ) =
∏

i

li(ti, θ), (2)

where

li(ti, θ) = λi(ti, θ) exp
(
−
∫ ti

0

λi(t, θ)dt
)
, (3)

for the created bonds, where λ(t, θ) is the rate of bond creation as a function of time. For absent bonds,

li is simply the probability that the bond was not created, and is equal to

li = exp
(
−
∫ ∞

0

λi(t, θ)dt
)
. (4)

The rate λi(t, θ) is calculated from the history of the environment of bond i over time. The bond

connects two sites A and B, and its rate of creation is a function of the creation times of the neighbouring

bonds, as well as the removal times of the neighbouring sites of A and B. As soon A or B becomes
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infectious, λi(t, θ) takes a value of α + (n − 1)β or λ(1). For this initial event, n will always be one,

since it takes one and only one infectious site connecting to infect A, hence λi(t, θ) is initially α (or

λ(1)). As the environment changes, λi(t, θ) changes too, increasing as bonds are added to A and B, and

decreasing as neighbours of A and B become removed. If B becomes infectious, the rate λi(t, θ) becomes

the average of the rate due to A and the rate due to B. Once A or B becomes removed, λi(t, θ) drops to

zero, since bonds cannot be made with removed sites. Biologically, the removal of a site corresponds to

the exhaustion of the nutrients at that site, and therefore no sharing can happen.

In order to obtain the above likelihood, not only are the exact infection times for sites required,

but also knowledge of the bonds created for nutrient sharing and their creation times. However, this

information is not contained explicitly in the experimental data analysed. Observations were taken at

daily intervals, where the state of each site was recorded. The exact path of infection (and hence the

states of the bonds) were not recorded. Thus the data give the infection times of each site rounded up

to the next day. These observations are denoted y.

Since the infection process is determined entirely by the process of bond creation, we view creation

times of bonds as the modelled variables rather than the infection times of the sites. The experimental

observations then specify constraints on the bond creation times. A bond’s existence implies that A

and B are both infectious (as the bond’s creation immediately infects any non-infectious sites). The

minimum time the bond can have been created is therefore max[min(tA),min(tB)] where tX is the range

of possible infection times of site X. Similarly, a bond cannot be created linking a removed cell, therefore

the maximum time the bond can have been created is min[max(tA),max(tB)]+τ where τ is the infectious

period. Any set of exact bond creation times x = {ti} that satisfy the observations y gives a particular

value of the likelihood. An average should be taken over the set X of such x to obtain the marginal

likelihood as a function of the model parameters θ:

L(θ|y) =
∫
x∈X

L(θ|x)dx. (5)

The integration is not tractable, but can be approximated via computational Bayesian methods. Firstly,

the unobserved bond creation times are treated as additional unknown parameters, and MCMC methods

are then used to investigate the posterior distribution of this ’extended’ parameter vector.

Following standard procedure, a joint posterior density on Θ×X is defined by

π(θ,x|y) ∝ p(θ)L(θ|x) (6)

where p(θ) is the prior distribution and L(θ|x) is evaluated using the method described above. The

integration is performed by constructing a Markov chain on Θ×X. Steps are taken by either proposing

new times for the individual bonds, proposing that bonds change their state from ‘created’ to ‘absent’ or

vice-versa, or updating the parameters θ. These proposed steps are then accepted or rejected according

to standard Metropolis-Hastings updating. For each component of θ, α, β and τ (or λ(0..3) and τ), a

6



new value is proposed, giving the new parameter vector θp. This is then accepted with probability

Pacc = min

(
1,
p(θp)π(θp,x|y)
p(θ)π(θ,x|y)

)
. (7)

The proposal of changes for the individual bonds is complicated by the fact that it is not known a

priori which bonds are created and which are not. Thus the updating of an individual bond can either

modify its creation time, or change the state (’on’ to ’off’ or vice-versa). This necessitates the use of

Reversible Jump MCMC [19], which modifies the standard Metropolis-Hastings acceptance probability

to become

pacc = min
(

1,
π(θ,x′|y)jmr (x′)g′mr (u′)
π(θ,x|y)jm(x)gm(u)

∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣) (8)

where jm(x) is the probability of proposing move m from x, for example the probability of proposing

to change the time at which a bond was created, or of proposing to remove the bond entirely. The

term jmr (x′) denotes the probability of proposing the reverse move mr from state x′. Here gm(u) is the

probability density at the particular value of the random quantity u required to make the jump. When

moving up in dimension, this is the probability density of the new variable, in this case, the probability

density of choosing the new bond creation time which is selected uniformly from its permissable range.

The corresponding term is unity when moving down in dimensionality. The Jacobian ∂(x′,u′)
∂x,u is in this

case also unity, since the dimension-changing moves are simply projections.

From a state x, the new proposed state is constructed by selecting one of four possibilities, depending

on the current state of the bond. If the bond is present in state x, it can either be removed, or its

time altered. If the bond is currently not present, it can either be inserted with an allocated creation

time, or left as it is. The two alternatives for each state are chosen randomly with equal probability, so

that jm, the probability of choosing a particular jump, is identical for all m, and cancels from the above

acceptance probability. Therefore when the dimensionality remains the same, the acceptance probability

reduces to standard Metropolis-Hastings. When moving up or down in dimensionality, a factor of 1/∆

is introduced, where ∆ is the width of the permissable range of the bond-creation time. In order to

analyse all the experimental replicates jointly, the likelihood function is simply replaced with the joint

likelihood function, LJ(θ|x) =
∏

j L(θ|xj), where xj represents the state vector of the jth replicate. This

new likelihood function is used when updating components of the model parameter vector θ.

This updating scheme specifies a Markov chain whose stationary distribution is the target distribution

π(θ,x|y), and by simulating this chain the marginal posterior distributions of the parameters θ = (α, β, τ)

or (λ(0..3), τ) can be obtained. These distributions represents the belief regarding parameter values given

the experimental data.

Applying this technique to real data presents additional challenges in that infections between next-

nearest neighbours occurred in the experimental results. These should not be permitted by the model

outlined so far. There are several techniques for dealing with this problem, e.g. allowing for long-range

infection processes [20] or by introducing a small rate of primary infection [4]. However, in this case, we

have chosen to model these rare events as spontaneous infection of sites, with the exact infection time an

additional parameter over which to integrate the likelihood, constrained only by the observation and not
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by the creation time of an appropriate bond.

4 RESULTS

The statistical methodology was applied to fit the two models of synergy to the data from the microcosm

experiments. Figure 1b illustrates spatio-temporal maps for the high (HND) and low nutrient density

(LND) experiments at 7, 12 and 20d after initiation. It is evident that the HND sites are being colonized

at a much higher rate than the LND sites: there are also far fewer gaps in the resulting pattern for

colonization in the HND treatment. This is significant in that the presence of gaps provides important

information with which to infer the lifetime τ of the fungus on a site. Inspection of the time-course for

individual replicates (Fig. 2) clearly shows that the higher rate of spread occurs in the HND treatment.

The data from the LND treatment also show that as well as having a lower average rate of spread, there

is much more variability in the final size of the epidemic, e.g. in two replicates, no site other than the

first became colonized.

The principal results of the MCMC analysis are shown in Figs 3-4 and offer some immediate insights

into the questions outlined in the introduction. In the first instance there is clear evidence that for both

treatments LND and HND a synergistic effect is present with the marginal posterior density for β being

concentrated far from zero in both cases. This can be seen by inspection of the MCMC samples from

the posterior density of (α, β) for the respective treatments (Fig. 3). The joint posterior density from

the MCMC estimation for the transmission parameters, α and β, shows that nutrient density affects not

only the initial rate of infection, α, but also the the nature and strength of synergy (Fig. 4a,b) when it

is characterised by fitting the linear synergy model. The HND treatment exhibits both a higher initial

rate of infection as well as a greater synergistic effect (Fig. 4b,d).

There is clear evidence that the nature of the synergistic interaction varies with the treatment. The

linear and unconstrained models are compared in Figs 4c,d, along with the 95% HPDI calculated from

the posterior densities of α and β. The models characterize the rates in a very similar manner for the low

density treatment (Fig. 4c), with good overlap for all values of n, indicating that the linear model gives a

parsimonius description of the synergy effect. However, for the high density experiment (Fig. 4d), there

is a strong deviation (concave upwards) from the linear model in the rates fitted using the unconstrained

model. Note that the linear model attempts to capture this feature, but is bounded by the requirement

that λ(n) > 0, and is, perhaps most influenced by the rates λ(1) and λ(2) for which there are most data.

Predictions made using the linear model in the HND should be expected to underestimate significantly

the infectivity of sites with 3 infected neighbours.

Examination of the time-series plots for the parameters α, β and τ as the Markov chain progresses

(Fig. 4a,b) verifies that the Markov chains mix well and that the estimated posterior densities are likely to

be accurate. However we note that the trace-plot for τ covers smaller values and exhibits lower-frequency

fluctuations in the high-density treatment indicating less efficient mixing of the chain in this case. This

phenomenon may be anticipated given that the acceptable range for the lifetime (τ) is constrained by the

current configuration of bonds and creation times. Should the proposed lifetime invalidate the presence

or creation time of any bond, the proposal would immediately be rejected. This is more likely to happen
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under the high density treatment for which there were more replicates and more bonds per replicate. An

accurate estimate of the posterior density of τ is nevertheless possible within the length of simulation runs

described here (Fig 4a,b). We infer that the smaller value for τ , and hence the shorter ‘infectious’ period

associated with the high nutrient source, reflects differences in modes of growth, whereby the fungus with

ready access to nutrients grows faster and more vigorously, and hence uses the nutrients more quickly.

5 DISCUSSION

The percolation paradigm is widely invoked as a plausible mechanism for the spread of epidemics [16].

The impact of percolation models on decision making is generally achieved through studies that first

estimate key parameters in order to identify whether the system is in the invasive or non-invasion regions

of parameter space. Control measures can then be designed that affect the parameters so as to move

the system from the invasive to the non-invasive region. Until recently, the utility of this approach was

hampered by several of the simplifying assumptions in the standard percolation paradigm. One such

assumption that is likely to be violated in many biological systems is the restriction to nearest-neighbour

interactions in which interactions between a given pair of neighbours are not influenced by the states of

other neighbours. Failure to account for these interactions could give highly misleading inferences about

the probability of invasion and the effectiveness of potential control strategies. Our methods exploit

the flexible paradigm of percolation with synergy, as introduced in [8], to provide a statistical scheme

to avoid this risk by explicitly detecting and characterizing synergy in the transmission process. In

particular, we formulate Bayesian computational techniques that can distinguish synergistic interactions

at the individual scale that underlie the statistical properties of large-scale patterns of disease spread.

The methods use modest amounts of experimental data and replication.

We have used the methods to answer the three questions listed in Section 1 concerning the effects of

synergy on transmission rates. In particular, under both low-nutrient (LND) and high-nutrient (HND)

treatments the inferences on parameters suggest that the transmission dynamics are not captured by a

standard percolation model; rather, there is overwhelming evidence that favors the presence of synergistic

enhancement of infectiousness. We conclude that the transmission rates depend upon the local state of the

infection neighborhood, since the posterior distribution for β is far from zero. Moreover, while the analysis

shows that a linear dependence of infectiousness on the number of infected neighbours is supported by the

data for the LND treatment, the parameter estimates for (λ(0), λ(1), λ(2), λ(3)) when the unconstrained

model is fitted to the HND treatment show that the dependence is highly nonlinear. This confirms the

hypothesized effect of nutrient status of sites on the characteristics of local transmission. It is plausible

that this nonlinearity could arise through a synergistic effect due to connections with infectious sites

beyond the nearest neighbours in the HND case. Any site with connections to 3 infectious neighbours

may tend to be located in a region of high infection density and may consequently have synergistic

connections with other infectious sites. The influence of these sites may be being captured in the nearest-

neighbour model with general synergy by λ(3) taking an inflated value, leading to the nonlinearity. A

further plausible mechanism may be a tendency of the fungus to explore preferentially directions that

avoid areas already colonised. These mechanisms are speculative at this stage.
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Attention here is focussed on a particular system using models that make a number of strong as-

sumptions. We remark that the methods can be readily applied, with appropriate modification, in more

general settings. For example, the ‘memoryless’ assumption that underlies the formation of bonds can

be dispensed with, as can the assumption of a constant infectious period (cf [17, 18]) without compro-

mising the feasibility of the parameter estimation techniques. It is also possible to investigate synergistic

effects for models that include transmission beyond nearest neighbours. We are confident that there exist

numerous opportunities for widespread application of the approach.
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Figure legends

Figure 1 (a) An example of the calculation of the rate of infection (bond creation). The site in the center

is surrounded by two infectious neighbours and two susceptible neighbours. There is a connection with

only one of its infectious neighbours, so the instantaneous rate of infection λ = α+(n−1)β is determined

by n, the number of connected infectious neighbours, taking the value 1, giving λ = α+β in this case. (b)

Snapshots from three times of representative replicates from the HND and LND experiments. Susceptible

sites are white, and infected sites are dark grey. The LND replicate is clearly spreading more slowly and

in a more filamentary manner.

Figure 2 Time-course data for the individual replicates for each of the two treatments, LND (10 repli-

cates) and HND (20 replicates), showing the number of infected sites I(t) over time. The LND treatment

exhibits much greater variability than the HND treatment in the final numbers of affected sites, suggesting

the LND system is closer to the percolation threshold.

Figure 3 Scatter plots of samples from the joint posterior densities of infection parameters (α, β) for the

two treatments. The HND treatment has both a higher initial rate of infection and synergy parameter

than the LND treatment. For each treatment the sample is generated from a run of 106 iterations of

the MCMC scheme described in Section 3, after discarding to first 105 iterations as a ‘burn-in’ period.

Parameters α, β and τ were initialised to the mean of the corresponding prior distribution from Table 1.

Bond creation times were initialised by setting each to the earliest time consistent with the observations.
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Figure 4 (a,b) Infection parameters α, β and τ plotted against iteration number for the LND (a)

treatment and HND (b) treatment. There is no systematic deviation with iteration number, and hence

convergence has been achieved. Note however that fluctuations are clearly visible in the HND treatment.

(c,d) Comparison of the linear and general models for the LND (c) and HND (d) treatments. Plotted

are 95% credible intervals (estimated from an MCMC sample of 9 × 105 iterations after discarding an

initial burn-in 105 as a burn-in) for transmission rate (λ) against the number of connected neighbours

(n). There is a high degree of overlap in the estimates from the two models in (c), but a significant

difference in (d), particularly for high and low values of n. Note also that the estimate with the least

uncertainty in both treatments is λ(1).

Short title: Models for fungal spread with synergy
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