33,451 research outputs found
Turbulence and turbulent mixing in natural fluids
Turbulence and turbulent mixing in natural fluids begins with big bang
turbulence powered by spinning combustible combinations of Planck particles and
Planck antiparticles. Particle prograde accretions on a spinning pair releases
42% of the particle rest mass energy to produce more fuel for turbulent
combustion. Negative viscous stresses and negative turbulence stresses work
against gravity, extracting mass-energy and space-time from the vacuum.
Turbulence mixes cooling temperatures until strong-force viscous stresses
freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic
microwave background temperature anisotropies show big bang turbulence fossils
along with fossils of weak plasma turbulence triggered as plasma photon-viscous
forces permit gravitational fragmentation on supercluster to galaxy mass
scales. Turbulent morphologies and viscous-turbulent lengths appear as linear
gas-proto-galaxy-clusters in the Hubble ultra-deep-field at z~7. Proto-galaxies
fragment into Jeans-mass-clumps of primordial-gas-planets at decoupling: the
dark matter of galaxies. Shortly after the plasma to gas transition,
planet-mergers produce stars that explode on overfeeding to fertilize and
distribute the first life.Comment: 23 pages 12 figures, Turbulent Mixing and Beyond 2009 International
Center for Theoretical Physics conference, Trieste, Italy. Revision according
to Referee comments. Accepted for Physica Scripta Topical Issue to be
published in 201
Pressure containment tests in support of the nuclear Brayton cycle heat exchanger and duct assembly /HXDA/, phase 2
Plate-fin heat exchangers for nuclear reactor Brayton cycl
Weighing the galactic disc using the Jeans equation: lessons from simulations
Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the ‘Solar’ radius. Our simulation data set includes galaxies formed in a cosmological context using state-of-the-art high-resolution cosmological zoom simulations, and other idealized models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scalelengths of the assumed double exponential density distribution, and the scalelength of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally, we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scalelengths may help reconcile conflicting estimates of the local dark matter density in the literature
Properties of simulated Milky Way-mass galaxies in loose group and field environments
We test the validity of comparing simulated field disk galaxies with the
empirical properties of systems situated within environments more comparable to
loose groups, including the Milky Way's Local Group. Cosmological simulations
of Milky Way-mass galaxies have been realised in two different environment
samples: in the field and in environments with similar properties to the Local
Group. Apart from the environments of the galaxies, the samples are kept as
homogeneous as possible with equivalent ranges in last major merger time, halo
mass and halo spin. Comparison of these two samples allow for systematic
differences in the simulations to be identified. Metallicity gradients, disk
scale lengths, colours, magnitudes and age-velocity dispersion relations are
studied for each galaxy in the suite and the strength of the link between these
and environment of the galaxies is studied. The bulge-to-disk ratio of the
galaxies show that these galaxies are less spheroid dominated than many other
simulated galaxies in literature with the majority of both samples being disk
dominated. We find that secular evolution and mergers dominate the spread of
morphologies and metallicity gradients with no visible differences between the
two environment samples. In contrast with this consistency in the two samples
there is tentative evidence for a systematic difference in the velocity
dispersion-age relations of galaxies in the different environments. Loose group
galaxies appear to have more discrete steps in their velocity dispersion-age
relations. We conclude that at the current resolution of cosmological galaxy
simulations field environment galaxies are sufficiently similar to those in
loose groups to be acceptable proxies for comparison with the Milky Way
provided that a similar assembly history is considered.Comment: 16 pages, 11 figures, abstract abridged for arXiv. Accepted for
publication in Astronomy & Astrophysic
Simple and accurate modelling of the gravitational potential produced by thick and thin exponential discs
We present accurate models of the gravitational potential produced by a radially exponential disc mass distribution. The models are produced by combining three separate Miyamoto–Nagai discs. Such models have been used previously to model the disc of the Milky Way, but here we extend this framework to allow its application to discs of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disc treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disc by <0.4 per cent out to 4 disc scalelengths, and <1.9 per cent out to 10 disc scalelengths. We tabulate fitting parameters which facilitate construction of exponential discs for any scalelength, and a wide range of disc thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disc galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disc, and a discy dwarf galaxy
X-raying the Winds of Luminous Active Galaxies
We briefly describe some recent observational results, mainly at X-ray
wavelengths, on the winds of luminous active galactic nuclei (AGNs). These
winds likely play a significant role in galaxy feedback. Topics covered include
(1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL)
and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3)
Evidence for relativistic iron K BALs in the X-ray spectra of a few bright
quasars. We also mention some key outstanding problems and prospects for future
advances; e.g., with the International X-ray Observatory (IXO).Comment: 7 pages, 3 figures, to appear in proceedings of the conference "The
Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June
2009, Madison, Wisconsi
Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains
Within a fully cosmological hydrodynamical simulation, we form a galaxy which
rotates at 140 km/s, and is characterised by two loose spiral arms and a bar,
indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has
no classical bulge, with a pure disc profile at z=1, well after the major
merging activity has ended. A long-lived bar subsequently forms, resulting in
the formation of a secularly-formed "pseudo" bulge, with the final
bulge-to-total light ratio B/T=0.21. We show that the majority of gas which
loses angular momentum and falls to the central region of the galaxy during the
merging epoch is blown back into the hot halo, with much of it returning later
to form stars in the disc. We propose that this mechanism of redistribution of
angular momentum via a galactic fountain, when coupled with the results from
our previous study which showed why gas outflows are biased to have low angular
momentum, can solve the angular momentum/bulgeless disc problem of the cold
dark matter paradigm.Comment: 9 Pages, 10 Figures, accepted MNRAS version. Comments welcom
An HI census of Loose Groups of Galaxies
We present results from our Parkes Multibeam HI survey of 3 loose groups of
galaxies that are analogous to the Local Group. This is a survey of groups
containing only spiral galaxies with mean separations of a few hundred kpc, and
total areas of approximately 1 sq. Mpc; groups similar to our own Local Group.
We present a census of the HI-rich objects in these groups down to an M(HI),
1-sigma sensitivity ~7x10^5 M(sun), as well as the detailed properties of these
detections from follow-up Compact Array observations. We found 7 new HI-rich
members in the 3 groups, all of which have stellar counterparts and are,
therefore, typical dwarf galaxies. The ratio of low-mass to high-mass gas-rich
galaxies in these groups is less than in the Local Group meaning that the
``missing satellite'' problem is not unique. No high-velocity cloud analogs
were found in any of the groups. If HVCs in these groups are the same as in the
Local Group, this implies that HVCs must be located within ~300-400 kpc of the
Milky Way.Comment: 6 pages, to appear in the ASP proceedings of IAU Symposium 217,
"Recycling intergalactic and interstellar matter", eds. Pierre-Alain Duc,
Jonathan Braine, Elias Brink
The role of stellar radial motions in shaping galaxy surface brightness profiles
Aims. The physics driving features such as breaks observed in galaxy surface brightness (SB) profiles remains contentious. Here, we assess the importance of stellar radial motions in shaping their characteristics. Methods. We use the simulated Milky Way-mass cosmological discs from the Ramses Disc Environment Study (RaDES) to characterise the radial redistribution of stars in galaxies displaying type-I (pure exponentials), II (downbending), and III (upbending) SB profiles. We compare radial profiles of the mass fractions and the velocity dispersions of different sub-populations of stars according to their birth and current location. Results. Radial redistribution of stars is important in all galaxies regardless of their light profiles. Type-II breaks seem to be a consequence of the combined effects of outward-moving and accreted stars. The former produce shallower inner profiles (lack of stars in the inner disc) and accumulate material around the break radius and beyond, strengthening the break; the latter can weaken or even convert the break into a pure exponential. Further accretion from satellites can concentrate material in the outermost parts, leading to type-III breaks that can coexist with type-II breaks, but situated further out. Type-III galaxies would be the result of an important radial redistribution of material throughout the entire disc, as well as a concentration of accreted material in the outskirts. In addition, type-III galaxies display the most efficient radial redistribution and the largest number of accreted stars, followed by type-I and II systems, suggesting that type-I galaxies may be an intermediate case between types-II and III. In general, the velocity dispersion profiles of all galaxies tend to flatten or even increase around the locations where the breaks are found. The age and metallicity profiles are also affected, exhibiting different inner gradients depending on their SB profile, being steeper in the case of type-II systems (as found observationally). The steep type-II profiles might be inherent to their formation rather than acquired via radial redistribution
- …