182 research outputs found

    Basic Repair Method

    Get PDF
    No abstract availabl

    Modular Damage Detection for Expandable and Inflatable Structures

    Get PDF
    NASA has identified potential damage from micrometeoroid and orbital debris (MMOD) impacts as a primary threat to Commercial Crew Program vehicles. The International Space Station (ISS) and extraterrestrial habitats also exhibit the risk of damage caused by MMODs. Currently no integrated in-situ or real-time health monitoring damage detection system is being used for expandable and inflatable structures. A novel, modular damage detection system design that incorporates interchangeable and replaceable sensory panels in a foldable architecture is described. The design implements technologies that provide for situational awareness, self-configuration, and damage detection and localization. The system is applicable for the new Gateway and surface and ground support infrastructur

    Method of Fault Detection and Rerouting

    Get PDF
    A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer

    Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    Get PDF
    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface tension forces to flow, mix and react to achieve healing. Vascular networks small enough to fit into such films must also overcome these same flow limitations. Self-healing has also been demonstrated in ionomeric substrates such as Surlyn , wherein the heat generated by a projectile impact triggers the latent ability of this substrate to flow back to its original shape. Recent work using Diels-Alder reactions have shown promise in bringing about actual reforming of broken chemical bonds to achieve self-healing [2]. All self-healing mechanisms that rely on the use of inherent latent substrate properties require some degree of polymer chain flow to achieve any significant level of healing

    Cryogenic Selective Surfaces

    Get PDF
    There are many challenges involved in deep-space exploration, but several of these can be mitigated, or even solved, by the development of a coating that reflects most of the Suns energy, yet still provides far-infrared heat emission. Such a coating would allow non-heat-generating objects in space to reach cryogenic temperatures without using an active cooling system. This would benefit deep-space sensors that require low temperatures, such as the James Webb Telescope focal plane array. It would also allow the use of superconductors in deep space, which could lead to magnetic energy storage rings, lossless power delivery, or perhaps a large-volume magnetic shield against galactic cosmic radiation. However, perhaps the most significant enablement achieved from such a coating would be the long-term, deep space storage of cryogenic liquids, such as liquid oxygen (LOX). In our Phase I NIAC study, we realized that a combination of scattering particles and a silver backing could yield a highly effective, very broadband, reflector that could potentially reflect more than 99.9% of the Suns irradiant power. We developed a sophisticated model of this reflector and theoretically showed that cryogenic temperatures could be achieved in deep space at one astronomical unit (1 AU) from the Sun. We showed how this new reflector could minimize heat conduction into the cryogenic tanks by coating the tank support struts. We then modelled a strawman architecture for a mission to Mars, using a coated LOX tank, coated struts, and infrared shields, to show that with our new coating it would be possible to maintain liquid oxygen passively. As a result of this work a patent application was generated and a paper published in Optics Letters. Our Phase II NIAC study had two primary goals, to develop a rigid version of the cryogenic selective surface proposed in Phase I and to test its performance in a simulated deep space environment. During the first year of the project the work concentrated on developing rigid tiles of BaF2, leading to tiles as large as 4 inches in diameter that transmitted very little visible light. In addition, during the first year a simulated deep space environment was created using a vacuum chamber and cryocooler. Using this facility, we showed that our BaF2 tiles absorbed less than % of 375 nm radiation, a significant milestone for the work. During the second year of the project, we continued to develop the BaF2 tiles and we put significant effort into the construction of a deep space environment where we could project simulated solar radiation onto a sample. In the spring of 2018, we conducted our first solar simulator test with BaF2 and saw about 3.6% absorption. This is better than the state-of-the-art, but disappointing since predictions were for much lower absorption. We, erroneously, attributed this absorption to water retention by the BaF2, and decided to change materials. We considered several oxides and settled on yttrium oxide (Y2O3) for further development, because it is broadband, lightweight, has high index, and is hydrophobic. In July 2018 we conducted our first test of a rigid tile of Y2O3 in the simulated deep space environment and saw significant absorption again. We then realized that the issue was not water, but mid-wave radiation passing through the tile and being absorbed by the temperature sensor and the varnish used to hold it in place. We wrapped the sensor in silver foil, re-ran the test, and saw much lower absorption; only 1.1%. We then re-ran the BaF2 tile and saw 1.4% absorption. These values are almost adequate to maintain LOX in deep space, but we suspect that there are still issues in our test apparatus; we suspect thermocouple wires may be absorbing radiation. Further, post-NIAC, testing will better determine the performance of our new solar reflector. In order to restrict the size of this report, we will only briefly describe topics that we have previously published, allowing us to devote more time to new material. So minimal material will be devoted to modeling the material and deep space cryogenic storage, while longer sections will cover our material development, simulated deep space testing, and new applications. The Launch Service Program (LSP) requested that we explore ways to use this new coating to maintain LOX in low Earth Orbit and that work is described. In addition, the Nuclear Thermal Propulsion (NTP) Program asked us to explore ways to reduce the heat load for liquid hydrogen, resulting in the development of a spray-on version of the coating that should significantly improve in-space multi-layer insulation performance

    Passive Thermal Management Systems Employing Shape Memory Alloys

    Get PDF
    A thermal management system includes a first substrate having a first conductive inner surface. A second substrate has a second conductive inner surface. A connecting structure is attached to the first and second substrates to space apart the first and second inner surfaces defining an insulating space for a single architecture. One or more passively-acting elements are attached to the inner surface of at least one substrate and including a shape memory material such as a shape memory alloy (SMA). The SMA passively reacts to the temperature of the first substrate by thermally contacting or separating from the second inner surface of the second substrate for the control of the conduction of heat energy in either direction

    Novel Wiring Technologies for Aerospace Applications

    Get PDF
    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives

    Low-Melt Poly(amic Acids) and Polyimides and Their Uses

    Get PDF
    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation

    Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    Get PDF
    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation
    • …
    corecore