

MODULAR DAMAGE DETECTION FOR EXPANDABLE STRUCTURES

Mark E. Lewis⁽¹⁾

Dr. Tracy L. Gibson⁽²⁾, Dr. Pedro J. Medelius⁽³⁾

⁽¹⁾NASA Kennedy Space Center, Email: <u>Mark.E.Lewis@nasa.gov</u>

 ⁽²⁾ Southeastern Universities Research Association, LASSO-008, KSC, Email: <u>Tracy.L.Gibson@nasa.gov</u>
 ⁽³⁾ASRC Federal Space and Defense, Email: <u>Pedro.Medelius@asrcfederal.com</u>

Agenda

- Background
- Sensor System Design
- Sensory Panel
- Embedded Software
- Graphical User Interface
- Testing and Demonstration
- Summary
- Questions & Answers

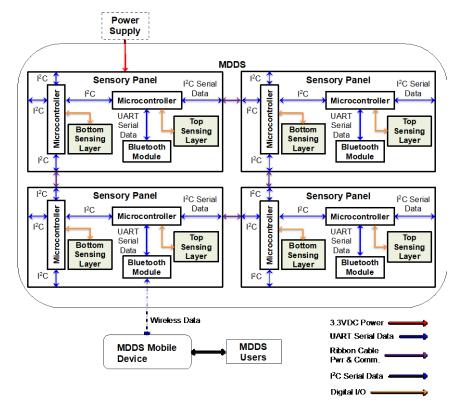
Background

- Micrometeoroids (MM) & Orbital Debris (OD) are serious threats to International Space Station (ISS) & extraterrestrial habitats
 - NASA classes MM & OD as primary threats to commercial crew vehicles
 - See article at https://www.nasaspaceflight.com/2016/08/nasa-mmod-primary-threat-crew-vehicles/
 - In July 2014, radiator damage was observed after review of downlinked camera inspection imagery
 - See article at <u>http://www.nasaspaceflight.com/2014/07/iss-managers-evaluating-mmod-radiator/</u>)
- NASA has identified structural health monitoring and damage detection technologies as critical needs in multiple technology roadmaps

Background

 NASA Kennedy Space Center (KSC) has been developing damage detection technologies for years

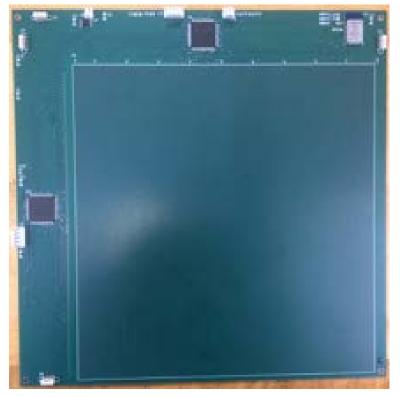
- U.S. Patent 9,233,765 & 9,635,302,B2


- KSC has successfully tested and demonstrated damage detection technologies
 - In 2011, demonstrated single panel system for Habitat Demonstration Unit (HDU) field demonstration at Desert Research and Technology Studies (D-RATS)
 - In 2012, integrated and demonstrated damage detection system with multiple sensory panels in crew display avionics for HDU
 - In 2013, demonstrated remote testing capability of three panel system using a secure network (between KSC & JSC)

Sensor System Design

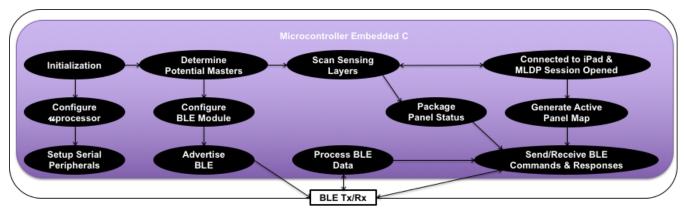
- Modular Damage Detection System (MDDS) is an intelligent damage detection "skin" that could be embedded into or added to structures
 - Technology based on sensing electrical integrity of parallel conductive traces
 - When an impact occurs, traces are broken
 - Several sensing layers can be implemented, where alternate layers are arranged orthogonally with respect to adjacent layers
 - Design is tailorable for interior and/or exterior applications
 - Sensing panel material, size, and trace spacing can be customized per application
 - Provides lightweight in-situ health monitoring capability for spacecraft or expandable, deployable structures
- MDDS consists of three main subsystems
 - Sensory Panel(s)
 - Embedded software for situational awareness and damage detection
 - Mobile device with graphical user interface (GUI) to operate the system

Sensor System Design


- MDDS architecture is flexible and expandable, supporting one or many Sensory Panels organized two-dimensionally in grid pattern
 - Sensory Panels are identical in hardware & software which greatly enhances modularity
 - They are interchangeable and operate independently, scanning for damage periodically and waiting to be connected to a Bluetooth-enabled device
 - GUI on the mobile device allows users to configure, command, and monitor the Sensory Panels in the system

Notional MDDS Architecture Block Diagram with Four Sensory Panels

Sensory Panel


- Sensory Panels consist of two 32-bit microcontrollers with embedded software, two Sensing Layers, and Bluetooth low-energy (BLE) module for wireless communication
 - Two serial peripheral interfaces (UART & I²C) for communication
 - Each Sensing Layer has 96 parallel conductive traces with trace-to-trace spacing of approximately 50 mils
 - Sensing Layers are oriented orthogonally creating a two-dimensional grid pattern
 - Sensory Panel overall dimensions are 9.5 x 9.5 x 0.062 in. (W x L x D)
 - Sensing Layers are 7.67 x 7.67 in.
 - Low power consumption typically less than 500mW / panel

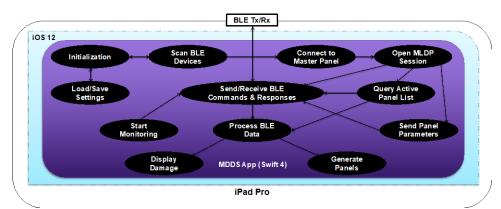
MDDS Sensory Panel

Embedded Software

- Embedded software is stored in non-volatile memory of microcontrollers
 - Initializes and configures the serial peripheral interfaces and the BLE module
 - Processes and responds to commands sent from the mobile device and reports Sensory Panel health information upon request
 - Executes algorithms to:
 - Determine potential Master Panels (MPs) and set the MP upon connection with GUI
 - Generate active panel map
 - Monitor the health status of all active panels

Sensory Panel Embedded Software Logical and Structural Overview

Embedded Software

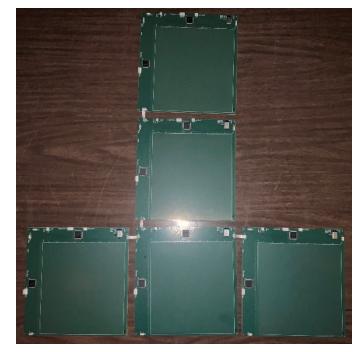

- Each panel checks presence of an active panel to its left and/or below it using I²C serial interfaces to determine potential Master Panels (MPs)
 - If no active panels are present to left or below, it assigns panel as potential MP and configures BLE module
 - Since configuration of MDDS is arbitrary, one or more potential MPs could be present
- User selects a MP arbitrarily using the GUI
 - Once assigned, all other panels become normal, active panels
- Newly-assigned MP starts a progressive scan using active panel mapping algorithm to determine spatial relationship to the other active panels
 - Communicates with adjacent panels to determine its closest neighboring panels
 - Requests each of its adjacent neighbors to report status of their respective neighbors until no new panels are found
 - Maintains a record of the configuration and path to access any active panel

Embedded Software

- Each Sensory Panel continuously monitors its health
 - Damage detection algorithm evaluates health status by injecting test pulses periodically on the sensing traces to determine the electrical integrity
 - If traces are broken, algorithm calculates actual location of any faults
 - Relative time stamp is associated with each damage event to establish proper order of events
 - Helps organize and identify the location of damage if subsequent damages occur at a later time on the same panel
- GUI periodically requests health status from MP of all active panels
 - MP gathers, coordinates, and packages damage information and sends it wirelessly to the GUI
 - Damage location is reported in rectangular boundaries (bottom left-hand to upper right-hand corners)
 - When damage is detected on top Sensing Layer ONLY, exact damage location is undermined
 - Reports the corresponding location in the x-axis only

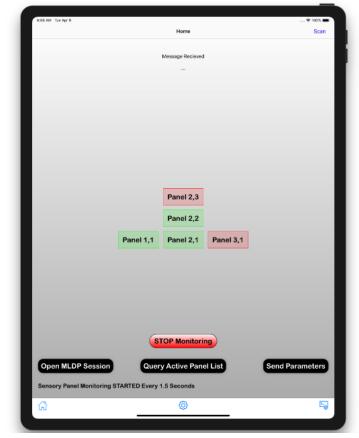
MDDS GUI

- MDDS application (app) designed for 3rd generation iPad Pro with iOS 12
 - Written in Swift 4.2 using Xcode 10
 - GUI allows users to configure, command, control, monitor, and display health status of active Sensory Panels in the system
 - Receives telemetry wirelessly from MP using Bluetooth technology


MDDS App Software Logical and Structural Overview

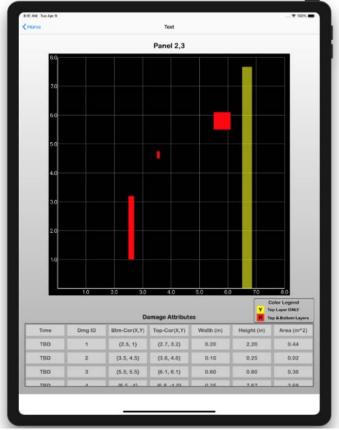
MDDS Application Home Page

Testing & Demonstration


- Simulated test data was created to evaluate MDDS App performance
 - Data set consisted of five Sensory
 Panels laid out in an inverted-T pattern
- Upon power-up, Sensory Panels performed their initialization and determined whether they're a potential MP
- User scans for BLE advertisements and selects potential MP
 - Upon connection, MP is assigned
- User configures Sensory Panel settings and opens BLE private communication service to send and receive information wirelessly

Sensory Panels Layout for Simulated Testing

Testing & Demonstration


- Using the GUI, user requests query of active panels from MP and begins monitoring the system
- Two of the five Sensory Panels simulated health status contain damage information for display
 - Sensory Panels' graphics with red backgrounds and borders indicate panels with damage
 - Green-filled panels indicate Sensory Panels without damage
- Panel IDs increment from bottom left to top right
- Detailed Sensory Panel health information is displayed by clicking on the panel graphic

GUI Displaying Active Sensory Panels & Their Health Status

Testing & Demonstration

- Panel 2,3 GUI shows four simulated damage areas:
 - Three rectangular/square in red
 - Damage resulting in broken conductive traces on both top and bottom Sensing Layers
 - One top-only damage in yellow
 - X-only coordinate provided; no ycoordinate can be assigned
- Damage details are displayed in tabular format
 - Damage ID number is assigned
 - Bottom left-hand corner and top righthand corner x- and y-coordinates are shown
 - Damage width, height, and calculated area are displayed

Detailed Damage Information for Panel 2,3

Summary

- NASA KSC has been developing and successfully demonstrating damage detection technologies for years
- MDDS provides an attractive option for applications where in-situ health monitoring for space debris impacts is needed
 - Design is tailorable for interior and/or exterior applications
 - Architecture is flexible and expandable, supporting one or many Sensory Panels
 - Algorithms provide for situational awareness, self-configuration, and damage detection and localization
 - Supports wireless communication using Bluetooth technology
 - Sensory Panels are modular and interchangeable
 - Same hardware and software
 - Low power consumption typically less than 500mW / panel
 - MDDS App provides users a simple and attractive method to interact with the system

Questions

