
MODULAR DAMAGE DETECTION FOR EXPANDABLE AND INFLATABLE

STRUCTURES

Mark E. Lewis(1), Tracy L. Gibson(2), Pedro J. Medelius(3)

(1)NASA John F. Kennedy Space Center, NE-L6-B, Kennedy Space Center, FL 32899 USA,

Email: Mark.E.Lewis@nasa.gov

(2)Southeastern Universities Research Association, LASSO-008, Kennedy Space Center, FL 32899 USA,

Email: Tracy.L.Gibson@nasa.gov
(3)ASRC Federal Space and Defense, 150 Cocoa Isles Blvd, Suite 401, Cocoa Beach, FL 32931,

Email: Pedro.Medelius@asrcfederal.com

ABSTRACT

NASA has identified potential damage from

micrometeoroid and orbital debris (MMOD) impacts as a

primary threat to Commercial Crew Program vehicles.

The International Space Station (ISS) and extraterrestrial

habitats also exhibit the risk of damage caused by

MMODs. Currently no integrated in-situ or real-time

health monitoring damage detection system is being used

for expandable and inflatable structures. A novel,

modular damage detection system design that

incorporates interchangeable and replaceable sensory

panels in a foldable architecture is described. The design

implements technologies that provide for situational

awareness, self-configuration, and damage detection and

localization. The system is applicable for the new

Gateway and surface and ground support infrastructure.

1. INTRODUCTION

Millions of naturally occurring objects

(micrometeoroids) and made-made debris can be

encountered during a space mission. For decades, NASA

and other agencies have tracked orbital debris but the

tracking is limited to objects that are typically larger than

3 mm (in low-Earth orbit) [1]. During the Space Shuttle

era, all the orbiters received damage from MMOD and

MMOD was designated as the third greatest risk to losing

an orbiter during a mission; launch and re-entry were the

two highest risks [2]. Damage was observed to many

orbiter windows during the first 63 Space Shuttle

missions. A total of 177 debris impacts were identified

on the Shuttles’ exterior windows, with 45 of them being

significant enough to require replacing the windows [3].

Additionally, more than 70 Space Shuttle windows had

to be replaced because of significant debris impacts

during the first 88 missions [4]. In July 2014, MMOD

impact caused damage to a panel on the Potential P4

Photovoltaic Radiator (PVR) on the International Space

Station (ISS) [5]. During the Apollo program, debris

damage was also observed due to landing operations.

Two coupons from the Surveyor III spacecraft that were

facing the Apollo 12 landing site were analyzed and an

average of 103 pits/cm2 was observed. The data indicated

that the spacecraft was not exposed to the direct spray of

the landing Lunar Module but was exposed to the fringes

of the ejecta plume. It was speculated that if the

spacecraft had been exposed to the direct spray, the

damage would have been orders of magnitude higher [6].

NASA has identified a need for damage detection and

health monitoring technologies in multiple NASA

technology roadmaps. Technology gaps or needs for

Space exploration include such areas as integrated health

monitoring for space debris impacts [7], on government

or commercial crew space vehicles [2], habitation

structures, and expandable, inflatable or deployable

structures.

In 2011, the Flagship Technology Demonstration

program expressed an interest in the need to detect early

damage to habitation structures from risks such as

MMOD impacts for the planned Inflatable Hab (iHab)

demonstration [8]. NASA Kennedy Space Center (KSC)

initiated development of technologies for the early

detection of MMOD damage to habitation structures. The

primary technology investigated was a damage detection

system based on sensing the electrical integrity of parallel

conductive traces. When damage occurred, traces were

broken and information was provided to the monitoring

system. Multiple configurations were investigated,

including those containing several sensing layers, where

alternate layers were arranged orthogonally with respect

to adjacent layers. The technology was demonstrated in

the NASA Habitat Demonstration Unit (HDU) Deep

Space Analog platforms and via a secure network for

remote sensing using single and multi-panel approaches.

Currently, KSC is investigating the use of flexible

materials and modular designs for use in spacecraft,

smart, wearable fabrics, solar arrays, military shelters,

https://ntrs.nasa.gov/search.jsp?R=20190025248 2019-08-31T13:41:07+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/211016223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Mark.E.Lewis@nasa.gov
mailto:Tracy.L.Gibson@nasa.gov
mailto:Pedro.Medelius@asrcfederal.com

and ground infrastructure. The modular designs use

embedded algorithms for situational awareness, self-

configuration, and damage detection and localization.

Each panel is aware of its spatial relationship to the other

panels. Additionally, each panel is identical in hardware

and software, which greatly enhances the modularity and

tailorability of the system. The current version of the

Modular Damage Detection System (MDDS) is focused

on detecting damage to infrastructure associated with

ground systems that support launch operations such as

composite cryogenic storage tanks.

2. SENSOR SYSTEM DESIGN

The MDDS expands on the previously demonstrated and

NASA-patented Flat Surface Damage Detection System

(FSDDS) and the Flexible Damage Detection System

(FLEX-DDS) capabilities and technologies [9]. The

sensory system is an intelligent damage detection “skin”

that could be embedded into or added to structures,

providing a lightweight in-situ health monitoring

capability for space or aircraft vehicles, and for

expandable, inflatable, and deployable structures and

other applications.

The MDDS is composed of three main systems: 1) the

Sensory Panel; 2) the embedded software for situational

awareness and damage detection; and 3) the mobile

device with a graphical user interface (GUI) that is used

to operate and monitor the Sensory Panels wirelessly.

The architecture is flexible and expandable, supporting

one Sensory Panel or many panels organized two-

dimensionally in a grid pattern. A notional block diagram

with four Sensory Panels is shown in Figure 1.

Figure 1. Notional MDDS Architecture Block Diagram

with Four Sensory Panels

The Sensory Panels consist of two microcontrollers with

embedded software, two Sensing Layers, and a Bluetooth

low-energy (BLE) module for wireless communication.

The Sensory Panels are interchangeable and operate

independently, scanning for damage periodically and

waiting to be connected to a Bluetooth-enabled device.

The Sensory Panel’s embedded software configures the

microcontrollers, executes algorithms for situational

awareness and damage detection, and reports the results

upon request.

The MDDS GUI runs on a mobile device and provides

users with the ability to configure, command, and

monitor the Sensory Panels in the system. The GUI

allows users to set Sensory Panel attributes and the panel

scanning rate of the application. It also provides the

ability to scan, discover, and connect to the Sensory

Panels wirelessly via Bluetooth. The active Sensory

Panels are displayed on the main view and detailed

damage information is provided in graphical and tabular

format.

The intent for this prototype system is to be operated as a

technology demonstration. A variety of configurations

will be tested with at least four intelligent,

interchangeable, and configurable Sensory Panels

connected at any one time. It will demonstrate the

Sensory Panel’s modularity and situational awareness

capabilities.

3. SENSORY PANEL

The Sensory Panels are designed to be identical and

interchangeable. Each Sensory Panel consists of a custom

printed circuit board (PCB) with two 32-bit

microcontrollers with embedded software, two Sensing

Layers, and a BLE module for wireless communication

(Figure 2). Each Sensory Panel also includes four Molex

connectors that can be used for power distribution and

panel-to-panel communication if multiple Sensory

Panels are utilized. The Molex connectors are oriented to

allow panels to be connected to adjacent panels from any

of the four sides of the PCB.

Sensory Panel communication is accomplished using two

primary serial peripheral interfaces. The Universal

Asynchronous Receiver/Transmitter (UART) of the

microcontroller is used to configure the BLE module

(RN4020). Once the module is configured, a Bluetooth-

enabled device is paired to it, and a Microchip Low-

energy Data Profile (MLDP) service is open, the UART

is used to transmit serial data wirelessly to a mobile

device. The MLDP is a private BLE service that allows

serial data (up to 50 kbps) to be transported over

Bluetooth. It basically turns the interface into a simple

UART, bridging the UART serial data from the

microcontroller. The I2C serial peripheral interfaces are

used for panel-to-panel communication. It is a serial

protocol for low-speed, two-wire communication.

Figure 2. MDDS PCB

The Sensory Panels have two Sensing Layers, each

consisting of 96 conductive traces that run parallel to

each other. The top Sensing Layer has traces that span

vertically 7.67 inches with a trace-to-trace spacing of

approximately 50 mils. The bottom Sensing Layer is

identical except it is oriented orthogonal to the top layer,

thereby creating a two-dimensional grid pattern. Damage

is detected when one or more conductive traces are

broken.

The Sensory Panels require 3.3VDC input voltage and

consume approximately 450mW of power. Additional

Sensory Panel attributes include PCB dimensions (9.5 x

9.5 x 0.062 in. (24.13 x 24.13 x 0.16 cm) (W x L x D))

and Sensing Layer dimensions (7.67 x 7.67 in. (19.48 x

19.48 cm) (W x L)).

4. EMBEDDED SOFTWARE

Stored in the non-volatile memory of the Sensory Panels’

microcontrollers is an embedded program that is

responsible for the configuration and operation of each

Sensory Panel. The embedded software initializes and

configures the serial peripheral interfaces and the BLE

module. It also processes and responds to commands sent

from the mobile device and reports Sensory Panel health

information upon request. In addition, the embedded

program executes algorithms that provide three main

MDDS functions: 1) generate an active panel map; 2)

determine potential Master Panels (MPs) and set the MP

once a connection has been made with the GUI; and 3)

monitor the health status of all active panels. Figure 3

provides an overview of the embedded software.

Figure 3. Sensory Panel Embedded Software Logical

and Structural Overview

The MDDS active panel mapping algorithm scans

potentially adjacent panels to determine which panels are

active. The algorithm within each individual active panel

then performs a scan to determine which panels could be

the MP. This is accomplished by each panel checking if

an active panel is present to its left and/or below it using

the I2C serial interfaces. If there are no active panels to

the left or below the panel, then it is considered a

potential MP and the BLE module is configured as such.

Since the configuration of the system is arbitrary, the

MDDS can have one or more potential MPs. Using the

GUI, a user will arbitrarily connect to one of them and

assign it the role of MP. All the other potential MPs

become normal, active panels. The newly-assigned MP

starts a progressive scan by communicating with adjacent

panels to first determine its closest neighboring panels.

Next, the MP requests each of its adjacent neighbors to

report the status of their respective neighbors. This

operation continues until no new panels are found. The

MP keeps a record of the configuration of the MDDS and

the path to follow to access any active panel within the

system. Upon request from the GUI, the MP transmits

back the coordinates of the active panels in the MDDS.

The health of each Sensory Panel is continuously

monitored by the embedded code. When the GUI

requests a health status of the MDDS, the MP starts by

requesting the status from each of the active panels in the

system, calculates the actual location of any faults, and

reports the location of the broken conductive traces to the

GUI. When damage occurs to the top Sensing Layer only,

the determination of the exact location of the damage is

not possible, thus the system reports the damage as

having occurred along the corresponding trace(s). When

the damage is detected on both Sensing Layers, the

damage location is determined by: 1) a single point when

only one trace on each layer is broken, 2) a rectangle,

Microcontroller Embedded C

Initialization
Determine

Potential Masters

Configure
BLE Module

Setup Serial
Peripherals

Configure
� processor

BLE Tx/Rx

Send/Receive BLE
Commands & Responses

Connected to iPad &
MLDP Session Opened

Generate Active
Panel Map

Scan Sensing
Layers

Process BLE
Data

Package
Panel Status

Advertise
BLE

when multiple traces are broken in at least one layer. The

rectangle is bound by the number of traces affected in

each of the corresponding Sensing Layers. A relative

time stamp is associated with each damage event to

establish the proper order of events. This helps organize

and identify the location of damage if subsequent

damages occur at a later time on the same panel.

If a Sensory Panel which was previously active were to

become unresponsive, the embedded software

autonomously starts a new re-configuration scan to

establish a new set of active panels. Since multiple paths

are possible to reach a panel, the failure of any one panel

will not necessarily prevent panels further away from the

MP from being accessed and monitored using an

alternate communication/power path.

5. GUI

The MDDS application (app) is a custom-developed

program that runs on a 3rd generation iPad Pro Wi-Fi

model with iOS 12. The app was written in Swift 4.2, an

open-source programming language developed by Apple

Inc., using Xcode 10 integrated development

environment (IDE) for macOS. The app provides a GUI

for users to configure, command, control, monitor, and

display the active Sensory Panels in the MDDS. It also

provides the ability to scan for BLE advertisements and

to connect to BLE peripherals (Figure 4).

Figure 4. MDDS Application Home Page

The MDDS app was designed to provide users the ability

to interact with the system. Commands are issued by

users and sent wirelessly using Bluetooth technology.

Command responses and Sensory Panel health statuses

are received from the MP and processed and displayed

textually and/or graphically depending on the data type.

User interaction with the GUI is accomplished using

standard tap and touch gestures. Device rotation is also

supported. Figure 5 illustrates the high-level structure

and functionality of the application relevant to MDDS

operation. Specific details of iOS and Swift functions are

not included in the overview.

Figure 5. Mobile Device Application Logical and

Structural Overview

Swift is a general-purpose programming language that

can be used to target the Apple iOS platform. It provides

access to libraries, frameworks, classes, methods, and

etc. required for iOS app development. The MDDS app

uses two such frameworks, UIKit and CoreBluetooth.

These frameworks are essential for the GUI

development. UIKit provides the essential infrastructure

for the GUI such as window, view, and event handling

architectures. The CoreBluetooth framework provides

the necessary classes to communicate with Bluetooth 4.0

low-energy devices. To accomplish the functionality

illustrated in Figure 5, numerous classes, methods, and

objects were needed. These classes were extended to

expand their functionality beyond their default

implementation for MDDS use.

The MDDS MainViewController class expands the

functionality of specific UIKit framework classes. The

UIViewController class is used to provide methods to

manage and coordinate all views and controller objects.

The panelButton class was written to expand the

functionality of the UIButton class and to customize a

button’s appearance to represent a Sensory Panel. This

class enables tap gesture control for each active panel

displayed to open a detailed view that provides additional

panel-specific information. The layout of the panels is

accomplished using the UIStackView class. This class

organizes the panels in a grid pattern which represents the

physical layout of the Sensory Panels.

The MainViewController class also implements methods

of the Bluetooth communication protocol. This allows

the delegate, the MainViewController class, to monitor

the discovery, connectivity, and retrieval of BLE

peripheral devices. When a Sensory Panel is connected

iOS 12

MDDS App (Swift 4)

Scan BLE
Devices

Generate
Panels

Connect to
Master Panel

Load/Save
Settings

Open MLDP
Session

Query Active
Panel List

Process BLE
Data

Initialization

Start
Monitoring

Display
Damage

Send/Receive BLE
Commands & Responses

BLE Tx/Rx

Send Panel
Parameters

wirelessly to the iPad, the MainViewController begins

monitoring the designated MP BLE services and

characteristics. When the user opens a MLDP session

with the MP, the MLDP private service bridges the

panel’s primary microcontroller UART interface to the

iPad. The iPad GUI uses this service to send commands

and receive command responses and data from the

microcontroller. Data is transported and packaged in a

private data service characteristic of the MLDP service.

The MainViewController class also provides custom

functions to perform other MDDS-related tasks. One of

the major tasks is to process BLE data. Data received

from the MP is in string format UTF-8 encoded. The data

string consists of a header, comma delimited data,

followed by a carriage return, and a line feed. The header

typically begins with ‘$’ followed by an abbreviated

version of the echoed command. The data string is parsed

into its syntactic components and the data is converted

into the proper data type. Once processed, the panels’

damage information is stored in a two-dimensional array.

Other functions include generating the panelButtons and

updating their graphics with health status indications.

When the Active Panel List is received from the MP, a

function updates the fill and border colors of the sensory

panel graphics to represent the health status received.

Panels with no damage are displayed with a green fill

color and panels with damage are displayed red.

The SettingsTableViewController class implements

methods to display, load, and save the MDDS app’s

settings. The SettingsTableViewController class expands

the functionality of the UITableViewController and the

UserDefaults classes. The UITableViewController class

is used to manage the TableViewController for

displaying and setting the attributes of the app and the

Sensory Panels. To enable the app to retain its settings,

the app’s built-in defaults database is utilized. The

database is accessed using methods from the

UserDefaults class. The app was designed to store

specific Sensory Panel parameters in the defaults

database for as long as the app is installed. When the app

is initialized, these parameters are loaded and when the

user closes the Settings view (Figure 6), the parameters

are saved to the database.

Finally, displaying each Sensory Panel’s detailed health

status is accomplished using three custom classes. These

classes configure, manage, and coordinate the views and

controller objects. The PanelViewController class is

responsible for managing and coordinating the Sensory

Panel and the Collection views and calculating the

damage attributes to be displayed in tabular format. The

SensoryPanelView class expands the functionality of the

UIView class to display damage graphically in the

PanelViewController. The PanelViewLayout class

expands the role of the UICollectionViewLayout class

configuring the layout and displaying the damage

attributes in tabular format on the PanelViewController.

Figure 6. Sensory Panel Settings View

The SensoryPanelView class implements methods to

display detailed damage information graphically to the

user. The setupPanelLayout function calculates the

view’s size using the actual size of the Sensory Panel as

defined by the user in the SettingsTableViewController

class and scales it appropriately to fit within the usable

bounds of the PanelViewController. Mobile device

orientation is also used as a parameter in determining the

scaling factor. At this point, the axis range and view

transform are calculated. The axis range is calculated by

rounding the actual Sensory Panel physical dimensions

to the nearest integer. This range is used to draw the x-

and y-axes and the horizontal and vertical lines in the

view. In order to scale the graphical objects in the view’s

graphics context accurately, an affine transformation

matrix is used. This transform scales, rotates, and

translates the graphical objects representing damage to

the correct locations considering the position of the axis

origin in relation to the view’s origin. The plot and

plotBlindSpots functions are responsible for graphically

drawing damage in the view. Both methods have

identical plotting functions, except for the designed shape

layer. Damage is drawn in red on the Damage

CAShapeLayer, indicating impact damage that results in

broken traces on both the top and bottom sensing layers

of a Sensory Panel. In contrast, blind spots, or damage

occurring on the top sensing layer only, is drawn in

yellow on a different CAShapeLayer. Since a y-

coordinate can’t be assigned to this type of damage, it is

represented differently to the user. These methods also

use the same function to draw the objects in the view. The

rectsDots function draws rectangular or circular

graphical objects based on the points (x-, y-coordinates)

passed to the function. If more than one trace on each

sensing layer is broken, the function draws a rectangular-

shaped object corresponding to the width and height of

the reported damage. If only one trace on each sensing

layer is broken, the function draws a circle to pinpoint the

damage location.

6. TESTING AND DEMONSTRATION

A set of simulated test data was generated to evaluate the

performance of the MDDS. The test data set utilized five

Sensory Panels laid out in an inverted-T pattern (Figure

7) with damage on two of the Sensory Panels. The test

data set followed the MDDS data protocol and was

loaded onto the MP as part of the embedded software.

Figure 7. Sensory Panel Layer for Simulated Testing

Testing was initiated by applying power to one Sensory

Panel. The Sensory Panel performed various

initialization steps and configured itself as a potential

MP, at which time the panel’s BLE module advertised its

name as “MDDP-M”. The User then utilized the GUI to

scan for advertisements from Bluetooth-enabled devices.

The User selected the potential MP and connected to it,

making it the MP. The User then pressed the Open

MLDP Session and Query Active Panel List buttons on

the GUI (Figure 4). The GUI received information from

the MP and displayed the page shown in Figure 8. The

User then pressed the configuration gear image in the

toolbar located in the bottom of the view to open the app

settings and the Sensory Panel Settings View (Figure 6).

The User verifies the settings and makes any required

changes. The User returns to the Home Page and presses

the Send Parameters button, which sends the calculated

traces/inch parameter. To initiate the GUI to monitor the

Sensory Panels health status, the User then pressed the

“Start Monitoring” button and the MP responded with the

simulated Sensory Panel health status information as

shown in Figure 9. Sensory Panels with red backgrounds

and borders indicate panels with damage while green-

filled panels indicate Sensory Panels without damage.

Figure 8. GUI Showing APL

Figure 9. GUI Showing APL and Sensory Panel Health

Status

To display detailed Sensory Panel health information, the

User can press anyone of the buttons representing a

Sensory Panel. When the User pressed the red “Panel

3,1” button, it displayed the detailed damage information

for Panel 3,1 (Figure 10). Panel 3,1 GUI, graphically

illustrates four simulated damage areas: two large

rectangular-shaped damage areas, one single point

damage area, and a damage area that was for the top

Sensing Layer only. Damage that results in broken

conductive traces on both the top and bottom Sensing

Layers is drawn in red while damage occurring on the top

Sensing Layer only, is drawn in yellow. Since no y-

coordinate can be paired to this type of damage, it is

represented differently to the User. The four simulated

damages are also displayed in tabular format. The bottom

left-hand corner and top right-hand corner x- and y-

coordinates are shown as well as the damage width,

height, and calculated area.

Figure 10. Detailed Damage Information for Panel 3,1

Another simulated example is illustrated in Figure 11.

The Panel 2,3 GUI shows four simulated damages: two

large damage areas, one small damage area, and a

relatively wide top-only damage area.

Extensive testing will be conducted in the Special

Projects Laboratory at KSC in the near future. Five

Sensory Panels will be utilized in the testing. The system

elements will be integrated and the performance

evaluated in a laboratory environment. The performance

evaluation will include extensive testing of damage

detection algorithms, sensing panel re-configurability,

and Bluetooth communication protocols.

Figure 11. Detailed Damage Information for Panel 2,3

7. ACKNOWLEDGEMENT

This document was prepared under the sponsorship of the

NASA KSC and contains information related to NASA

patented technology. The reference to any trademarks or

other product identification in this document does not

constitute an endorsement or approval of the use of such

commercial products.

8. REFERENCES

1. https://orbitaldebris.jsc.nasa.gov/faq.html.

2. https://www.nasaspaceflight.com/2016/08/nasa

-mmod-primary-threat-crew-vehicles/.

3. K.S. Edelstein “Orbital Impacts and the Space

Shuttle Windshield, NASA-TM-110594, March

1, 1995.

4. Orbital Debris: A Chronology, NASA/TP-

1999-208856, January 1999.

5. http://www.nasaspaceflight.com/2014/07/iss-

managers-evaluating-mmod-radiator/.

6. C. Immer, P. Metzger, P.E. Hintze, A. Nick, R.

Horan “Apollo 12 Lunar Module exhaust plume

impingement on Lunar Surveyor III” Icarus 211

(2011) 1089-1102.

7. J.C. Liou, N.L. Johnson, “Risks in Space from

Orbiting Debris”, Science 20, 340-341, Vol.

311, Issue 5759, January, 2006.

8. https://www.nasa.gov/exploration/new_

space_enterprise/flagship/index.html

9. T. Gibson et al. U.S. Patent 9,233,765 B2,

Issued January 12, 2016.

