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ABSTRACT 

 

NASA has identified potential damage from 

micrometeoroid and orbital debris (MMOD) impacts as a 

primary threat to Commercial Crew Program vehicles.  

The International Space Station (ISS) and extraterrestrial 

habitats also exhibit the risk of damage caused by 

MMODs. Currently no integrated in-situ or real-time 

health monitoring damage detection system is being used 

for expandable and inflatable structures. A novel, 

modular damage detection system design that 

incorporates interchangeable and replaceable sensory 

panels in a foldable architecture is described. The design 

implements technologies that provide for situational 

awareness, self-configuration, and damage detection and 

localization. The system is applicable for the new 

Gateway and surface and ground support infrastructure. 
 

1. INTRODUCTION 

 

Millions of naturally occurring objects 

(micrometeoroids) and made-made debris can be 

encountered during a space mission. For decades, NASA 

and other agencies have tracked orbital debris but the 

tracking is limited to objects that are typically larger than 

3 mm (in low-Earth orbit) [1]. During the Space Shuttle 

era, all the orbiters received damage from MMOD and 

MMOD was designated as the third greatest risk to losing 

an orbiter during a mission; launch and re-entry were the 

two highest risks [2]. Damage was observed to many 

orbiter windows during the first 63 Space Shuttle 

missions. A total of 177 debris impacts were identified 

on the Shuttles’ exterior windows, with 45 of them being 

significant enough to require replacing the windows [3]. 

Additionally, more than 70 Space Shuttle windows had 

to be replaced because of significant debris impacts 

during the first 88 missions [4]. In July 2014, MMOD 

impact caused damage to a panel on the Potential P4 

Photovoltaic Radiator (PVR) on the International Space 

Station (ISS) [5]. During the Apollo program, debris 

damage was also observed due to landing operations.  

Two coupons from the Surveyor III spacecraft that were 

facing the Apollo 12 landing site were analyzed and an 

average of 103 pits/cm2 was observed. The data indicated 

that the spacecraft was not exposed to the direct spray of 

the landing Lunar Module but was exposed to the fringes 

of the ejecta plume. It was speculated that if the 

spacecraft had been exposed to the direct spray, the 

damage would have been orders of magnitude higher [6]. 

 

NASA has identified a need for damage detection and 

health monitoring technologies in multiple NASA 

technology roadmaps. Technology gaps or needs for 

Space exploration include such areas as integrated health 

monitoring for space debris impacts [7], on government 

or commercial crew space vehicles [2], habitation 

structures, and expandable, inflatable or deployable 

structures. 

 

In 2011, the Flagship Technology Demonstration 

program expressed an interest in the need to detect early 

damage to habitation structures from risks such as 

MMOD impacts for the planned Inflatable Hab (iHab) 

demonstration [8]. NASA Kennedy Space Center (KSC) 

initiated development of technologies for the early 

detection of MMOD damage to habitation structures. The 

primary technology investigated was a damage detection 

system based on sensing the electrical integrity of parallel 

conductive traces. When damage occurred, traces were 

broken and information was provided to the monitoring 

system. Multiple configurations were investigated, 

including those containing several sensing layers, where 

alternate layers were arranged orthogonally with respect 

to adjacent layers. The technology was demonstrated in 

the NASA Habitat Demonstration Unit (HDU) Deep 

Space Analog platforms and via a secure network for 

remote sensing using single and multi-panel approaches. 

 

Currently, KSC is investigating the use of flexible 

materials and modular designs for use in spacecraft, 

smart, wearable fabrics, solar arrays, military shelters, 
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and ground infrastructure. The modular designs use 

embedded algorithms for situational awareness, self-

configuration, and damage detection and localization. 

Each panel is aware of its spatial relationship to the other 

panels. Additionally, each panel is identical in hardware 

and software, which greatly enhances the modularity and 

tailorability of the system. The current version of the 

Modular Damage Detection System (MDDS) is focused 

on detecting damage to infrastructure associated with 

ground systems that support launch operations such as 

composite cryogenic storage tanks.  

 

2. SENSOR SYSTEM DESIGN 

 

The MDDS expands on the previously demonstrated and 

NASA-patented Flat Surface Damage Detection System 

(FSDDS) and the Flexible Damage Detection System 

(FLEX-DDS) capabilities and technologies [9]. The 

sensory system is an intelligent damage detection “skin” 

that could be embedded into or added to structures, 

providing a lightweight in-situ health monitoring 

capability for space or aircraft vehicles, and for 

expandable, inflatable, and deployable structures and 

other applications. 

 

The MDDS is composed of three main systems: 1) the 

Sensory Panel; 2) the embedded software for situational 

awareness and damage detection; and 3) the mobile 

device with a graphical user interface (GUI) that is used 

to operate and monitor the Sensory Panels wirelessly.  

The architecture is flexible and expandable, supporting 

one Sensory Panel or many panels organized two-

dimensionally in a grid pattern. A notional block diagram 

with four Sensory Panels is shown in Figure 1. 

 

 
Figure 1. Notional MDDS Architecture Block Diagram 

with Four Sensory Panels 

 

The Sensory Panels consist of two microcontrollers with 

embedded software, two Sensing Layers, and a Bluetooth 

low-energy (BLE) module for wireless communication. 

The Sensory Panels are interchangeable and operate 

independently, scanning for damage periodically and 

waiting to be connected to a Bluetooth-enabled device. 

The Sensory Panel’s embedded software configures the 

microcontrollers, executes algorithms for situational 

awareness and damage detection, and reports the results 

upon request. 

 

The MDDS GUI runs on a mobile device and provides 

users with the ability to configure, command, and 

monitor the Sensory Panels in the system. The GUI 

allows users to set Sensory Panel attributes and the panel 

scanning rate of the application. It also provides the 

ability to scan, discover, and connect to the Sensory 

Panels wirelessly via Bluetooth. The active Sensory 

Panels are displayed on the main view and detailed 

damage information is provided in graphical and tabular 

format. 

 

The intent for this prototype system is to be operated as a 

technology demonstration. A variety of configurations 

will be tested with at least four intelligent, 

interchangeable, and configurable Sensory Panels 

connected at any one time. It will demonstrate the 

Sensory Panel’s modularity and situational awareness 

capabilities. 

 

3. SENSORY PANEL 

 

The Sensory Panels are designed to be identical and 

interchangeable. Each Sensory Panel consists of a custom 

printed circuit board (PCB) with two 32-bit 

microcontrollers with embedded software, two Sensing 

Layers, and a BLE module for wireless communication 

(Figure 2). Each Sensory Panel also includes four Molex 

connectors that can be used for power distribution and 

panel-to-panel communication if multiple Sensory 

Panels are utilized. The Molex connectors are oriented to 

allow panels to be connected to adjacent panels from any 

of the four sides of the PCB. 

 

Sensory Panel communication is accomplished using two 

primary serial peripheral interfaces. The Universal 

Asynchronous Receiver/Transmitter (UART) of the 

microcontroller is used to configure the BLE module 

(RN4020). Once the module is configured, a Bluetooth-

enabled device is paired to it, and a Microchip Low-

energy Data Profile (MLDP) service is open, the UART 

is used to transmit serial data wirelessly to a mobile 

device. The MLDP is a private BLE service that allows 



serial data (up to 50 kbps) to be transported over 

Bluetooth. It basically turns the interface into a simple 

UART, bridging the UART serial data from the 

microcontroller. The I2C serial peripheral interfaces are 

used for panel-to-panel communication. It is a serial 

protocol for low-speed, two-wire communication. 

 

 
Figure 2. MDDS PCB 

 

The Sensory Panels have two Sensing Layers, each 

consisting of 96 conductive traces that run parallel to 

each other. The top Sensing Layer has traces that span 

vertically 7.67 inches with a trace-to-trace spacing of 

approximately 50 mils. The bottom Sensing Layer is 

identical except it is oriented orthogonal to the top layer, 

thereby creating a two-dimensional grid pattern. Damage 

is detected when one or more conductive traces are 

broken. 

 

The Sensory Panels require 3.3VDC input voltage and 

consume approximately 450mW of power. Additional 

Sensory Panel attributes include PCB dimensions (9.5 x 

9.5 x 0.062 in. (24.13 x 24.13 x 0.16 cm) (W x L x D)) 

and Sensing Layer dimensions (7.67 x 7.67 in. (19.48 x 

19.48 cm) (W x L)). 

 

4. EMBEDDED SOFTWARE 

 

Stored in the non-volatile memory of the Sensory Panels’ 

microcontrollers is an embedded program that is 

responsible for the configuration and operation of each 

Sensory Panel. The embedded software initializes and 

configures the serial peripheral interfaces and the BLE 

module. It also processes and responds to commands sent 

from the mobile device and reports Sensory Panel health 

information upon request. In addition, the embedded 

program executes algorithms that provide three main 

MDDS functions: 1) generate an active panel map; 2) 

determine potential Master Panels (MPs) and set the MP 

once a connection has been made with the GUI; and 3) 

monitor the health status of all active panels. Figure 3 

provides an overview of the embedded software. 

 

 
Figure 3. Sensory Panel Embedded Software Logical 

and Structural Overview 

 

The MDDS active panel mapping algorithm scans 

potentially adjacent panels to determine which panels are 

active. The algorithm within each individual active panel 

then performs a scan to determine which panels could be 

the MP. This is accomplished by each panel checking if 

an active panel is present to its left and/or below it using 

the I2C serial interfaces. If there are no active panels to 

the left or below the panel, then it is considered a 

potential MP and the BLE module is configured as such. 

Since the configuration of the system is arbitrary, the 

MDDS can have one or more potential MPs. Using the 

GUI, a user will arbitrarily connect to one of them and 

assign it the role of MP. All the other potential MPs 

become normal, active panels. The newly-assigned MP 

starts a progressive scan by communicating with adjacent 

panels to first determine its closest neighboring panels. 

Next, the MP requests each of its adjacent neighbors to 

report the status of their respective neighbors. This 

operation continues until no new panels are found. The 

MP keeps a record of the configuration of the MDDS and 

the path to follow to access any active panel within the 

system. Upon request from the GUI, the MP transmits 

back the coordinates of the active panels in the MDDS. 

 

The health of each Sensory Panel is continuously 

monitored by the embedded code. When the GUI 

requests a health status of the MDDS, the MP starts by 

requesting the status from each of the active panels in the 

system, calculates the actual location of any faults, and 

reports the location of the broken conductive traces to the 

GUI. When damage occurs to the top Sensing Layer only, 

the determination of the exact location of the damage is 

not possible, thus the system reports the damage as 

having occurred along the corresponding trace(s). When 

the damage is detected on both Sensing Layers, the 

damage location is determined by: 1) a single point when 

only one trace on each layer is broken, 2) a rectangle, 
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when multiple traces are broken in at least one layer. The 

rectangle is bound by the number of traces affected in 

each of the corresponding Sensing Layers. A relative 

time stamp is associated with each damage event to 

establish the proper order of events. This helps organize 

and identify the location of damage if subsequent 

damages occur at a later time on the same panel. 

 

If a Sensory Panel which was previously active were to 

become unresponsive, the embedded software 

autonomously starts a new re-configuration scan to 

establish a new set of active panels. Since multiple paths 

are possible to reach a panel, the failure of any one panel 

will not necessarily prevent panels further away from the 

MP from being accessed and monitored using an 

alternate communication/power path. 

 

5. GUI 

 

The MDDS application (app) is a custom-developed 

program that runs on a 3rd generation iPad Pro Wi-Fi 

model with iOS 12. The app was written in Swift 4.2, an 

open-source programming language developed by Apple 

Inc., using Xcode 10 integrated development 

environment (IDE) for macOS. The app provides a GUI 

for users to configure, command, control, monitor, and 

display the active Sensory Panels in the MDDS. It also 

provides the ability to scan for BLE advertisements and 

to connect to BLE peripherals (Figure 4).  

 
Figure 4. MDDS Application Home Page 

The MDDS app was designed to provide users the ability 

to interact with the system. Commands are issued by 

users and sent wirelessly using Bluetooth technology. 

Command responses and Sensory Panel health statuses 

are received from the MP and processed and displayed 

textually and/or graphically depending on the data type. 

User interaction with the GUI is accomplished using 

standard tap and touch gestures. Device rotation is also 

supported. Figure 5 illustrates the high-level structure 

and functionality of the application relevant to MDDS 

operation. Specific details of iOS and Swift functions are 

not included in the overview. 

 

 
Figure 5. Mobile Device Application Logical and 

Structural Overview 

 

Swift is a general-purpose programming language that 

can be used to target the Apple iOS platform. It provides 

access to libraries, frameworks, classes, methods, and 

etc. required for iOS app development. The MDDS app 

uses two such frameworks, UIKit and CoreBluetooth.  

 

These frameworks are essential for the GUI 

development. UIKit provides the essential infrastructure 

for the GUI such as window, view, and event handling 

architectures. The CoreBluetooth framework provides 

the necessary classes to communicate with Bluetooth 4.0 

low-energy devices. To accomplish the functionality 

illustrated in Figure 5, numerous classes, methods, and 

objects were needed. These classes were extended to 

expand their functionality beyond their default 

implementation for MDDS use. 

 

The MDDS MainViewController class expands the 

functionality of specific UIKit framework classes. The 

UIViewController class is used to provide methods to 

manage and coordinate all views and controller objects. 

The panelButton class was written to expand the 

functionality of the UIButton class and to customize a 

button’s appearance to represent a Sensory Panel. This 

class enables tap gesture control for each active panel 

displayed to open a detailed view that provides additional 

panel-specific information. The layout of the panels is 

accomplished using the UIStackView class. This class 

organizes the panels in a grid pattern which represents the 

physical layout of the Sensory Panels.  

 

The MainViewController class also implements methods 

of the Bluetooth communication protocol. This allows 

the delegate, the MainViewController class, to monitor 

the discovery, connectivity, and retrieval of BLE 

peripheral devices. When a Sensory Panel is connected 
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wirelessly to the iPad, the MainViewController begins 

monitoring the designated MP BLE services and 

characteristics. When the user opens a MLDP session 

with the MP, the MLDP private service bridges the 

panel’s primary microcontroller UART interface to the 

iPad. The iPad GUI uses this service to send commands 

and receive command responses and data from the 

microcontroller. Data is transported and packaged in a 

private data service characteristic of the MLDP service. 

 

The MainViewController class also provides custom 

functions to perform other MDDS-related tasks. One of 

the major tasks is to process BLE data. Data received 

from the MP is in string format UTF-8 encoded. The data 

string consists of a header, comma delimited data, 

followed by a carriage return, and a line feed. The header 

typically begins with ‘$’ followed by an abbreviated 

version of the echoed command. The data string is parsed 

into its syntactic components and the data is converted 

into the proper data type. Once processed, the panels’ 

damage information is stored in a two-dimensional array. 

Other functions include generating the panelButtons and 

updating their graphics with health status indications. 

When the Active Panel List is received from the MP, a 

function updates the fill and border colors of the sensory 

panel graphics to represent the health status received. 

Panels with no damage are displayed with a green fill 

color and panels with damage are displayed red. 

 

The SettingsTableViewController class implements 

methods to display, load, and save the MDDS app’s 

settings. The SettingsTableViewController class expands 

the functionality of the UITableViewController and the 

UserDefaults classes. The UITableViewController class 

is used to manage the TableViewController for 

displaying and setting the attributes of the app and the 

Sensory Panels. To enable the app to retain its settings, 

the app’s built-in defaults database is utilized. The 

database is accessed using methods from the 

UserDefaults class. The app was designed to store 

specific Sensory Panel parameters in the defaults 

database for as long as the app is installed. When the app 

is initialized, these parameters are loaded and when the 

user closes the Settings view (Figure 6), the parameters 

are saved to the database. 

 

Finally, displaying each Sensory Panel’s detailed health 

status is accomplished using three custom classes. These 

classes configure, manage, and coordinate the views and 

controller objects. The PanelViewController class is 

responsible for managing and coordinating the Sensory 

Panel and the Collection views and calculating the 

damage attributes to be displayed in tabular format. The 

SensoryPanelView class expands the functionality of the 

UIView class to display damage graphically in the 

PanelViewController. The PanelViewLayout class 

expands the role of the UICollectionViewLayout class 

configuring the layout and displaying the damage 

attributes in tabular format on the PanelViewController.  

 
Figure 6. Sensory Panel Settings View 

 

The SensoryPanelView class implements methods to 

display detailed damage information graphically to the 

user. The setupPanelLayout function calculates the 

view’s size using the actual size of the Sensory Panel as 

defined by the user in the SettingsTableViewController 

class and scales it appropriately to fit within the usable 

bounds of the PanelViewController. Mobile device 

orientation is also used as a parameter in determining the 

scaling factor. At this point, the axis range and view 

transform are calculated. The axis range is calculated by 

rounding the actual Sensory Panel physical dimensions 

to the nearest integer. This range is used to draw the x- 

and y-axes and the horizontal and vertical lines in the 

view. In order to scale the graphical objects in the view’s 

graphics context accurately, an affine transformation 

matrix is used. This transform scales, rotates, and 

translates the graphical objects representing damage to 

the correct locations considering the position of the axis 

origin in relation to the view’s origin. The plot and 

plotBlindSpots functions are responsible for graphically 

drawing damage in the view. Both methods have 

identical plotting functions, except for the designed shape 

layer. Damage is drawn in red on the Damage 

CAShapeLayer, indicating impact damage that results in 

broken traces on both the top and bottom sensing layers 

of a Sensory Panel. In contrast, blind spots, or damage 

occurring on the top sensing layer only, is drawn in 

yellow on a different CAShapeLayer. Since a y-



coordinate can’t be assigned to this type of damage, it is 

represented differently to the user. These methods also 

use the same function to draw the objects in the view. The 

rectsDots function draws rectangular or circular 

graphical objects based on the points (x-, y-coordinates) 

passed to the function. If more than one trace on each 

sensing layer is broken, the function draws a rectangular-

shaped object corresponding to the width and height of 

the reported damage. If only one trace on each sensing 

layer is broken, the function draws a circle to pinpoint the 

damage location. 

 

6. TESTING AND DEMONSTRATION 

 

A set of simulated test data was generated to evaluate the 

performance of the MDDS. The test data set utilized five 

Sensory Panels laid out in an inverted-T pattern (Figure 

7) with damage on two of the Sensory Panels. The test 

data set followed the MDDS data protocol and was 

loaded onto the MP as part of the embedded software.   

 

 
Figure 7. Sensory Panel Layer for Simulated Testing 

Testing was initiated by applying power to one Sensory 

Panel. The Sensory Panel performed various 

initialization steps and configured itself as a potential 

MP, at which time the panel’s BLE module advertised its 

name as “MDDP-M”.  The User then utilized the GUI to 

scan for advertisements from Bluetooth-enabled devices. 

The User selected the potential MP and connected to it, 

making it the MP. The User then pressed the Open 

MLDP Session and Query Active Panel List buttons on 

the GUI (Figure 4). The GUI received information from 

the MP and displayed the page shown in Figure 8. The 

User then pressed the configuration gear image in the 

toolbar located in the bottom of the view to open the app 

settings and the Sensory Panel Settings View (Figure 6). 

The User verifies the settings and makes any required 

changes. The User returns to the Home Page and presses 

the Send Parameters button, which sends the calculated 

traces/inch parameter. To initiate the GUI to monitor the 

Sensory Panels health status, the User then pressed the 

“Start Monitoring” button and the MP responded with the 

simulated Sensory Panel health status information as 

shown in Figure 9.  Sensory Panels with red backgrounds 

and borders indicate panels with damage while green-

filled panels indicate Sensory Panels without damage. 

 
Figure 8. GUI Showing APL 

 
Figure 9. GUI Showing APL and Sensory Panel Health 

Status 

To display detailed Sensory Panel health information, the 

User can press anyone of the buttons representing a 

Sensory Panel. When the User pressed the red “Panel 



3,1” button, it displayed the detailed damage information 

for Panel 3,1 (Figure 10).  Panel 3,1 GUI, graphically 

illustrates four simulated damage areas: two large 

rectangular-shaped damage areas, one single point 

damage area, and a damage area that was for the top 

Sensing Layer only. Damage that results in broken 

conductive traces on both the top and bottom Sensing 

Layers is drawn in red while damage occurring on the top 

Sensing Layer only, is drawn in yellow. Since no y-

coordinate can be paired to this type of damage, it is 

represented differently to the User. The four simulated 

damages are also displayed in tabular format. The bottom 

left-hand corner and top right-hand corner x- and y-

coordinates are shown as well as the damage width, 

height, and calculated area.  

 
Figure 10. Detailed Damage Information for Panel 3,1 

Another simulated example is illustrated in Figure 11. 

The Panel 2,3 GUI shows four simulated damages: two 

large damage areas, one small damage area, and a 

relatively wide top-only damage area. 

 

Extensive testing will be conducted in the Special 

Projects Laboratory at KSC in the near future. Five 

Sensory Panels will be utilized in the testing. The system 

elements will be integrated and the performance 

evaluated in a laboratory environment. The performance 

evaluation will include extensive testing of damage 

detection algorithms, sensing panel re-configurability, 

and Bluetooth communication protocols. 

 

 
Figure 11. Detailed Damage Information for Panel 2,3  
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