603 research outputs found

    Stabilization of single-electron pumps by high magnetic fields

    Full text link
    We study the effect of perpendicular magnetic fields on a single-electron system with a strongly time-dependent electrostatic potential. Continuous improvements to the current quantization in these electron pumps are revealed by high-resolution measurements. Simulations show that the sensitivity of tunnel rates to the barrier potential is enhanced, stabilizing particular charge states. Nonadiabatic excitations are also suppressed due to a reduced sensitivity of the Fock-Darwin states to electrostatic potential. The combination of these effects leads to significantly more accurate current quantization

    Precession of a Freely Rotating Rigid Body. Inelastic Relaxation in the Vicinity of Poles

    Get PDF
    When a solid body is freely rotating at an angular velocity Ω{\bf \Omega}, the ellipsoid of constant angular momentum, in the space Ω1,Ω2,Ω3\Omega_1, \Omega_2, \Omega_3, has poles corresponding to spinning about the minimal-inertia and maximal-inertia axes. The first pole may be considered stable if we neglect the inner dissipation, but becomes unstable if the dissipation is taken into account. This happens because the bodies dissipate energy when they rotate about any axis different from principal. In the case of an oblate symmetrical body, the angular velocity describes a circular cone about the vector of (conserved) angular momentum. In the course of relaxation, the angle of this cone decreases, so that both the angular velocity and the maximal-inertia axis of the body align along the angular momentum. The generic case of an asymmetric body is far more involved. Even the symmetrical prolate body exhibits a sophisticated behaviour, because an infinitesimally small deviation of the body's shape from a rotational symmetry (i.e., a small difference between the largest and second largest moments of inertia) yields libration: the precession trajectory is not a circle but an ellipse. In this article we show that often the most effective internal dissipation takes place at twice the frequency of the body's precession. Applications to precessing asteroids, cosmic-dust alignment, and rotating satellites are discussed.Comment: 47 pages, 1 figur

    Spin Dynamics at Very Low Temperature in Spin Ice Dy2_2Ti2_2O7_7

    Full text link
    We have performed AC susceptibility and DC magnetic relaxation measurements on the spin ice system Dy2_2Ti2_2O7_7 down to 0.08 K. The relaxation time of the magnetization has been estimated below 2 K down to 0.08 K. The spin dynamics of Dy2_2Ti2_2O7_7 is well described by using two relaxation times (τS\tau_{\rm S} (short time) and τL\tau_{\rm L} (long time)). Both τS\tau_{\rm S} and τL\tau_{\rm L} increase on cooling. Assuming the Arrhenius law in the temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K, both τS\tau_{\rm S} and τL\tau_{\rm L} show a clear deviation from the thermal activated dynamics toward temperature independent relaxation, suggesting a quantum dynamics.Comment: 4 page

    Cosmological simulations for combined-probe analyses: covariance and neighbour-exclusion bias

    Get PDF
    We present a public suite of weak-lensing mock data, extending the Scinet Light Cone Simulations (SLICS) to simulate cross-correlation analyses with different cosmological probes. These mocks include Kilo Degree Survey (KiDS)-450- and LSST-like lensing data, cosmic microwave background lensing maps and simulated spectroscopic surveys that emulate the Galaxy And Mass Assembly, BOSS, and 2-degree Field Lensing galaxy surveys. With 844 independent realizations, our mocks are optimized for combined-probe covariance estimation, which we illustrate for the case of a joint measurement involving cosmic shear, galaxy–galaxy lensing, and galaxy clustering from KiDS-450 and BOSS data. With their high spatial resolution, the SLICS are also optimal for predicting the signal for novel lensing estimators, for the validation of analysis pipelines, and for testing a range of systematic effects such as the impact of neighbour-exclusion bias on the measured tomographic cosmic shear signal. For surveys like KiDS and Dark Energy Survey, where the rejection of neighbouring galaxies occurs within ∌2 arcsec, we show that the measured cosmic shear signal will be biased low, but by less than a per cent on the angular scales that are typically used in cosmic shear analyses. The amplitude of the neighbour-exclusion bias doubles in deeper, LSST-like data. The simulation products described in this paper are made available at http://slics.roe.ac.uk/

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 1.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Low-temperature muon spin rotation studies of the monopole charges and currents in Y doped Ho2Ti2O7

    Get PDF
    In the ground state of Ho2Ti2O7 spin ice, the disorder of the magnetic moments follows the same rules as the proton disorder in water ice. Excitations take the form of magnetic monopoles that interact via a magnetic Coulomb interaction. Muon spin rotation has been used to probe the low-temperature magnetic behaviour in single crystal Ho2−xYxTi2O7 (x = 0, 0.1, 1, 1.6 and 2). At very low temperatures, a linear field dependence for the relaxation rate of the muon precession λ(B), that in some previous experiments on Dy2Ti2O7 spin ice has been associated with monopole currents, is observed in samples with x = 0, and 0.1. A signal from the magnetic fields penetrating into the silver sample plate due to the magnetization of the crystals is observed for all the samples containing Ho allowing us to study the unusual magnetic dynamics of Y doped spin ice

    Geometry versus growth. Internal consistency of the flat LambdaCDM model with KiDS-1000

    Get PDF
    We carry out a multi-probe self-consistency test of the flat ΛCDM model with the aim of exploring potential causes of the reported tensions between high- and low-redshift cosmological observations. We divide the model into two theory regimes determined by the smooth background (geometry) and the evolution of matter density fluctuations (growth), each governed by an independent set of Lambda Cold Dark Matter (ΛCDM) cosmological parameters. This extended model is constrained by a combination of weak gravitational lensing measurements from the Kilo-Degree Survey, galaxy clustering signatures extracted from Sloan Digital Sky Survey campaigns and the Six-Degree Field Galaxy Survey, and the angular baryon acoustic scale and the primordial scalar fluctuation power spectrum measured in Planck cosmic microwave background (CMB) data. For both the weak lensing data set individually and the combined probes, we find strong consistency between the geometry and growth parameters, as well as with the posterior of standard ΛCDM analysis. In the non-split analysis, for which one single set of parameters was used, tension in the amplitude of matter density fluctuations as measured by the parameter S 8 persists at around 3σ, with a 1.5 % constraint of S 8 = 0.776+0.016 for −0.008 the combined probes. We also observe a less significant preference (at least 2σ) for higher values of the Hubble constant, H0 = 70.5+0.7 km s−1 Mpc−1 , as well as for lower values of the total matter density parameter Ωm = 0.289+0.007 compared to the full Planck −1.5 −0.005 analysis. Including the subset of the CMB information in the probe combination enhances these differences rather than alleviate them, which we link to the discrepancy between low and high multipoles in Planck data. Our geometry versus growth analysis does not yet yield clear signs regarding whether the origin of the discrepancies lies in ΛCDM structure growth or expansion history but holds promise as an insightful test for forthcoming, more powerful data

    KiDS-1000 catalogue::Redshift distributions and their calibration

    Get PDF
    We present redshift distribution estimates of galaxies selected from the fourth data release of the Kilo-Degree Survey over an area of ∌1000 deg2 (KiDS-1000). These redshift distributions represent one of the crucial ingredients for weak gravitational lensing measurements with the KiDS-1000 data. The primary estimate is based on deep spectroscopic reference catalogues that are re-weighted with the help of a self-organising map (SOM) to closely resemble the KiDS-1000 sources, split into five tomographic redshift bins in the photometric redshift range 0.1 < zB ≀ 1.2. Sources are selected such that they only occupy that volume of nine-dimensional magnitude-space that is also covered by the reference samples (‘gold’ selection). Residual biases in the mean redshifts determined from this calibration are estimated from mock catalogues to be â‰Č0.01 for all five bins with uncertainties of ∌0.01. This primary SOM estimate of the KiDS-1000 redshift distributions is complemented with an independent clustering redshift approach. After validation of the clustering-z on the same mock catalogues and a careful assessment of systematic errors, we find no significant bias of the SOM redshift distributions with respect to the clustering-z measurements. The SOM redshift distributions re-calibrated by the clustering-z represent an alternative calibration of the redshift distributions with only slightly larger uncertainties in the mean redshifts of ∌0.01 − 0.02 to be used in KiDS-1000 cosmological weak lensing analyses. As this includes the SOM uncertainty, clustering-z are shown to be fully competitive on KiDS-1000 data

    Metastable and localized Ising magnetism in α−CoV2O6 magnetization plateaus

    Get PDF
    α\alpha-CoV2_{2}O6_{6} consists of jeff=12j_{\mathrm{eff}}={1 \over 2} Ising spins located on an anisotropic triangular motif with magnetization plateaus in an applied field. We combine neutron diffraction with low temperature magnetization to investigate the magnetic periodicity in the vicinity of these plateaus. We find these steps to be characterized by metastable and spatially short-range (Ο∌\xi\sim 10 A˚\r{A}) magnetic correlations with antiphase boundaries defining a local periodicity of $\langle \hat{T}^{2} \rangle =\ \uparrow \downarrowto to \langle \hat{T}^{3} \rangle =\ \uparrow \uparrow \downarrow,and, and \langle \hat{T}^{4} \rangle=\ \uparrow \uparrow \downarrow \downarrowor or \uparrow \uparrow \uparrow \downarrow$ spin arrangements. This shows the presence of spatially short range and metastable/hysteretic, commensurate magnetism in Ising magnetization steps.Comment: 9 pages, 6 figures, to be published in Phys. Rev.
    • 

    corecore