679 research outputs found

    Dynein structure and power stroke

    Get PDF
    Dynein ATPases are microtubule motors that are critical to diverse processes such as vesicle transport and the beating of sperm tails; however, their mechanism of force generation is unknown. Each dynein comprises a head, from which a stalk and a stem emerge. Here we use electron microscopy and image processing to reveal new structural details of dynein c, an isoform from Chlamydomonas reinhardtii flagella, at the start and end of its power stroke. Both stem and stalk are flexible, and the stem connects to the head by means of a linker approximately 10 nm long that we propose lies across the head. With both ADP and vanadate bound, the stem and stalk emerge from the head 10 nm apart. However, without nucleotide they emerge much closer together owing to a change in linker orientation, and the coiled-coil stalk becomes stiffer. The net result is a shortening of the molecule coupled to an approximately 15-nm displacement of the tip of the stalk. These changes indicate a mechanism for the dynein power stroke

    Emergent Quantum Near-Criticality from Baryonic Black Branes

    Full text link
    We find new black 3-brane solutions describing the "conifold gauge theory" at nonzero temperature and baryonic chemical potential. Of particular interest is the low-temperature limit where we find a new kind of weakly curved near-horizon geometry; it is a warped product AdS_2 x R^3 x T^{1,1} with warp factors that are powers of the logarithm of the AdS radius. Thus, our solution encodes a new type of emergent quantum near-criticality. We carry out some stability checks for our solutions. We also set up a consistent ansatz for baryonic black 2-branes of M-theory that are asymptotic to AdS_4 x Q^{1,1,1}.Comment: 29 pages, 4 figures; v2 discussion of entropy revised, minor changes; v3 note added, minor improvements, version published in JHE

    Absorption on horizon-wrapped branes

    Full text link
    We compute the absorption cross section of space-time scalars on a static D2 rane, in global coordinates, wrapped on the S^2 of an AdS_2 X S^2 X CY_3 geometry. We discuss its relevance for the construction of the dual quantum mechanics of Calabi-Yau black holes.Comment: 18 pages, 2 figure

    Finite-Temperature Fractional D2-Branes and the Deconfinement Transition in 2+1 Dimensions

    Full text link
    The supergravity dual to N regular and M fractional D2-branes on the cone over \mathbb{CP}^3 has a naked singularity in the infrared. One can resolve this singularity and obtain a regular fractional D2-brane solution dual to a confining 2+1 dimensional N = 1 supersymmetric field theory. The confining vacuum of this theory is described by the solution of Cvetic, Gibbons, Lu and Pope. In this paper, we explore the alternative possibility for resolving the singularity - the creation of a regular horizon. The black-hole solution we find corresponds to the deconfined phase of this dual gauge theory in three dimensions. This solution is derived in perturbation theory in the number of fractional branes. We argue that there is a first-order deconfinement transition. Connections to Chern--Simons matter theories, the ABJM proposal and fractional M2-branes are presented.Comment: v3: analytic solutions are expose

    Assessing a candidate IIA dual to metastable supersymmetry-breaking

    Full text link
    We analyze the space of linearized non-supersymmetric deformations around a IIA solution found by Cvetic, Gibbons, Lu and Pope (CGLP) in hep-th/0101096. We impose boundary conditions aimed at singling out among those perturbations those describing the backreaction of anti-D2 branes on the CGLP background. The corresponding supergravity solution is a would-be dual to a metastable supersymmetry-breaking state. However, it turns out that this candidate bulk solution is inevitably riddled with IR divergences of its flux densities and action, whose physical meaning and implications for models of string cosmology call for further investigation.Comment: 33 pages. v2: reference added, clarifications in the introductio

    A scalar field condensation instability of rotating anti-de Sitter black holes

    Full text link
    Near-extreme Reissner-Nordstrom-anti-de Sitter black holes are unstable against the condensation of an uncharged scalar field with mass close to the Breitenlohner-Freedman bound. It is shown that a similar instability afflicts near-extreme large rotating AdS black holes, and near-extreme hyperbolic Schwarzschild-AdS black holes. The resulting nonlinear hairy black hole solutions are determined numerically. Some stability results for (possibly charged) scalar fields in black hole backgrounds are proved. For most of the extreme black holes we consider, these demonstrate stability if the ``effective mass" respects the near-horizon BF bound. Small spherical Reissner-Nordstrom-AdS black holes are an interesting exception to this result.Comment: 34 pages; 13 figure

    Fractional branes, warped compactifications and backreacted orientifold planes

    Get PDF
    The standard extremal p-brane solutions in supergravity are known to allow for a generalisation which consists of adding a linear dependence on the world-volume coordinates to the usual harmonic function. In this note we demonstrate that remarkably this generalisation goes through in exactly the same way for p-branes with fluxes added to it that correspond to fractional p-branes. We relate this to warped orientifold compactifications by trading the Dp-branes for Op-planes that solve the RR tadpole condition. This allows us to interpret the worldvolume dependence as due to lower-dimensional scalars that flow along the massless directions in the no-scale potential. Depending on the details of the fluxes these flows can be supersymmetric domain wall flows. Our solutions provide explicit examples of backreacted orientifold planes in compactifications with non-constant moduli.Comment: 20 pages, incl. references. v2: small changes required for JHEP publication. v3: few equation typos correcte

    Branes and fluxes in special holonomy manifolds and cascading field theories

    Full text link
    We conduct a study of holographic RG flows whose UV is a theory in 2+1 dimensions decoupled from gravity, and the IR is the N=6,8 superconformal fixed point of ABJM. The solutions we consider are constructed by warping the M-theory background whose eight spatial dimensions are manifolds of special holonomies sp(1) times sp(1) and spin(7). Our main example for the spin(7) holonomy manifold is the A8 geometry originally constructed by Cvetic, Gibbons, Lu, and Pope. On the gravity side, our constructions generalize the earlier construction of RG flow where the UV was N=3 Yang-Mills-Chern-Simons matter system and are simpler in a number of ways. Through careful consideration of Page, Maxwell, and brane charges, we identify the discrete and continuous parameters characterizing each system. We then determine the range of the discrete data, corresponding to the flux/rank for which the supersymmetry is unbroken, and estimate the dynamical supersymmetry breaking scale as a function of these data. We then point out the similarity between the physics of supersymmetry breaking between our system and the system considered by Maldacena and Nastase. We also describe the condition for unbroken supersymmetry on class of construction based on a different class of spin(7) manifolds known as B8 spaces whose IR is different from that of ABJM and exhibit some interesting features.Comment: 51 pages, 12 figures. Update in quantization of G4 on B8 in equations (5.12) and (5.13

    Holographic Renormalization of general dilaton-axion gravity

    Get PDF
    We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.Comment: 42 pages. v2: two references added. Version published in JHEP. v3: fixed minor typos in eqs. (1.6), (2.3), (3.20), (A.3), (B.8), (B.12) and (B.22

    Holographic and Wilsonian Renormalization Groups

    Full text link
    We develop parallels between the holographic renormalization group in the bulk and the Wilsonian renormalization group in the dual field theory. Our philosophy differs from most previous work on the holographic RG; the most notable feature is the key role of multi-trace operators. We work out the forms of various single- and double-trace flows. The key question, `what cutoff on the field theory corresponds to a radial cutoff in the bulk?' is left unanswered, but by sharpening the analogy between the two sides we identify possible directions.Comment: 31 pages, 3 figures. v2: Minor clarifications. Added reference
    • 

    corecore