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1 Introduction

Many semi-realistic compactifications of string theory involve brane or orientifold sources.

Such compactifications are necessarily warped compactifications as the backreaction of the

sources generates (amongst other things) the warp factor. Warping, if strong enough, can

resolve mass hierarchy problems [1] or scale down susy breaking ingredients [2] in order to

gain control over corrections to the effective action. Unfortunately the presence of the warp

factor and other backreaction effects implies we cannot carry out the usual Kaluza-Klein

dimensional reduction to construct the low energy effective theory, which is also named

the warped effective field theory (WEFT). The current understanding of warped effective

field theory is incomplete and the state of the art can be found in the references [3? –18].1

What is especially worrysome is that one expects warping corrections to be more relevant

when supersymmetry is broken, such as in the KKLT proposal for dS vacua [2]. One could

speculate that the warping corrections to the cosmological constant are proportional to the

susy breaking scale and hence the corrections could be equal size as the bare cosmological

constant. The reason warping corrections could be worse for non-supersymmetric solutions,

and especially dS vacua, are based on experience with existing solutions [20] and on a simple

10-dimensional argument for classical dS solutions [21]. What has been pointed out in [20]

is that for many known compactifications that are supersymmetric the unwarped limit (in

1A nice illustration for our incomplete understanding of warped effective field theory can be found in [18].
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which sources are smeared) at least captures the correct on-shell value for the moduli and

the cosmological constant. WEFT instead becomes important when one tries to understand

fluctuations around these supersymmetric (or fake supersymmetric) vacua, for example

when computing moduli masses. This implies that the warped effective scalar potential

coincides with the unwarped scalar potential only at those special BPS points in moduli

space. We refer to [8] for an explicit example (see figure 1 in section 4.3 of that paper.)

One method to develop or test WEFT proposals is to construct fully backreacted ten-

dimensional solutions and then dimensionally reduce them to check the consistency of the

lower-dimensional WEFT. This strategy has been followed in [5, 6, 15, 18, 20, 22]. It is the

aim of this paper to continue with this strategy and take a first step towards constructing

general non-trivial backreacted solutions that do not describe critical points of the lower-

dimensional theory but dynamical solutions with non-constant scalars (for instance domain

walls and cosmologies). In this paper we focus on the solutions and their interpretation

in the WEFT, but the actual application to constructing and testing WEFT will be done

elsewhere.

The rest of the paper is organised as follows. In section 2 we summarise the so called dy-

namical p-brane solutions [5, 6, 18, 22, 23]. These are solutions where, in comparison to the

standard p-brane solutions, a linear, worldvolume dependent function HW has been added

to the harmonic function H. We then extend these solutions in section 3 to also include

fluxes, also known as fractional branes. Solutions of this type are known (p = 3 in [22], and

p = 6 in [24]), but we generalise the solutions to also include p = 1, 2, 4, 5 in a single frame-

work. We present the general solution and give some explicit examples for general p. The

paper then continues in section 4 with a discussion on how these solutions relate to warped

compactifications. The idea is that once fluxes are added one can trade the Dp-branes for

Op-planes and make the internal space compact. We use this to construct lower-dimensional

effective theories in p+1 dimensions, in the smeared limit. We show that the worldvolume

dependent function HW will imply a running of the scalars of the effective theory, and also

discuss how HW is sometimes necessary to assure supersymmetry. The results and possible

implications are then summarised in section 5. For the reader interested in verifying the

solutions of sections 2 and 3, we present the expression for the Ricci tensor in the appendix.

2 Warm up: dynamical branes

In this section we recall the standard extremal p-brane solutions in IIA and IIB for p =

0, . . . , 6 and an extension thereof constructed in [5, 6, 18, 22, 23], which has been named

“dynamical p-branes” by some authors. We present the solutions as magnetic solitons in

Einstein frame. The coordinates along the worldvolume are denoted xa with a = 1, . . . , p+1

and the coordinates along the transversal space are yi with i = 1, . . . , 9− p. The solutions

are then given by the following expressions:2

ds210 = H
p−7
8 ds2p+1 +H

p+1
8 ds29−p , (2.1)

eφ = gsH
3−p

4 , (2.2)

F8−p = −g
3−p

4
s ⋆9−p (∂iHdyi) . (2.3)

2We use the conventions and equations of motion as presented in [20].
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Where ⋆9−p is with respect to the transversal space metric ds29−p.
3 Both the worldvolume

metric and transversal metric are taken to be Ricci flat:

ds2p+1 = gWab dx
adxb , Rab(g

W ) = 0 , (2.4)

ds29−p = gTijdy
idyj , Rij(g

T ) = 0 . (2.5)

The function H is, by the off-diagonal components of Einsteins equations, forced to have

the form of a sum

H(x, y) = HW (x) +HT (y) , (2.6)

where HT is a general harmonic on the transversal space

∇i∂
iHT = 0 , (2.7)

and HW (x) is a worldvolume-dependent harmonic function of a very special kind [23]

∇a∂bH
W = 0 . (2.8)

The most well known solutions are those corresponding to string theory Dp-branes in flat

space, for p = 0, . . . , 6. Then gW is the Minkowski metric, gT the metric on flat Euclidean

space and the harmonic functions are

HW = 0 , HT (r) = 1 +
Q

r7−p
, (2.9)

where r is the radial coordinate in the transversal space.

For a flat worldvolume the solution for HW is most easily written in Cartesian coor-

dinates

HW =
∑

a

cax
a , (2.10)

where ca are constants. Since x0 is the time-direction we can for instance make time-

dependent brane solutions in this way [25].

3 Generalised fractional brane solutions

We extend the above known dynamical p-brane solutions to solutions with extra fluxes.

These extra fluxes can be interpreted in some cases as (p+2)-branes wrapping (collapsing)

2-cycles in the transversal space. Such solutions are also known as fractional branes, famous

examples include fractional D3 branes [27? ] and fractional M2 branes [28]; see [29] for

a discussion of fractional brane solutions of various dimensionality. In this section we

construct such solutions with non-zero HW . To our knowledge most of these solutions are

new. The p = 6 solution with a specific choice of HW has been constructed before [24] and

the p = 3 solutions have appeared in [22].

3For p = 3 it is understood that we have to add the self-dual piece to the F5 expression in order to make

F5 self-dual (F5 = ⋆10F5). From here on we suppress from writing this extra term for p = 3 explicitly.
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One way to understand the existence of fractional brane solutions is by properly inter-

preting the Bianchi identity for a F8−p RR field strength:

dF8−p = H3 ∧ F6−p + delta-source terms . (3.1)

We notice that a suitable combination of F6−p and H3 flux acts as a regularised magnetic

source for F8−p, in exactly the same way as a Dp-brane source smeared over all transversal

directions. This suggest that a suitable flux choice might be mutually BPS with Dp-brane

sources and could therefore be added to the usual Dp-solution. This is an essential ingre-

dient in for instance the Klebanov-Strassler background [27] and all its related solutions,

where a suitable combination of F3 and H3 is added to D3 brane backgrounds.

The suitable choice of fluxes that is mutually BPS with Dp/Op sources is such that [20]

F6−p = g
−

p+1
4

s ⋆9−p H3 . (3.2)

This is the generalization of the imaginary self-duality (ISD) condition for the complex

three-form for p = 3. For the other fields in the solution we again take the Ansatz (2.1)–(2.3).

In summary we have4

ds210 = H
p−7
8 ds2p+1(x

a) +H
p+1
8 ds29−p(y

i) , (3.3)

eφ = gsH
3−p

4 , (3.4)

F8−p = −g
3−p

4
s ⋆9−p (∂iHdyi) , (3.5)

F6−p = g
−

p+1
4

s ⋆9−p H3 , (3.6)

where again the transversal and worldvolume metrics are Ricci flat and the function H is

given by a sum H = HW (x) +HT (y). We still have that HW satisfies (2.8):

HW = ∇a∂bH
W = 0 (3.7)

but the equation for HT is altered as follows:

[∇T ]i∂iH
T = − 1

3!
g−1
s |H3|2T , (3.8)

up to the source term. The contraction in |H3|2T is done using the transversal metric gT .

The above Ansatz does not yet solve all equations of motion: the Einstein equations

put non-trivial conditions on the transversal space. It must have the proper cycles to

support the fluxes F6−p and H. Let us construct some explicit simple examples to see how

that goes. As an internal space we choose a Ricci flat cone over a direct product of Einstein

spaces:

ds29−p = dr2 + r2g
(2)
IJ dy

IdyJ + r2g
(6−p)
αβ dyαdyβ . (3.9)

4A notational subtlety arises when p = 2. Then F4 and F6 should not be seen as separate forms. To

write the solution more correct one could for instance just use F4 and add the Hodge dual expression for

F6 to it.
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For this to be Ricci flat we must have the following curvatures on the separate Einstein

spaces

R
(2)
IJ = (8− p)g

(2)
IJ , R

(6−p)
αβ = (8− p)g

(6−p)
αβ . (3.10)

One can for instance use n-spheres with proper curvature radii. Note that for p = 5 this

procedure does not work since there will be a one-dimensional subspace which cannot have

non-zero curvature. For p = 6 we just have one Einstein space and, if it is taken to be the

unit 2-sphere, the transverse space is flat R3.

We then find that the equations of motion are solved by the natural choice of fluxes

F6−p = mǫ6−p , H3 = (−1)pg
p+1
4

s mrp−4dr ∧ ǫ2 , (3.11)

with m a quantised flux number and ǫ6−p and ǫ2 are volume forms on the two Einstein

spaces. For p = 1, 2, 4, 6, we have explicitly

HT = C2 +
Q

r7−p
− g

p−1
2

s m2

2(p− 3)(p− 5)

1

r10−2p
, (3.12)

where C2 in arbitrary and Q determines the charge of the p-brane. For asymptotically flat

backgrounds we can set C2 = 1. Note that for p = 3 the last term becomes a logarithm:

HT = C2 +
Q

r4
+

m2

16 r4

(

4 ln r + 1
)

. (3.13)

The above solutions with HW = 0 described by equations (3.12), (3.13) were discussed

before by Herzog and Klebanov in [29]. Note that supersymmetry requires the choice of

a suitable conical internal space. Our simple explicit choice for the transverse space, a

cone over a direct product of Einstein spaces (3.9), breaks all supersymmetry. However,

by taking appropriate internal spaces, it should be possible to construct supersymmetric

solutions with worldvolume dependence HW . We leave the details to future work. For

instance for p = 3, if we choose the internal space to be a cone over T 1,1, there should be a

supersymmetric extension of the Klebanov-Tseytlin and its Klebanov-Strassler resolution

with a linear spatial worldvolume dependence.

There is however an exception for the solution with p = 6. For p = 6, reference [29]

claims that there is no solution although it was known before by Janssen, Meessen and

Ort́ın (JMO) in a slightly generalised form [24]. The solution in [24] was characterised by

the following choice for H

H(r, z) = 1 +
Q

r
− 1

6
m2r2 + cz , (3.14)

where z is a Cartesian spatial coordinate on the D6 worldvolume, m is the Romans mass

and c a constant. We notice that this is exactly an example of adding a linear worldvolume

dependence to the fractional brane solution. Whenm and c both vanish this is the standard

extremal D6 solution in IIA supergravity, which preserves 1/2 of the supersymmetry. When

m 6= 0 it was shown that maximally 1/4 of the supersymmetry could be preserved if

c = m. (3.15)
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Below we give an interpretation to this worldvolume dependence in terms of lower dimen-

sional solutions to warped compactifications. This also allows us to understand when the

worldvolume dependence is required for supersymmetry.

4 Relation with warped compactifications

4.1 General idea

Ten-dimensional metrics of the kind (2.1) can be regarded as warped compactifications

down to p + 1 dimensions if the transversal metric, including its conformal factor, can

be interpreted as a metric on a compact space M9−p. For such compact solutions the

integrated Bianchi identity implies a non-trivial global constraint (Gauss’ law):

∫

M9−p

H3 ∧ F6−p +Qtotal = 0 , (4.1)

where Qtotal is the integral over all delta-sources.

This is the so-called tadpole condition. For fluxes satisfying the BPS condition (3.2)

this cannot be satisfied for Dp-brane sources. If one instead uses Op-plane sources one can

satisfy the tadpole condition and obtain a stable compactification. For p = 3 this is the

well-known GKP compactification [1] and the p = 1, 2, 4, 5, 6 solutions are formally related

by T-duality and described in [20].

If one considers these solutions instead in a non-compact setting and takes them to be

spherically symmetric, then these are given by the brane solutions of the previous section,

but with Q < 0. This implies that these solutions have unphysical regions, since for small

enough r:

HT (r) → 1− |Q|
r7−p

< 0 . (4.2)

In some occasions one can hope that a lift to M-theory resolves this unphysical singularity

or that the non-zero fluxes in the background resolve these singularities as in [30]. For the

solutions in this paper this does not seem to be the case.

Effectively one can think of a map between two sets of BPS solutions that one obtains

by trading Dp sources for Op sources. In practice this means flipping the sign of the |Q|rp−7

term in the transversal harmonic functionHT . For both Op and Dp sources, the fluxes (3.2)

are mutually BPS with the source. For Dp-branes the fluxes and the source gravitationally

attract but electromagnetic forces counter balance this attraction. For Op-planes it is the

other way around. In what follows we perform this flip and look at the fractional brane

solutions in which the Dp source has been turned into an Op source and the transversal

space is taken to be compact. This allows us to define an effective field theory on the

(p+1)-dimensional worldvolume. Due to the presence of the fluxes these are theories with

non-zero scalar potentials for the moduli.

Clearly, when we consider solutions with HW = 0 we just have a compactification

down to (p+1)-dimensional Minkowski space. These are the so-called no-scale Minkowski

solutions. What we are after is the interpretation of solutions with HW 6= 0. It is tempting

to interpret the xa dependence as the dependence of some lower-dimensional scalars on the

– 6 –
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coordinates xa. Hence, instead of being stuck at the Minkowski minimum, the scalars are

non-constant. Schematically we have:

HW = 0 ⇐⇒ No-scale Minkowski solution,

HW 6= 0 ⇐⇒ Non-constant scalar fields.

We demonstrate this with an explicit example below. We do not expect the general solution

with running scalars to lift to the 10D solution with non-zero metric. Only solutions with

specific moduli turned on will fit into this class as we explain below.

This interpretation shows that one has to be careful with interpreting what is the

lower-dimensional metric in (2.1). When there is xa-dependence then ds2p+1(x
a) is the

Minkowski metric in our solutions. However, it should not be interpreted as the lower-

dimensional metric because the volume modulus is xa-dependent and one needs to correct

for this if one goes to the Einstein frame metric. Therefore the lower-dimensional metric is

conformal Minkowski, with a conformal factor related to the volume modulus. This makes

sense since a lower-dimensional Minkowski metric is inconsistent with the assumption of

flowing scalar fields.

Special choices ofHW lead to different lower-dimensional solutions. For example, when

HW is linear in time, this corresponds to a specific FLRW solution. When it is linear in a

spatial coordinate instead it describes a domain wall like solution

HW ∝ t ⇐⇒ FLRW compactification, (4.3)

HW ∝ z ⇐⇒ domain wall compactification. (4.4)

When both t and z dependence is present the solution is more difficult to interpret.

4.2 Explicit example

To illustrate the above we consider a very simple truncation of the effective theory down

to three scalars. We do this by taking simple fluxes consistent with the BPS relation (3.2).

We furthermore perform the dimensional reduction assuming the orientifold is smeared and

therefore ignore all issues related to warped effective field theory. The reason is that the

fully localised (warped) solutions are presented above and hence known. What we want

to demonstrate is that the solutions of the lower-dimensional smeared compactification

give exactly the xa-dependence of the HW function in the 10-dimensional solution. The

effect of the localisation (and hence full backreaction) of the Op-plane is simply to add the

HT piece to the solution. See [20] for an extensive discussion on smeared versus localised

orientifold solutions. The dynamical fractional brane solutions provide new examples in

which the localised versus smeared source limit is understood from a 10-dimensional point

of view. We plan to elaborate on this in future work.

4.2.1 Three-scalar truncation

There exist three obvious moduli: the dilaton φ, the volume modulus of the internal (9−p)-

dimensional space, called v and the volume of the cycle wrapped by the F6−p-flux, called

– 7 –
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χ. The metric Ansatz, in 10-dimensional Einstein frame, is given by

ds210 = exp(2αv)ds2p+1 + exp(2βv)
{

exp(γχ)ds23 + exp(δχ)ds26−p

}

, (4.5)

with the numbers α, β, γ, δ chosen such that we end up in lower-dimensional Einstein frame

with canonically normalised fields:

β = −(p− 1)

9− p
α , α2 =

9− p

16(p− 1)
, γ = −δ(6− p)

3
, δ2 =

6

(9− p)(6− p)
. (4.6)

We have made a very strong simplifying assumption: the H3 field strength fills the 3-

dimensional subspace with metric ds23 and the F6−p flux fills the subspace with metric

ds26−p. This is a very simple flux Ansatz, that allows us to find a consistent truncation

down to the three moduli φ, v, χ. This consistent truncation is only possible in the smeared

limit. In the warped case there might not exist a simple lower-dimensional truncation and

even the degrees of freedom are not clear [18]. Hence it remains to be seen whether

any reliable information can be obtained from this truncation. As we check below, this

truncation is capable of describing the linear dependence in HW , but not more.

The lower-dimensional action is obtained from a direct dimensional reduction of the

type II supergravity action with a smeared Op source

S =

∫ √−g

(

R− 1

2
(∂φ)2 − 1

2
(∂χ)2 − 1

2
(∂v)2 − V (φ, v, χ)

)

. (4.7)

The scalar potential V gets contributions from the fluxes and the negative orientifold plane

tension and has the form of an exact square (due to the tadpole condition). To write it

down in a clean way we perform the following SO(3) field rotation (φ, v, χ) → (x, u, w):

φ = −(p− 3)

4

√

p− 1

2p
x+

p+ 1

8
u+

p+ 1

8

√

3(6− p)

p
w , (4.8)

v = −(p+ 1)

√

9− p

32p
x− p− 3

8

√

p− 1

9− p
u− p− 3

8

√

3(6− p)(p− 1)

(9− p)p
w , (4.9)

χ = −1

2

√

6(6− p)

9− p
u+

√

p

2(9− p)
w . (4.10)

The scalar potential then becomes

V (x, u, w) =
1

2
exp

(

−2

√

p

2(p− 1)
x

)

[

H exp(−u)−F exp(+u)
]2

, (4.11)

where H and F represent the flux densities and are positive numbers. We furthermore

observe that the scalar potential only depends on two scalars (u and x) instead of three.

The scalar potential (4.11) is of the no-scale type and at the no-scale Minkowski vacuum

we have exp(2u) = H

F
, whereas x and w have arbitrary constant values.

This lower-dimensional action is expected to be a truncation of a half maximal gauged

supergravity in p+1 dimensions for which the scalar coset is truncated to three scalar fields

– 8 –
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spanning three flat directions. For the case p = 3 this half maximal gauged supergravity

has been worked out in all detail in [31].

For the special case p = 6, which is an O6 compactification to 7 dimensions, the χ

modulus is absent and we have a two-scalar truncation instead. From here on we keep the

notation general and include χ with the understanding that it is absent when p = 6. Our

flux Ansatz is the most general one for p = 6, but for p < 6 more general flux choices exist.

This will be relevant later when we discuss the supersymmetry of the solutions. It turns

out that the current flux choices do not allow for supersymmetric Minkowski solutions.

However, they allow for domain wall flows that can be fake and genuine supersymmetric.

In the next subsection we construct some of the domain wall solutions as they will be

related to the fractional brane solutions with non zero HW .

4.2.2 Some special domain wall flows

A domain wall Ansatz is given by

ds2D = f2(y)dy2 + g(y)2ηµνdx
µdxν , (4.12)

where η is the metric on Minkowski space. We furthermore assume that the scalars only

depend on y. Note that f(y) is a gauge choice that corresponds to redefining the y-

coordinate. For the presentation of the solution, we follow Bergshoeff et. al. [32] and choose

the gauge f = g2−p to present the solutions. When we uplift to 10 dimensions below, we

prefer to choice the conformal gauge f = g. To distinguish between both coordinates we

use the coordinate y in the Bergshoeff gauge and the coordinate z in the conformal gauge.

In the language of [32] our effective action is a consistent truncation of an SO(2)

gauging of maximal supergravity in 7 dimensions. The real effective theory of the smeared

O6 compactification should however be a half-maximal supergravity in 7 dimensions. What

counts here is that the bosonic fields of our truncation fit into the formalism of [32] where

the solution is given in terms of two harmonic functions [32]

h1 = 2Hy + ℓ21 , h2 = 2Fy + ℓ22 , (4.13)

as follows

g = (h1h2)
1

4(p−1) , (4.14)

exp(x) = (h1h2)

√

p

8(p−1) , (4.15)

exp(u) =

(

h1
h2

)1/2

. (4.16)

By shifting the coordinate y we can always set one of the two ℓi constants equal to zero.

A nice property of the solutions with both ℓ2i = 0, and H = F , is that they allow for

a simple non-supersymmetric generalisation. This generalisation consists in deforming the

supersymmetric solution (4.14), (4.15), (4.16) by rescaling the harmonic functions h1, h2
as follows

h1,2 → ah1,2 . (4.17)

To our knowledge these solutions are new.

– 9 –
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Let us now uplift the solutions to 10 dimensions. With the above reduction Ansatz

this is straightforward. In what follows we restrict to p = 6. As we anticipated, when the

sources are smeared over the internal space (HT = 0), the domain wall solution exactly

gives the worldvolume dependence of the localised fractional brane solutions, after the

coordinate redefinition

y =
F
2
z2 . (4.18)

and

c = aF . (4.19)

As we explained before the coordinate z is the coordinate for which the domain wall metric

is conformal to Minkowski (f = g).

Hence we have reproduced the linear space-time dependence HW of the 10D warped

solution using the smeared approximation. The linear dependence is only recovered for the

solutions with both ℓ2i = 0 and H = F . These are the solutions with only one scalar, x ,

running and all other scalars fixed. More involved solutions will lift to other 10D solutions,

which have not yet been constructed.

4.2.3 Supersymmetry

Note that the matching condition (4.19) is obeyed if one realises that our notation implied

that for p = 6 the flux density F is equal to the Romans mass F = m. Then the super-

symmetry of the domain wall solution corresponds to the supersymmetry condition for the

JMO solution

a = 1 ⇐⇒ c = m. (4.20)

4.3 Interpretation

The interpretation of dynamical fractional brane solutions as warped compactifications to

p+ 1 dimensions allows a very simple understanding of:

1. Why the same linear HW is still possible when fluxes are added.

2. When supersymmetry requires the linear dependence in HW .

Let us start with the first point. Consider dynamical p-brane solutions without fluxes.

When interpreted as a warped compactification,5 the absence of fluxes implies the absence

of a tree-level scalar potential; all scalars are free. Since the xa-dependence for the fractional

branes (the solution with flux) can be interpreted as the running of the lower-dimensional

scalars, the same will be true for the solutions in which the scalars are free. What is

then to be understood is why both the solutions with a scalar potential and the solutions

without a scalar potential lift to the same 10-dimensional HW dependence. Since the HW -

dependence is purely generated by the lift of the scalar fields, it must be that the scalar

fields have the same expression in both the solutions with flux and without flux. Indeed the

domain wall solutions with both ℓ2i = 0 (4.14), (4.15), (4.16) and our non-supersymmetric

5For the rigorous reader who is worried about the tadpole condition one can think of placing some

orientifold sources far away from the Dp source.
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generalisation (4.17) are such that the scalars flow through the minimum of the scalar

potential. More specifically, during the whole flow we have that

V = 0 , ∂uV = 0 , ∂xV = 0 . (4.21)

This means that on-shell there is no difference with the solutions of the free lower-dimensional

theory. We leave the investigation of more general solutions that do not obey the above

condition (4.21) for future work.

Similarly it is obvious to understand the solutions with the linear dependence in

time (4.3). These are simply the cosmological solutions that obey (4.21). Since the do-

main/wall cosmology correspondence [33] flips the sign of V , but V = 0 on shell, the same

domain wall solutions can be Wick-rotated to cosmological solutions of the same super-

gravity theory. This then explains the linear t behavior. For the case of p = 3, which are

warped compactifications to D = 4, these are FLRW solutions that correspond to ultra-stiff

cosmological fluids. In FLRW cosmological time τ these have the following scale factor

a(τ) ∼ τ
1
3 . (4.22)

Second we discuss supersymmetry. Consider the JMO solution (3.14) for which we

found a match between the original supersymmetry condition (3.15) discussed from a 10D

point of view [24] and the supersymmetry of the corresponding domain wall solution in

the reduced theory (4.20). Clearly, when the fluxes are zero then supersymmetry requires

HW = 0. Hence it is truly the effect of the fluxes to introduce non-zero HW in order to

satisfy the supersymmetry rules. Also this can be readily understood from the point of view

of warped flux compactifications. Since the most well-known case is for compactifications

down to D = 4, we treat the case p = 3 first.

As we discussed before, the interpretation of the lower-dimensional Minkowski vacuum

is the 10D solution with HW = 0. Then it is well known that the ISD relation for the

fluxes (3.2) is not sufficient for supersymmetry. There are extra constraints [1] on the fluxes

and on the geometry: the internal geometry has to be conformal Calabi-Yau and the ISD

fluxes have to point in a specific direction inside the Calabi-Yau space. In terms of the

complex three-form G = F3 − ie−φH, one requires G to be of complexity type (2, 1) and

primitive. A general ISD flux allows primitive (2, 1) directions and (0, 3)-directions. Hence

supersymmetry requires vanishing (0, 3) fluxes:6

⋆6 G3 = iG3 , [G3]0,3 = 0 . (4.23)

This implies that for ISD fluxes that obey the above relation (4.23) we can have 10D-

solutions with HW = 0 that are supersymmetric. However, consider what happens when

a non-vanishing (0, 3) piece is present. Then supersymmetry is consistent with the linear

dependence in HW . We can see this from the real superpotential W

W = |eKW| , W =

∫

Ω ∧G , (4.24)

6The ISD condition here differs with a sign compared to earlier sections. Compare for example equation

(3.6) of [20] (which agrees with the signs used in the following equation) with (3.2).
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with K the Kahler potential. A supersymmetric Minkowski solution satisfies

∂W

∂φi
= 0 , (4.25)

where the index i runs over the scalar fields. When the flux has a (0, 3) piece this relation

no longer can be satisfied since W has no extremum. There is nonetheless another way to

obtain supersymmetric solutions; one can allow the scalar fields to flow down the super-

potential to create supersymmetric domain wall solutions. The supersymmetry condition

then becomes

φ̇i = −f Gij ∂W

∂φj
, (4.26)

ġ

g
=

1

2(p− 1)
f W . (4.27)

where a dot denotes a derivative with respect to the domain wall coordinate y, Gij is the

inverse scalar field space metric and f, g are the metric functions appearing in the domain

wall metric (4.12). Therefore we find that, when a (0, 3) piece is present, one necessarily

has to allow the scalars to flow in order to fulfill the supersymmetry conditions. This in

turns implies the lower-dimensional metric is not Minkowski anymore but instead is of

the domain wall type. The reason the 10-dimensional solution seems to have a (p + 1)-

dimensional Minkowski part (2.1) is simply because we used domain wall coordinates for

which the metric is conformal to Minkowski (f = g) and then the conformal part is absorbed

in the warp factor (which indeed depends on all 10-dimensional coordinates).

Let us apply this to the specific choice of fluxes we made in the explicit example

discussed in the previous section. The real superpotential is

W = exp

(

−
√

p

2(p− 1)
x

)

[

H exp(−u) + F exp(+u)
]

, (4.28)

and does not depend on w.7 Indeed this superpotential does not allow a supersymmetric

extremum since

∂xW 6= 0 (4.29)

as both F and H are positive. Instead its supersymmetric domain wall solutions corre-

spond exactly to the solutions we gave previously, and which reproduced the linear de-

pendence in HW of the JMO solution. The question remains as to what the uplift of the

(supersymmetric)-domain wall solutions, for which V and ∂V are non-zero during the flow,

correspond to. We leave this for future investigation.

5 Outlook

Let us conclude this paper by summarizing our results and what we can learn from it.

We have shown that the generalisation of extremal p-brane solutions to dynamical p-

branes goes through in exactly the same way when fluxes are added to it that correspond

7This potential has the typical no-scale property V = 1
2
(∂uW )2, where the massless fields at the no-scale

Minkowski vacuum are x and the decoupled field w. Only for p = 3 this field corresponds to the volume

modulus.
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to fractional p-branes. In practical terms this means that one can add a term linear in the

worldvolume coordinates to the usual “harmonic function” H that defines extremal solu-

tions.8 Whenever the extra fluxes are present the possibility arises to trade the Dp-branes

for Op-planes and trading the non-compact transversal space for a compact one. This is a

simple consequence of the RR tadpole condition that can be satisfied with Op-planes and

fractional brane type of fluxes. This establishes a map between the fractional brane type

solutions in ten dimensions and warped compactifications. Exactly this map allowed us

to interpret why the linear dependence of the worldvolume coordinates could be added to

the harmonic function. This turns out to correspond to lower-dimensional solutions that

are described by scalar fields that run along the massless direction in the minimum of the

potential, as if the scalar is effectively free. This map furthermore provides a simple un-

derstanding of the supersymmetry conditions for this generalisation since it corresponds to

the supersymmetry conditions in warped orientifold compactifications, which were known.9

Whenever the fluxes are such that the no-scale Minkowski vacuum is not supersymmetric

then the solution must necessarily contain the worldvolume dependence in order to preserve

supersymmetry. We have worked this out in detail for the simplest case of D6-branes (O6

planes) with F0 and H flux.

There are several interesting implications of our work. When our solutions are in-

terpreted as warped compactifications they describe orientifold solutions with running

moduli such that the orientifold backreaction has been taken into full account, whereas

most solutions in the literature are vacuum solutions with constant scalar fields (see for

instance [20, 30, 36]). Our solutions with running scalars are a natural D-dimensional ex-

tension of the existing solutions in four dimensions, most notably the solutions in [5, 11] and

part of the solutions in [15]. The construction of such solutions is relevant for our under-

standing of flux compactifications since most flux compactifications are only understood in

the limit where the sources are fully smeared. Such a limit takes into account the contribu-

tion of the tension to the four-dimensional energy and the contribution to the RR tadpoles,

but nothing more. For supersymmetric or BPS-like no-scale vacua it has been noticed that

the complex structure moduli are nonetheless unaltered by the full backreaction [20]. This

is useful since it implies that at least the value of the cosmological constant and the posi-

tion of the moduli can be trusted in the smeared limit. However this is probably all that

can be trusted. Fluctuations around the vacuum, that for instance informs one about the

moduli masses, cannot be trusted in the smeared limit and a warped effective field theory

is therefore required. Furthermore one can expect that for non-supersymmetric (non-BPS

like) solutions the moduli positions and possibly the vacuum energy do get altered when

the backreaction is taken into account.10 Since the solutions in this paper feature run-

ning moduli one could wonder whether the running of the moduli is at all affected by the

backreaction of the orientifold. For that purpose we have to compare the smeared solution

8The reason we put harmonic between quotation marks is that, in presence of fluxes, the Laplacian of

H is non-zero.
9This map between extremal p-brane solutions and (warped) flux compactifications fits is similar in

spirit to the recently established link between black hole solutions and flux compactifications [34, 35].
10We refer to [37, 38] for some explicit investigations of backreaction for genuine non-BPS like solutions.
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from the localised one. Generically one does not expect the smeared effective action to

contain information about the true warped effective action. However, we have found that

the linear space-time dependence can be captured in the smeared approximation. This

has a simple interpretation. The warped effective potential coincides with the KK-effective

potential (the unwarped approximation) only at the minimum of both potentials. This is

at least what concerns the scalar potentials of the lower-dimensional field theories. Besides

the scalar potential one also expects changes in the kinetic terms for the scalars, due to

warping (in fact the whole effective field theory should be different, even the degrees of

freedom might differ [18]). It is not clear whether these 10-dimensional solutions might

teach us anything about the kinetic terms of the lower-dimensional effective action.

It would be most interesting to construct solutions which are not linear in the space-

time coordinates. The interpretation of such solutions would be that they correspond

to scalars flowing outside of the minimum of the scalar potential. It is likely that such

solutions contain information about the scalar potential of the WEFT and the kinetic

terms for the scalars, outside of the no-scale moduli space. We plan to report on this in a

future publication.
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A Ricci tensor

Consider a metric Ansatz of the form

ds210 = e2A(x,y)ds2p+1 + e2B(x,y)ds29−p, (A.1)

where x is an external coordinate, and y an internal. The Ricci tensor components for this

metric are

Rµν = R̃µν − e2(A−B)g̃µν

(

((p+ 1)∂iA+ (7− p)∂iB)g̃ij∂jA+ ∇̃2
yA

)

− g̃µν

(

((9− p)∂ρB + (p− 1)∂ρA)g̃
ρλ∂λA+ ∇̃2

xA
)

(A.2)

+ (((9− p)∂µB + (p− 1)∂µA)∂νA− (9− p)(∂µB − ∂µA)∂νB)

− ((9− p)∇µ∂νB + (p− 1)∇µ∂νA) ,

Rµi = −p ∂µ∂iA− (8− p)∂µ∂iB + 8 ∂µB∂iA , (A.3)

– 14 –



J
H
E
P
1
0
(
2
0
1
2
)
1
3
9

Rij = R̃ij − e2(B−A)g̃ij

(

((9− p)∂αB + (p− 1)∂αA)g̃
αβ∂βB + ∇̃2

xB
)

− g̃ij

(

((p+ 1)∂kB + (7− p)∂kB)g̃kl∂lB + ∇̃2
yB

)

+ (((p+ 1)∂iA+ (7− p)∂iB)∂jB − (p+ 1)(∂iA− ∂iB)∂jA) (A.4)

− ((p+ 1)∇i∂jA+ (7− p)∇i∂jB) .

Both the metric and Ricci tensor are symmetric under the change

A(x, y)

p+ 1

xµ











↔











B(x, y)

9− p

yi
(A.5)
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