891 research outputs found

    Environmental exposure effects on composite materials for commercial aircraft

    Get PDF
    The effects of environmental exposure on composite materials are studied. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209 and T300/934. Specimens were exposed on the exterior and interior of Boeing 737 airplanes of three airlines, and to continuous ground level exposure at four locations. In addition specimens were exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to two years at three ground level exposure locations and on airplanes from two airlines. Test results are also given for specimens exposed to the laboratory simulated environments. Test results indicate that short beam shear strength is sensitive to environmental exposure and dependent on the level of absorbed moisture

    Damage tolerant composite wing panels for transport aircraft

    Get PDF
    Commercial aircraft advanced composite wing surface panels were tested for durability and damage tolerance. The wing of a fuel-efficient, 200-passenger airplane for 1990 delivery was sized using grahite-epoxy materials. The damage tolerance program was structured to allow a systematic progression from material evaluations to the optimized large panel verification tests. The program included coupon testing to evaluate toughened material systems, static and fatigue tests of compression coupons with varying amounts of impact damage, element tests of three-stiffener panels to evaluate upper wing panel design concepts, and the wing structure damage environment was studied. A series of technology demonstration tests of large compression panels is performed. A repair investigation is included in the final large panel test

    Turnover and activity-dependent transcriptional control of NompC in the Drosophila ear.

    Get PDF
    Across their lives, biological sensors maintain near-constant functional outputs despite countless exogenous and endogenous perturbations. This sensory homeostasis is the product of multiple dynamic equilibria, the breakdown of which contributes to age-related decline. The mechanisms of homeostatic maintenance, however, are still poorly understood. The ears of vertebrates and insects are characterized by exquisite sensitivities but also by marked functional vulnerabilities. Being under the permanent load of thermal and acoustic noise, auditory transducer channels exemplify the homeostatic challenge. We show that (1) NompC-dependent mechanotransducers in the ear of the fruit fly Drosophila melanogaster undergo continual replacement with estimated turnover times of 9.1 hr; (2) a de novo synthesis of NompC can restore transducer function in the adult ears of congenitally hearing-impaired flies; (3) key components of the auditory transduction chain, including NompC, are under activity-dependent transcriptional control, likely forming a transducer-operated mechanosensory gain control system that extends beyond hearing organs

    Ignition and combustion of single particles of coal and biomass under O2/CO2 atmospheres

    Get PDF
    Biomass energy with carbon dioxide capture and storage (CCS) technologies like oxy-fuel is the only way to achieve net removal of CO2 from the atmosphere in power generation. A single particle apparatus has been developed for rapid heating and combustion of individual fuel particles in air or O2/CO2 atmospheres. This wire mesh apparatus was used as a heating element to heat the particle by radiation while optical access allowed particle combustion characterization by high speed camera recording. Four different biomass and a bituminous coal were used in air and 21, 30 and 40% O2 atmospheres with balance of CO2. High speed video image analysis showed differences in ignition and devolatilization behaviour. The influence of particle size and mass on burnout times was higher in the coal, while biomass particle size can have a greater range of sizes for the same burnout times. The 30%O2 atmosphere was enough to have less burnout time than in air atmosphere for all the samples. During biomass particle combustion, the results showed that the surface tension on the biomass char particle plays a significant role due to partial melting of the char particle. This effect modifies the char particle shape during its combustion, with particles becoming more spherical particle even for those that initially had a fibrous shape
    corecore