121 research outputs found

    Production of a Soil Map Associating Common Digital Soil Mapping Techniques with Hand Delineation of Soil Mapping Units

    Get PDF
    A produção de mapas pedológicos por meio de técnicas do mapeamento digital de solos (MDS) pode ser dificultada pela falta de mapas pedológicos tradicionais de referência. Nessas situações, o conhecimento tácito do mapeador pode ser usado para o delineamento manual das unidades de mapeamento (UMs) a partir de geração de um mapa de ocorrência de tipos de solos preditos pelo MDS. Os objetivos deste estudo foram avaliar e comparar mapas de solos gerados por dois métodos, um denominado “MDS direto”, em que foi gerado um mapa preditor de UMs com base no modelo estabelecido com informações provenientes de um mapa pedológico convencional de referência preexistente, e outro em que o modelo preditor foi estabelecido a partir do exame de atributos morfológicos de 193 perfis de solo para identificar os tipos de solos, gerando-se um mapa com a indicação de ocorrência de tipos de solos sobre o qual foi realizado o delineamento manual das UMs, com base em mudanças das feições da superfície do solo. As predições foram feitas usando árvores de classificação Simple Cart, correlacionando oito variáveis do terreno com a ocorrência de UMs identificadas com nomes de classes de solos do Sistema Brasileiro de Classificação de Solos. A acurácia dos mapas foi avaliada pela “verdade de campo” (verificação em campo do tipo de solo ocorrente e comparação com o previsto no mapa) e pela concordância dos mapas gerados com o mapa de referência. Quando avaliado pela “verdade de campo”, a acurácia do mapa gerado pelo método MDS direto foi de 74 %, enquanto a acurácia do mapa de MDS com delineamento manual foi de 79 %. Os dois métodos apresentaram resultados satisfatórios; o método que usou o delineamento manual e a identificação em alguns locais dos tipos de solo no campo apresentou a vantagem de não necessitar de mapas pedológicos de referência para o treinamento dos modelos preditores.The production of soil maps through digital soil mapping (DSM) techniques may be hampered due to the lack of traditional reference soil maps. In these situations, the tacit knowledge of the field soil scientist can be used for manual delineation of soil mapping units (MUs) based on generation of a map of occurrence of soil types predicted by DSM. The objective of this study was to evaluate and to compare soil maps generated by two methods. One method, called “direct DSM”, generates a map predicting soil MUs based on a model established with information from a traditional pedological reference map. The other established a predicting model through examination of morphological properties of 193 soil profiles for identification of soil types, generating a map that indicates the occurrence of soil types performed through manual delineation of MUs (based on changes in land surface features). Predictions were made using Simple Cart classification trees, correlating eight terrain variables with the occurrence of MUs identified by soil class names from the Brazilian Soil Classification System (Sistema Brasileiro de Classificação de Solos). The accuracy of the maps was evaluated based on “field truth” (field verification of the soil type and comparison with that predicted on the map) and by agreement between the prediction maps generated and the reference map. When evaluated by “field truth”, the accuracy of the map generated by the direct DSM method was 74 %, whereas the accuracy of the map generated by DSM with manual delineation was 79 %. Both methods showed satisfactory results, and the method with manual delineation and identification of soil types in some locations in the field had the advantage of not requiring reference soil maps for training prediction models

    Selection of Sampling Density Based on Data from Areas Already Mapped for Training Decision Tree Models in Digital Soil Mapping

    Get PDF
    Para estudar técnicas de amostragem, úteis ao mapeamento digital de solos (MDS), objetivou-se avaliar o efeito da variação da densidade de pontos amostrais com base em dados de áreas já mapeadas por métodos tradicionais na acurácia dos modelos de árvores de decisão (AD) para a geração de mapas de solos por MDS. Em duas bacias hidrográficas no noroeste do Rio Grande do Sul, usou-se, como referência, antigos mapas convencionais de solos na escala 1:50.000. A partir do modelo digital de elevação do terreno e da rede hidrográfica, foram gerados mapas das variáveis preditoras: elevação, declividade, curvatura, comprimento de fluxo, acúmulo de fluxo, índice de umidade topográfica e distância euclideana de rios. A escolha dos locais dos pontos amostrais foi aleatória e testaram-se densidades amostrais que variaram de 0,1 a 4 pontos/ha. O treinamento dos modelos foi realizado no software Weka, gerando-se modelos preditores usando diferentes tamanhos do nó final da AD para obter AD com tamanhos distintos. Quando não se controlou o tamanho das AD , o aumento da densidade de amostragem resultou no aumento da concordância com os mapas básicos de referências e no aumento do número de unidades de mapeamento preditas. Nas AD com tamanho controlado, o aumento da densidade de amostragem não influenciou a concordância com os mapas de referência e interferiu muito pouco no número de unidades de mapeamento preditas.In order to study sampling techniques useful for digital soil mapping (DSM), we evaluated the effect of changes in sampling density, based on data from areas already mapped by traditional methods, in regard to the accuracy of decision trees models for generating soil maps using DSM. In two watersheds in northwestern Rio Grande do Sul, Brazil, 1:50,000 scale conventional soils maps were used as reference maps. From the ASTER - GDEM Global Digital Elevation Model and the hydrographic network, maps of predictive variables were generated: elevation, slope, curvature, flow length, flow accumulation, topographic wetness index, and Euclidian distance of the streams. We used random sampling, and tested sampling densities that ranged from 0.1 to 4 points per hectare. Models were trained using Weka software, generating predictive models using different sizes of the final node to obtain decision trees of different sizes. The results indicate that when the size of the decision tree was not controlled, an increase in sampling density resulted in greater overall accuracy in accordance with the basic reference maps and an increase in the number of predicted soil mapping units. When the size of decision trees was controlled, an increase in sampling density did not affect the overall accuracy and had a very slight influence on the number of predicted mapping units

    Expansão de mapas pedológicos para áreas fisiograficamente semelhantes por meio de mapeamento digital de solos

    Get PDF
    The objective of this work was to expand pedological maps by extrapolating existing soil maps to physiographically similar areas. Soil maps were used at the scale of 1:50,000, for the watersheds of the rivers Santo Cristo and Arroio Portão, in the state of Rio Grande do Sul, Brazil, and the extrapolation was done using the “Simple Cart” decision tree algorithm, trained in the previously mapped areas. The watersheds were divided into two parts, one used for model training and the other for model validation. From the digital elevation model Aster-GDEM, seven maps of soil predicting variables in the landscape were generated. Sampling was random and performed with sampling density of three points per hectare. Model training was performed in the Weka software, and model accuracies were calculated using the error matrix. For both watersheds, the overallaccuracy of the predicted soil map was higher in the training area than in the validation area, and showed values of 50 and 54%. The maps produced by the predictive model showed acute differences in the spatial distribution of mapping units, compared with the original soil map, indicating that the used digital mapping technique has low effectivity for the extrapolation of pre-existing soil maps to other physiographically similar areas.O objetivo deste trabalho foi realizar a expansão de mapas pedológicos pela extrapolação de mapas preexistentes para áreas fisiograficamente semelhantes. Foram utilizados mapas de solos, em escala 1:50.000, das bacias hidrográficas dos rios Santo Cristo e Arroio Portão, no Rio Grande do Sul, e a extrapolação foi feita com uso do algoritmo de árvores de decisão “simple cart”, treinado nas áreas previamente mapeadas. As bacias foram divididas em duas partes, uma para o treinamento e outra para a validação do modelo. A partirdo modelo digital de elevação Aster-GDEM, foram gerados sete mapas de variáveis preditoras dos solos na paisagem. A amostragem de dados foi aleatória, com densidade de três pontos por hectare. O treinamento dos modelos foi realizado no programa Weka, e as acurácias foram calculadas a partir de matriz de erros. Para ambas as bacias, a acurácia geral do mapa de solos predito foi maior na área de treinamento do que na área de validação, a qual apresentou valores de 50 e 54%. Os mapas produzidos pelo modelo preditor apresentaramacentuada diferença na distribuição espacial das unidades de mapeamento, comparados com o mapa de solos original, indício de que a técnica de mapeamento digital utilizada é pouco eficiente para extrapolar mapas de solos preexistentes para outras áreas fisiograficamente semelhantes

    Decision trees for digital soil mapping on subtropical basaltic steeplands

    Get PDF
    Quando levantamentos de solos não estão disponíveis para atividades de planejamento de uso das terras, técnicas de mapeamento digital de solos podem ser úteis. Mapeadores de solos podem processar as informações espaciais rapidamente, auxiliando na execução de levantamentos de solos tradicionais ou prevendo a ocorrência de classes de solos na paisagem. Avaliaram-se técnicas de análise de decisão na predição da ocorrência de classes de solos em áreas de encostas basálticas no Sul do Brasil. Várias combinações de tipos de algoritmos de árvore de decisão e quantidade de elementos nos nós terminais das árvores de decisão foram testadas usando mapas de solos com a legenda original e com legenda simplificada. Em geral, o uso de árvores de decisão foi eficaz na predição de ocorrência de unidades de mapeamento de solos. Menor número de elementos no nó terminal das árvores de decisão produziu acurácias mais altas e a simplificação da legenda (agregação) reduziu a precisão das predições. O algoritmo J48 teve melhor desempenho que BF Tree, RepTree, Random Tree, e Simple Chart.When soil surveys are not available for land use planning activities, digital soil mapping techniques can be of assistance. Soil surveyors can process spatial information faster, to assist in the execution of traditional soil survey or predict the occurrence of soil classes across landscapes. Decision tree techniques were evaluated as tools for predicting the ocurrence of soil classes in basaltic steeplands in South Brazil. Several combinations of types of decicion tree algorithms and number of elements on terminal nodes of trees were compared using soil maps with both original and simplified legends. In general, decision tree analysis was useful for predicting occurrence of soil mapping units. Decision trees with fewer elements on terminal nodes yield higher accuracies, and legend simplification (aggregation) reduced the precision of predictions. Algorithm J48 had better performance than BF Tree, RepTree, Random Tree, and Simple Chart

    Aptidão agrícola das terras em Cerro Grande do Sul/RS

    Get PDF
    O levantamento e a interpretação da aptidão de uso dos diferentes tipos de solos é uma tarefa relevante para a utilização racional deste recurso. Assim, podem ser realizadas interpretações para atividades agrícolas, classificando-se as terras de acordo com sua aptidão para diversas culturas, sob diferentes condições de manejo. Neste sentindo, este trabalho visa gerar um mapa de aptidão agrícola do município de Cerro Grande do Sul/RS a partir de técnicas de mapeamento digital de solos. Esta técnica desenvolveu modelos preditores usando as variáveis ambientais como variáveis independentes e a classe de solo ocorrente como variável dependente. Implantou-se o uso combinado de dois modelos de árvore de decisão, cada um treinado em paisagens homogêneas, sendo estas: terrenos bem drenados e terrenos mal drenados. As classes de solos foram identificadas ao nível de subordem em escala semidetalhada de 1:50.000. O mapa pedológico foi interpretado e reclassificado de acordo com o Sistema de Avaliação da Aptidão Agrícola das Terras. O mapa pedológico gerado contém sete unidades de mapeamento. O mapa de aptidão agrícola das terras de Cerro Grande do Sul criado a partir da interpretação e reclassificação do mapa pedológico gerou as classes 3(ab), 3(a), 3a e 4p.  No Sistema de Avaliação da Aptidão Agrícola das Terras, contudo, não são indicadas práticas de manejo para os diferentes tipos de utilização, e, por isso, são necessárias adaptações para seu uso no planejamento conservacionista de propriedades rurais ou microbacias. Desta forma, é um sistema mais adequado para análise no âmbito regional. Entretanto, pode ser ajustado para estudos mais detalhados ao se definir o nível tecnológico de acordo com o uso do solo atual, valorizando as especificidades da área. Tais especificidades, contudo, podem e devem ser feitas no nível municipal e, portanto, este trabalho refere-se a uma primeira etapa que, na sequência, poderá ser detalhado ou aprofundado

    Mapeamento digital de solos utilizando regressões logísticas múltiplas e parâmetros do terreno no sul do Brasil

    Get PDF
    Soil surveys are necessary sources of information for land use planning, but they are not always available. This study proposes the use of multiple logistic regressions on the prediction of occurrence of soil types based on reference areas. From a digitalized soil map and terrain parameters derived from the digital elevation model in ArcView environment, several sets of multiple logistic regressions were defined using statistical software Minitab, establishing relationship between explanatory terrain variables and soil types, using either the original legend or a simplified legend, and using or not stratification of the study area by drainage classes. Terrain parameters, such as elevation, distance to stream, flow accumulation, and topographic wetness index, were the variables that best explained soil distribution. Stratification by drainage classes did not have significant effect. Simplification of the original legend increased the accuracy of the method on predicting soil distribution.Os levantamentos de solos são fontes de informação necessárias para o planejamento de uso das terras, entretanto eles nem sempre estão disponíveis. Este estudo propõe o uso de regressões logísticas múltiplas na predição de ocorrência de classes de solos a partir de áreas de referência. Baseado no mapa original de solos em formato digital e parâmetros do terreno derivados do modelo numérico do terreno em ambiente ArcView, vários conjuntos de regressões logísticas múltiplas foram definidas usando o programa estatístico Minitab, estabelecendo relações entre as variáveis do terreno independentes e tipos de solos, usando tanto a legenda original como uma legenda simplificada, e usando ou não estratificação da área de estudo por classes de drenagem. Os parâmetros do terreno como elevação, distância dos rios, acúmulo de fluxo e índice de umidade topográfica foram as variáveis que melhor explicaram a distribuição das classes de solos. A estratificação por classes de drenagem não teve efeito significativo. A simplificação da legenda aumentou a precisão do método na predição da distribuição dos solos

    Divisão Racional de Terras: um Estudo de Caso em Londrina, PR

    Get PDF
    At present, the lands fragmentation in little parts for family interests is done by the try and mistakes method, in which, the technician try to delimit the areas in similar dimensions and proportions for each interested. They do it based in theier perception and experience. The aim of this paper was to define a conduct line for the treatment of questions referent to the lands division and verify if the fragmentation proposed in a rural property at Londrina, Paraná state, in Brazil, was fair, considering as a critery, the land suitability. The rational land division was done based at the land use capacity system. It was applied a relative value to each area portion in agreement with its capability. As the equivalent area value of the each fragment consider the land quality, the final results should be similar. However, there is a large diversity of territories. The datas show that the ten resultant areas of the division proposed for the rural imovel present variated proportions of the diferents classes. Like this, with the division proposed by the expert, it was obtained area fragments very diferents related to the land qualit

    Digital soil class mapping in Brazil: a systematic review

    Get PDF
    In Brazil several digital soil class mapping studies were carried out from 2006 onwards to maximize the use of existing maps and information and to provide estimates for wider areas. However, there is no consensus on which methods have produced superior results in the predictive value of soil maps. This study conducts a systematic review of digital soil class mapping in Brazil and aims to analyze the factors which can improve the accuracy of digital soil class maps. Data from 334 digital soil class mapping studies were grouped and analyzed by Student’s t-test, Wilcoxon-Mann-Whitney test and Kruskal-Wallis test. When conventional maps were used for validation, the studies showed average values of 63 % and when field samples were used, 56 % for Overall Accuracy. Studies compatible with the Planimetric Cartographic Accuracy Standard for Digital Cartographic Products (PEC-PCD) averaged between 4 % and 15 % higher accuracy than those of the incompatible group. There seems to be no evidence that increasing the number of variables and samples results in more accurate soil map prediction, but studies using variables related to four soil-forming factors enhanced accuracy. From a density of 0.08 MU km–2 and upwards, it became more difficult for studies to obtain greater accuracy. Artificial neural network classifiers and Decision Tree models seem to be producing more accurate digital soil class maps

    Spatial disaggregation of multi-component soil map units using legacy data and a tree-based algorithm in southern Brazil

    Get PDF
    Soil surveys often contain multi-component map units comprising two or more soil classes, whose spatial distribution within the map unit is not represented. Digital Soil Mapping tools supported by information from soil surveys make it possible to predict where these classes are located. The aim of this study was to develop a methodology to increase the detail of conventional soil maps by means of spatial disaggregation of multi-component map units and to predict the spatial location of the derived soil classes. Three digital maps of terrain variables - slope, landforms, and topographic wetness index - were correlated with the soil map and 72 georeferenced profiles from the Porto Alegre soil survey. Explicit rules that expressed regional soil-landscape relationships were formulated based on the resulting combinations. These rules were used to select typical areas of occurrence of each soil class and to train a decision tree model to predict the occurrence of individualized soil classes. Validation of the soil map predictions was conducted by comparison with available soil profiles. The soil map produced showed high agreement (80.5 % accuracy) with the soil classes observed in the soil profiles; Ultisols and Lithic Udorthents were predicted with greater accuracy. The soil variables selected in this study were suitable to represent the soil-landscape relationships, suggesting potential use in future studies. This approach developed a more detailed soil map relevant to current demands for soil information and has potential to be replicated in other areas in which data availability is similar

    Prediction of soil orders with high spatial resolution: response of different classifiers to sampling density

    Get PDF
    O objetivo deste trabalho foi avaliar a densidade de amostragem na acurácia de predição de ordens de solos, com alta resolução espacial, em área vitícola da Serra Gaúcha. Para isso, utilizou-se modelo digital de elevação (MDE) do terreno, base cartográfica, mapa convencional de solos e o programa Idrisi. Sete variáveis preditoras foram calculadas e lidas junto com as classes de solo, em pontos aleatoriamente distribuídos, nas densidades de 0,5, 1, 1,5, 2 e 4 pontos por hectare. Os dados foram usados para treinar uma árvore de decisão (Gini) e três redes neurais artificiais: teoria da ressonância adaptativa, fuzzy ARTMap; mapa auto‑organizável, SOM; e perceptron de múltiplas camadas, MLP. Os mapas estimados foram comparados com o mapa de solos convencional para calcular erros de omissão e de inclusão, exatidão geral, e erros de quantidade e de alocação. A árvore de decisão foi menos sensível à densidade de amostragem e apresentou maior acurácia e consistência. O SOM foi a rede neural com menor sensibilidade e maior consistência. O MLP apresentou mínimo crítico e maior inconsistência, enquanto fuzzy ARTMap apresentou maior sensibilidade e menor acurácia. Os resultados indicam que densidades de amostragem usadas em levantamentos convencionais podem servir de referência para estimar ordens de solos na Serra Gaúcha.The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha
    corecore