64 research outputs found

    Harpy fruit bats

    Get PDF
    12 p. : ill. ; 26 cm.Includes bibliographical references (p. 10-11).Harpy fruit bats, two closely related species in the genus Harpyionycteris (Chiroptera: Pteropodidae), exhibit a suite of unique craniodental traits. For this reason, the affinities of these bats have remained unclear, and most systematists have placed them in a group of their own (Harpyionycterinae Miller, 1907). The multicuspidate pattern of the cheek teeth in Harpyionycteris has generated speculation that it may represent an ancestral tribosphenic pattern lost in other pteropodids. In this contribution we propose a phylogenetic placement of Harpyionycteris based on parsimony analysis of complete sequences from two coding genes, the nuclear vWF (exon 28) and the mitochondrial cytochrome b (cyt-b). Both datasets, independently and in combination, strongly support a close relationship between Harpyionycteris and Dobsonia, as originally proposed by Andersen (1912, Catalogue of Chiroptera, British Museum Trustees). In turn, this group nests deeply inside Pteropodidae but it is not closely related to any particular suprageneric clade. Based on other data, we postulate that Aproteles also belongs in this group and therefore propose the expansion of Harpyionycterinae to include Harpyionycteris, Aproteles, and Dobsonia. Regarding the dentition, our results strongly reject the tribosphenic hypothesis advanced by some authors. The multicuspidate cheek tooth pattern seen in Harpyionycteris appears uniquely derived and related to specialized feeding habits and it thus has no direct bearing on the evolution of the typical pteropodid dentition from the tribosphenic pattern of microchiropterans and other mammals

    Sesamoid elements in bats.

    Get PDF
    38 pages : illustrations (chiefly color) ; 26 cm.Sesamoids are skeletal elements found within a tendon or ligament as it passes around a joint or bony prominence. Here we review the distribution of sesamoids in bats, the only mammals capable of powered flight. Our survey included bat species representing most extant families as well as two key Eocene fossil bats in which sesamoids are exquisitely preserved, Onychonycteris finneyi and Icaronycteris index. We identified 46 separate sesamoid elements (or sets of elements) from dissections of selected bat taxa, with no more than 23 of these present in any given species. Among the sesamoids identified in our survey, 12 have not previously been described in bats. We also identified seven sesamoids previously described in the literature that are not present in our sample of species. No sesamoids were found to be exclusive to the fossil taxa in our study; all the sesamoids observed in Onychonycteris and Icaronycteris have apparent homologs among extant species. We mapped the presence/absence of the 46 sesamoids onto a bat phylogeny. Based on these optimizations, we discuss homology issues and evolutionary history of some of the most taxonomically widespread sesamoids. Functional inferences regarding some sesamoids can be made based on what is known about bat musculoskeletal morphology, although further biomechanical studies are required to test the hypotheses proposed here. Sesamoids will continue to be a source of interesting insights about the evolution of bats and their unique locomotor abilities

    Contributions in honor of Guy G. Musser.

    Get PDF
    450 p. : ill. (some col.), maps ; 26 cm. "Issued December 15, 2009." Includes bibliographical references.Contents: They sort out like nuts and bolts : a scientific biography of Guy G. Musser / Michael D. Carleton -- Taxonomy, distribution, and natural history of the genus Heteromys ‪(‬Rodentia: Heteromyidae‪)‬ in central and eastern Venezuela, with the description of a new species from the Cordillera de la Costa / Robert P. Anderson and Eliécer E. Gutiérrez -- Review of the Oryzomys couesi complex ‪(‬Rodentia: Cricetidae: Sigmodontinae‪)‬ in western Mexico / Michael D. Carleton and Joaquin Arroyo-Cabrales -- The antiquity of Rhizomys and independent acquisition of fossorial traits in subterranean muroids / Lawrence J. Flynn -- A new species of Reithrodontomys, subgenus Aporodon ‪(‬Cricetidae: Neotominae‪)‬, from the highlands of Costa Rica, with comments on Costa Rican and Panamanian Reithrodontomys / Alfred L. Gardner and Michael D. Carleton -- Phylogenetic relationships of harpyionycterine megabats ‪(‬Chiroptera: Pteropodidae‪)‬ / Norberto P. Giannini, Francisca Cunha Almeida, and Nancy B. Simmons -- A new genus and species of small ‪"‬tree-mouse‪"‬ ‪(‬Rodentia, Muridae‪)‬ related to the Philippine giant cloud rats / Lawrence R. Heaney, Danilo S. Balete, Eric A. Rickart, M. Josefa Veluz, and Sharon A. Jansa -- Biodiversity and biogeography of the moss-mice of New Guinea : a taxonomic revision of Pseudohydromys ‪(‬Muridae: Murinae‪)‬ / Kristofer M. Helgen and Lauren E. Helgen -- Systematic revision of sub-Saharan African dormice ‪(‬Rodentia: Gliridae‪)‬. Part 2, Description of a new species of Graphiurus from the central Congo Basin, including morphological and ecological niche comparisons with G. crassicaudatus and G. lorraineus / Mary Ellen Holden and Rebecca S. Levine -- Descriptions of new species of Crocidura ‪(‬Soricomorpha: Soricidae‪)‬ from mainland Southeast Asia, with synopses of previously described species and remarks on biogeography / Paulina D. Jenkins, Darrin P. Lunde, and Clive B. Moncrieff -- The six opossums of Félix de Azara : identification, taxonomic history, neotype designations, and nomenclatural recommendations / Robert S. Voss, Philip Myers, François Catzeflis, Ana Paula Carmignotto, and Josefina Barreiro -- Skull and dentition of Willeumys korthi, nov. gen. et sp., a cricetid rodent from the Oligocene ‪(‬Orellan‪)‬ of Wyoming / John H. Wahlert

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San Simón; BoliviaFil: Arroyo Cabrales, Joaquín. Instituto Nacional de Antropología E Historia, Mexico; MéxicoFil: Astúa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad Católica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do Espírito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: Cuéllar Soto, Erika. Sultan Qaboos University; OmánFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. Muséum National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadáFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: Hackländer, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibáñez Ulargui, Carlos. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadáFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. Università degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, Nicté. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerúFil: Schai-Braun, Stéphanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BélgicaFil: Veron, Geraldine. Université Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Data from: Ecomorphology of the African felid ensemble: the role of the skull and postcranium in determining species segregation and assembling history

    No full text
    Morphology of extant felids is regarded as highly conservative. Most previous studies have focussed on skull morphology, so a vacuum exists about morphofunctional variation in postcranium and its role in structuring ensembles of felids in different continents. The African felid ensemble is particularly rich in ecologically specialized felids. We studied the ecomorphology of this ensemble using 31 cranial and 93 postcranial morphometric variables measured in 49 specimens of all 10 African species. We took a multivariate approach controlling for phylogeny, with and without body size correction. Postcranial and skull + postcranial analyses (but not skull-only analyses) allowed for a complete segregation of species in morphospace. Morphofunctional factors segregating species included body size, bite force, zeugopodial lengths and osteological features related to parasagittal leg movement. A general gradient of bodily proportions was recovered: lightly built, long-legged felids with small heads and weak bite forces vs. the opposite. Three loose groups were recognized: small terrestrial felids, mid-to-large sized scansorial felids and specialized Acinonyx jubatus and Leptailurus serval. As predicted from a previous study, the assembling of the African felid ensemble during the Plio-Pleistocene occurred by the arrival of distinct felid lineages that occupied then vacant areas of morphospace, later diversifying in the continent

    The chiropteran premaxilla : a reanalysis of morphological variation and its phylogenetic interpretation ; American Museum novitates, no. 3585

    No full text
    44 p. : ill. ; 26 cm.Includes bibliographical references (p. 42-44).The mammalian premaxilla, which bears the incisor teeth, is composed of a body and two processes (nasal and palatine) that articulate with other rostral bones via four cranial sutures. In bats, the premaxilla is modified in many ways, and this variation has been extensively used in bat systematics. The premaxilla has provided characters to diagnose a number of important taxonomic groupings--most notably, the division of Microchiroptera into the infraorders Yinochiroptera and Yangochiroptera. Recent molecular studies have challenged the monophyly of Microchiroptera, and several families have been transferred to clades other than those in which they were placed traditionally. Because premaxillary characters have figured prominently among those used to establish the traditional classification of bats, we compared the anatomy of the bone across suprageneric bat groups and provide revised descriptions of its variation. On the basis of extensive material examined, we generated 16 new characters, of which at least 12 are partially applicable to all Chiroptera, and several of which are informative within specific bat groups. Three new characters code variation in the basic structure of the chiropteran premaxilla in a new way. As a result, the traditional character defining Yinochiroptera (a "movable premaxilla") was found to lack an anatomical basis; by contrast, Yangochiroptera was still supported. Still, a tree search using just the new premaxillary characters recovered Yinochiroptera as monophyletic. Even with a low character-to-taxon ratio, premaxillary characters recover a number of clades recognized in recent phylogenetic studies of bats. Mapping of characters onto the latest molecular and morphological chiropteran trees required many more extra steps in the former than in the latter. Our interpretation of premaxillary variation in bats suggests two opposing trends in different lineages: one toward weakening and eventual loss of the bone, and the other toward a strengthening via suture fusion. We conclude that, despite some homoplasy, the chiropteran premaxilla is richer in potentially phylogenetically informative characters than previously thought and that it should be explored further in systematic studies of bats at a variety of systematic levels

    Dental formulae in megabats

    No full text
    27 p. : ill. ; 26 cm.Includes bibliographical references (p. 26-27).Variation in dental formulae observed in megachiropteran bats poses element homology problems. Identity of individual teeth has been controversial, with authors differing in their assessment of individual tooth homology, particularly with respect to incisors and premolars, in several taxa. Also, newly described taxa exhibit dental formulae whose implications for tooth homology have been little discussed. We compared crown morphology, tooth replacement, and dental anomalies in representatives of all megachiropteran genera. Our observations confirm the generalized megachiropteran dental formula (34 teeth represented by I1, I2, C, P1, P3, P4, M1, M2, i1, i2, c, p1, p3, p4, m1, m2, and m3) and establishes the homology of each tooth in most megachiropteran taxa in which reduction in tooth number has taken place. Some of our conclusions confirm presumed homologies postulated by previous authors, but in other cases new homology assignments are proposed. Uncorroborated assignments are reduced to just two taxa, Harpyionycteris and Nyctimeninae, both of which remain problematic with respect to homologies of the incisor dentition. Mapping tooth presence/absence on previously published phylogenetic trees reveals modest levels of ambiguity and homoplasy in patterns of tooth reduction in Pteropodidae, and indicates that reversals involving the reappearance of an ancestrally lost tooth may have taken place. Our results are consistent with dental field theory, which explains both reversals and anomalies as a regulatory variation that does not affect element homology because the latter is supported by structural genes
    corecore