6,631 research outputs found

    Characteristics of Escherichia coli strains belonging to enteropathogenic E. coli serogroups isolated in Italy from children with diarrhea

    Get PDF
    Fifty-five Escherichia coli strains belonging to enteropathogenic E. coli (EPEC) serogroups were examined for phenotypic and genetic factors associated with virulence. The strains were isolated in Italy from children with diarrhea and identified as EPEC by clinical laboratories using commercially available antisera. O:H serotyping showed that 35 strains (27 of O26, O111, and O128 serogroups) belonged to 11 serotypes considered to be classical EPEC O:H serotypes. The other 20 isolates were classified as 15 nonclassical EPEC O:H serotypes. All the potential EPEC virulence factors associated with bacterial adhesion (localized adherence, fluorescent-actin staining test positivity, presence of the attaching and effacing [eaeA] gene), the production of verotoxin, and the positivity with the enterohemorrhagic E. coli probe were significantly more frequent among isolates belonging to classical than nonclassical serotypes. Strains displaying an aggregative adhesion and hybridizing with the enteroaggregative DNA probe were found in serogroups O86, O111, and O126. Verotoxin-producing isolates belonged to serogroups O26, O111, and O128. Only one of the isolates hybridized with the EPEC adherence factor (EAF) probe, but 33 strains gave positive results with the eae probe, confirming that the former is more suitable in epidemiological studies in European countries. These results indicate that up to 75% of strains identified as EPEC by commercial antisera may possess potential virulence properties and/or belong to classical EPEC O:H serotypes and suggest that O grouping is still a useful diagnostic tool for presumptive identification of diarrheagenic E. coli in clinical laboratories

    The microbiota of the bilio-pancreatic system: A cohort, STROBE-compliant study

    Get PDF
    Background: The gut microbiota play an essential role in protecting the host against pathogenic microorganisms by modulating immunity and regulating metabolic processes. In response to environmental factors, microbes can hugely alter their metabolism. These factors can substantially impact the host and have potential pathologic implications. Particularly pathogenic microorganisms colonizing pancreas and biliary tract tissues may be involved in chronic inflammation and cancer evolution. Purpose: To evaluate the effect of bile microbiota on survival in patients with pancreas and biliary tract disease (PBD). Patients and Methods: We investigated 152 Italian patients with cholelithiasis (CHL), cholangitis (CHA), cholangiocarcinoma (CCA), gallbladder carcinoma (GBC), pancreas head carcinoma (PHC), ampullary carcinoma (ACA), and chronic pancreatitis (CHP). Demographics, bile cultures, therapy, and survival rates were analyzed in cohorts (T1 death <6 months; T2 death <12 months; T3 death <18 months, T3S alive at 18 months). Results: The most common bacteria in T1 were E. coli, K. pneumoniae, andP. aeruginosa. In T2, the most common bacteria were E. coli and P. aeruginosa. InT3, there were no significant bacteria isolated, while in T3S the most common bacteria were like those found in T1. E. coli and K. pneumoniae were positive predictors of survival for PHC and ACA, respectively. E. coli, K. pneumoniae, andP. aeruginosa showed a high percentage of resistant bacteria to 3CGS, aminoglycosides class, and quinolone group especially at T1 and T2 in cancer patients. Conclusions: An unprecedented increase of E. coli in bile leads to a decrease in survival. We suggest that some strains isolated in bile samples may be considered within the group of risk factors in carcinogenesis and/or progression of hepato-biliary malignancy. A better understanding of bile microbiota in patients with PBD should lead to a multifaceted approach to rapidly detect and treat pathogens before patients enter the surgical setting in tandem with the implementation of the infection control policy

    Geochemistry and mineralogy of travertine deposits of the SW flank of Mt. Etna (Italy): Relationships with past volcanic and degassing activity

    Get PDF
    Travertine deposits outcropping in the lower SW flank of Mt. Etna were studied for their mapping, as well as for their chemical, mineralogical and isotopic compositions. These deposits are dated to about 24 to 5 ka in the Adrano area, located at the western limit of the study area. In this area travertines show high Mg contents and are composed mostly of dolomite, thus apparently ruling out any primary deposition in favour of a diagenetic origin. Travertines outcropping near Paternò, in the east part of the study area, should be younger than 18 ka. Those located to the SSW of Paternò (Paternò–Diga) show high Sr contents and aragonite as dominant mineralogical phase, thus suggesting primary deposition. Those located to the Wof Paternò (Paternò Simeto–Stazione) are instead poor both in Mg and in Sr and show calcite as dominant phase. Carbon isotope composition of travertines indicates a magmatic origin of CO2 that formed them. Based on the estimated volume of travertines, between 10 and 20 Gg/a of CO2 were involved in their formation. The time-span of travertine formation coincided with the eruptive cycles of Ellittico and the first part of Mongibello, which were probably characterised by a greater amount of CO2 transported through groundwater circulation. Widespread travertine deposition probably ceased after the opening of the Valle del Bove depression that modified the volcanologic and hydrologic conditions in the summit crater area

    Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Get PDF
    The use of a gas cell as a target for laser weakfield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved, and that using low backing pressure gas (< 1 bar) and different cell orifice diameters (< 2 mm) it is possible to finely tune the number density up to the range well suited for LWFA

    Resonant Three-Photon Ionization of Atomic Hydrogen in a Finite-Bandwidth Laser Field and a Static Electric Field

    Get PDF
    We derive a set of density matrix equations describing laser photo-excitation and ionization of atomic hydrogen in the presence of an external electric field. The equations are relevant as a description of multiphoton ionization of hydrogen (or deuterium) atoms in laser-produced transient plasmas. The laser wavelength is 243 nm, so that the photoionization is resonant with the 2 s 1/2 level. The electric field causes Stark mixing of the 2 s 1/2 level with the 2 p 1/2 and 2 p 3/2 levels. Because the electric field is taken in the same direction as the linear polarization of the laser, only states with equal m j are coupled, and the atom can be described with a four-level density matrix. The laser bandwidth is taken into account by using the stochastic model of a chaotic laser field introduced by Zoller [1]. We present a few calculations of the probabilities for ionization and excitation of a single hydrogen atom as a function of laser intensity and wavelength

    UAV Thermal Infrared Remote Sensing of an Italian Mud Volcano

    Get PDF
    Extreme environments like active volcanoes exhibit many difficulties in being studied by in situ techniques. For exam-ple, during eruptions, summit areas are very hard to be accessed because of logistics problems and/or volcanic hazards. The use of remote sensing techniques in the last 20 years by satellite or airborne platforms has proven their capabilities in mapping and monitoring the evolution of volcanic activity. This approach has become increasingly important, as much interest is actually focused on understanding precursory signals to volcanic eruptions. In this work we verify the use of cutting-edge technology like unmanned flying system thermally equipped for volcanic applications. We present the results of a flight test performed by INGV in collaboration with the University of Bologna (Aerospace Division) by using a multi-rotor aircraft in a hexacopter configuration. The experiment was realized in radio controlled mode to overcome many regulation problems which, especially in Italy, limit the use of this system in autonomous mode. The overall goal was not only qualitative but also quantitative oriented. The system flew above an Italian mud volcano, named Le Salinelle, located on the lower South West flank of Mt. Etna volcano, which was chosen as representative site, providing not only a discrimination between hot and cold areas, but also the corresponding temperature values. The in-flight measurements have been cross-validated with contemporaneous in-situ acquisition of thermal data and from independent measurements of mud/water temperature

    The burden of hepatocellular carcinoma in non-alcoholic fatty liver disease: Screening issue and future perspectives

    Get PDF
    In recent decades, non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in the Western world, and the occurrence of its complications, such as hepatocellular carcinoma (HCC), has rapidly increased. Obesity and diabetes are considered not only the main triggers for the development of the disease, but also two independent risk factors for HCC. Single nucleotide polymorphisms (such as PNPLA3, TM6SF2 and MBOAT7) are related to the susceptibility to the development of HCC and its progression. Therefore, an appropriate follow-up of these patients is needed for the early diagnosis and treatment of HCC. To date, international guidelines recommend the use of ultrasonography with or without alpha-fetoprotein (AFP) in patients with advanced fibrosis. Furthermore, the use of non-invasive tools could represent a strategy to implement surveillance performance. In this review, we analyzed the main risk factors of NAFLD-related HCC, the validated screening methods and the future perspectives

    Combined monitoring of CO2 efflux, 222-Rn and 220-Rn in soil gas on Mt. Etna: a new geochemical tool for volcano surveillance.

    Get PDF
    Since 2002, measurements of 222Rn, 220Rn activity and of CO2 efflux in soil and fumaroles were carried out at several locations on Mt. Etna volcano. An empirical relationship links the 222Rn/220Rn ratio to the CO2 efflux: deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. This relationship is more constraining on the type and depth of the gas source than using the 222Rn/220Rn ratio alone. Since June 2006, periodical measurements of these parameters were carried out in 10 sites located over a surface of about 7 km2 on the east flank of Mt. Etna (Zafferana village). The chosen area is characterized by anomalous diffuse degassing produced by fault-driven leakage of volatiles from a magma source whose depth is inferred at about 4-7 km below the surface. The sampling frequency varied between once a month to once every ten days. We studied the temporal variation of the ratio between CO2 efflux and (222Rn/220Rn), that we define as a Soil Gas Disequilibrium Index (SGDI). Increases of this parameter occurred just before and during the 2006 eruptive period (July to December 2006), and at the onset of the March-May 2007 sequence of summit paroxysmal episodes. Furthermore, a slow increasing trend preceded by a few months the August-September 2007 summit activity of Etna, culminated with the September 4th 2007 paroxysmal episode. Remarkable spike-like increases not associated with eruptions occurred on January 10th, 2007, correlated with anomalous increases in volcanic tremor, and on June 20th, 2007, linked with marked short-lived anomalies both in the ground deformation and in the gravimetric signals recorded by the INGV-Catania monitoring networks. The last increase in this geochemical index was recorded in late March 2008, correlated with a marked increase both in the volcanic tremor and in the plume SO2 flux. This index looks very promising as a new tool for volcano monitoring, as it seem very sensitive to volcanic unrest

    Nickel Isotopic Composition and Nickel/Iron Ratio in the Solar Wind: Results from SOHO/CELIAS/MTOF

    Get PDF
    Using the Mass Time-of-Flight Spectrometer (MTOF)—part of the Charge, Elements, Isotope Analysis System (CELIAS)—onboard the Solar Heliospheric Observatory (SOHO) spacecraft, we derive the nickel isotopic composition for the isotopes with mass 58, 60 and 62 in the solar wind. In addition we measure the elemental abundance ratio of nickel to iron. We use data accumulated during ten years of SOHO operation to get sufficiently high counting statistics and compare periods of different solar wind velocities. We compare our values with the meteoritic ratios, which are believed to be a reliable reference for the solar system and also for the solar outer convective zone, since neither element is volatile and no isotopic fractionation is expected in meteorites. Meteoritic isotopic abundances agree with the terrestrial values and can thus be considered to be a reliable reference for the solar isotopic composition. The measurements show that the solar wind elemental Ni/Fe-ratio and the isotopic composition of solar wind nickel are consistent with the meteoritic values. This supports the concept that low-FIP elements are fed without relative fractionation into the solar wind. Our result also confirms the absence of substantial isotopic fractionation processes for medium and heavy ions acting in the solar win

    Determination of Sulfur Abundance in the Solar Wind

    Get PDF
    Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore, one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances. In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic sulfur may be depleted relative to non-volatile elements, if compared to its original solar system valu
    • …
    corecore