29 research outputs found

    New lysosomal acid lipase gene mutants explain the phenotype of Wolman disease and cholesteryl ester storage disease.

    Get PDF
    Deficiency of lysosomal acid lipase (LAL) leads to either Wolman disease(WD) or the more benign cholesteryl ester storage disease (CESD). To identifythe molecular basis of the different phenotypes we have characterised the LALgene mutations in three new patients with LAL deficiency. A patient with WD washomozygote for a null allele Y303X. The other two patients, with CESD, presentedeither homozygosity for T267I or compound heterozygosity consisting of Q64R andan exon 8 donor splice site substitution (G→A in position–1). The mutants T267I and Q64R and the previously reported L273S, G66V,and H274Y CESD substitutions, overexpressed in stable clones, were found to befully glycosylated and show an enzymatic activity of 3–8% of that ofnormal LAL. On the other hand, the Δ254–277 mutant proteinderived from exon 8 skipping and the Y303X protein were totally inactive. Bytransient transfection of hybrid minigene constructs, the CESD G→A(–1) substitution resulted in partial exon inclusion, thus allowing theproduction of a small amount of normal LAL mRNA and hence of a functionalenzyme. In contrast, a G→Asubstitution observed in WD at position +1 of the same exon 8 donor siteresulted in complete exon skipping and the sole production of an inactiveΔ254–277 protein.In conclusion,LAL genotypes determine the level of residual enzymatic activity, thusexplaining the severity of the phenotype.—Pagani, F., R. Pariyarath, R.Garcia, C. Stuani, A. B. Burlina, G. Ruotolo, M. Rabusin, and F. E. Baralle. Newlysosomal acid lipase gene mutants explain the phenotype of Wolman disease andcholesteryl ester storage disease. J. Lipid Res. 1998. 39:1382–1388

    The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes

    Get PDF
    Aim To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. Materials and Methods Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. Results At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. Conclusions Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.Peer reviewe

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)

    Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1.

    No full text
    MicroRNAs (miRNAs) inhibit HIV-1 expression by either modulating host innate immunity or by directly interfering with viral mRNAs. We evaluated the expression of 377 miRNAs in CD4(+) T cells from HIV-1 Ă©lite long-term nonprogressors (Ă©LTNPs), naive patients, and multiply exposed uninfected (MEU) patients, and we observed that the Ă©LTNP patients clustered with naive patients, whereas all MEU subjects grouped together. The discriminatory power of miRNAs showed that 21 miRNAs significantly differentiated Ă©LTNP from MEU patients and 23 miRNAs distinguished naive from MEU patients, whereas only 1 miRNA (miR-155) discriminated Ă©LTNP from naive patients. We proposed that miRNA expression may discriminate between HIV-1-infected and -exposed but negative patients. Analysis of miRNAs expression after exposure of healthy CD4(+) T cells to gp120 in vitro confirmed our hypothesis that a miRNA profile could be the result not only of a productive infection but also of the exposure to HIV-1 products that leave a signature in immune cells. The comparison of normalized Dicer and Drosha expression in ex vivo and in vitro condition revealed that these enzymes did not affect the change of miRNA profiles, supporting the existence of a Dicer-independent biogenesis pathway
    corecore