1 research outputs found

    Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    Get PDF
    [EN] Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.This work has been supported by grants from the Spanish Ministry of Science and Innovation (AGL2010-22300-C03-01-02, AGL2013-49023-C03-01-02-R and BIO2014-54862-R), co-funded by the European Regional Development Fund.Fernandez-Crespo, E.; Navarro Bohigues, JA.; Serra Soriano, M.; Finiti, I.; García Agustín, P.; Pallás Benet, V.; Gonzalez-Bosch, C. (2017). Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation. Frontiers in Plant Science. 8:1-15. https://doi.org/10.3389/fpls.2017.01793S1158Alazem, M., & Lin, N. (2014). Roles of plant hormones in the regulation of host–virus interactions. Molecular Plant Pathology, 16(5), 529-540. doi:10.1111/mpp.12204Ando, S., Obinata, A., & Takahashi, H. (2014). WRKY70 interacting with RCY1 disease resistance protein is required for resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 85, 8-14. doi:10.1016/j.pmpp.2013.11.001Anfoka, G. H. (2000). Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. Crop Protection, 19(6), 401-405. doi:10.1016/s0261-2194(00)00031-4Aranega-Bou, P., de la O Leyva, M., Finiti, I., García-Agustín, P., & González-Bosch, C. (2014). Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00488Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008Bolwell, G. P., Davies, D. R., Gerrish, C., Auh, C.-K., & Murphy, T. M. (1998). Comparative Biochemistry of the Oxidative Burst Produced by Rose and French Bean Cells Reveals Two Distinct Mechanisms. Plant Physiology, 116(4), 1379-1385. doi:10.1104/pp.116.4.1379Camañes, G., Scalschi, L., Vicedo, B., González-Bosch, C., & García-Agustín, P. (2015). An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas sy. The Plant Journal, 84(1), 125-139. doi:10.1111/tpj.12964Clarke, S. F., Guy, P. L., Burritt, D. J., & Jameson, P. E. (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiologia Plantarum, 114(2), 157-164. doi:10.1034/j.1399-3054.2002.1140201.xCollum, T. D., & Culver, J. N. (2016). The impact of phytohormones on virus infection and disease. Current Opinion in Virology, 17, 25-31. doi:10.1016/j.coviro.2015.11.003Conti, G., Rodriguez, M. C., Venturuzzi, A. L., & Asurmendi, S. (2016). Modulation of host plant immunity by Tobamovirus proteins. Annals of Botany, mcw216. doi:10.1093/aob/mcw216Culver, J. N., & Padmanabhan, M. S. (2007). Virus-Induced Disease: Altering Host Physiology One Interaction at a Time. Annual Review of Phytopathology, 45(1), 221-243. doi:10.1146/annurev.phyto.45.062806.094422Dong, C.-J., Li, L., Shang, Q.-M., Liu, X.-Y., & Zhang, Z.-G. (2014). Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta, 240(4), 687-700. doi:10.1007/s00425-014-2115-1Ellinger, D., Naumann, M., Falter, C., Zwikowics, C., Jamrow, T., Manisseri, C., … Voigt, C. A. (2013). Elevated Early Callose Deposition Results in Complete Penetration Resistance to Powdery Mildew in Arabidopsis. Plant Physiology, 161(3), 1433-1444. doi:10.1104/pp.112.211011Finiti, I., de la O. Leyva, M., Vicedo, B., Gómez-Pastor, R., López-Cruz, J., García-Agustín, P., … González-Bosch, C. (2014). Hexanoic acid protects tomato plants againstBotrytis cinereaby priming defence responses and reducing oxidative stress. Molecular Plant Pathology, 15(6), 550-562. doi:10.1111/mpp.12112Flors, V., Leyva, M. de la O., Vicedo, B., Finiti, I., Real, M. D., García-Agustín, P., … González-Bosch, C. (2007). Absence of the endo-β-1,4-glucanases Cel1 and Cel2 reduces susceptibility toBotrytis cinereain tomato. The Plant Journal, 52(6), 1027-1040. doi:10.1111/j.1365-313x.2007.03299.xFlors, V., Ton, J., Van Doorn, R., Jakab, G., García-Agustín, P., & Mauch-Mani, B. (2007). Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. The Plant Journal, 54(1), 81-92. doi:10.1111/j.1365-313x.2007.03397.xFriedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., … Ryals, J. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal, 10(1), 61-70. doi:10.1046/j.1365-313x.1996.10010061.xFurch, A. C. U., Zimmermann, M. R., Kogel, K.-H., Reichelt, M., & Mithöfer, A. (2014). Direct and individual analysis of stress-related phytohormone dispersion in the vascular system ofCucurbita maximaafter flagellin 22 treatment. New Phytologist, 201(4), 1176-1182. doi:10.1111/nph.12661García, J. A., & Pallás, V. (2015). Viral factors involved in plant pathogenesis. Current Opinion in Virology, 11, 21-30. doi:10.1016/j.coviro.2015.01.001Garcia-Marcos, A., Pacheco, R., Manzano, A., Aguilar, E., & Tenllado, F. (2013). Oxylipin Biosynthesis Genes Positively Regulate Programmed Cell Death during Compatible Infections with the Synergistic Pair Potato Virus X-Potato Virus Y and Tomato Spotted Wilt Virus. Journal of Virology, 87(10), 5769-5783. doi:10.1128/jvi.03573-12Genovés, A., Navarro, J. A., & Pallás, V. (2006). Functional analysis of the five melon necrotic spot virus genome-encoded proteins. Journal of General Virology, 87(8), 2371-2380. doi:10.1099/vir.0.81793-0Genovés, A., Navarro, J. A., & Pallás, V. (2009). A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology, 395(1), 133-142. doi:10.1016/j.virol.2009.08.042Ghoshroy, S., Freedman, K., Lartey, R., & Citovsky, V. (1998). Inhibition of plant viral systemic infection by non‐toxic concentrations of cadmium. The Plant Journal, 13(5), 591-602. doi:10.1046/j.1365-313x.1998.00061.xGosalvez, B., Navarro, J. ., Lorca, A., Botella, F., Sánchez-Pina, M. ., & Pallas, V. (2003). Detection of Melon necrotic spot virus in water samples and melon plants by molecular methods. Journal of Virological Methods, 113(2), 87-93. doi:10.1016/s0166-0934(03)00224-6GOSALVEZ‐BERNAL, B., GENOVES, A., ANTONIO NAVARRO, J., PALLAS, V., & SANCHEZ‐PINA, M. A. (2008). Distribution and pathway for phloem‐dependent movement of Melon necrotic spot virus in melon plants. Molecular Plant Pathology, 9(4), 447-461. doi:10.1111/j.1364-3703.2008.00474.xHanley-Bowdoin, L., Bejarano, E. R., Robertson, D., & Mansoor, S. (2013). Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 11(11), 777-788. doi:10.1038/nrmicro3117Hernandez, J. A., Diaz-Vivancos, P., Rubio, M., Olmos, E., Ros-Barcelo, A., & Martinez-Gomez, P. (2006). Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Physiologia Plantarum, 126(1), 140-152. doi:10.1111/j.1399-3054.2005.00581.xHipper, C., Brault, V., Ziegler-Graff, V., & Revers, F. (2013). Viral and Cellular Factors Involved in Phloem Transport of Plant Viruses. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00154Inaba, J., Kim, B. M., Shimura, H., & Masuta, C. (2011). Virus-Induced Necrosis Is a Consequence of Direct Protein-Protein Interaction between a Viral RNA-Silencing Suppressor and a Host Catalase. Plant Physiology, 156(4), 2026-2036. doi:10.1104/pp.111.180042Lange, L., & Insunza, V. (1977). Root-inhabiting Olpidium species: The O. radicale complex. Transactions of the British Mycological Society, 69(3), 377-384. doi:10.1016/s0007-1536(77)80074-0Lee, J.-Y., Wang, X., Cui, W., Sager, R., Modla, S., Czymmek, K., … Lakshmanan, V. (2011). A Plasmodesmata-Localized Protein Mediates Crosstalk between Cell-to-Cell Communication and Innate Immunity in Arabidopsis. The Plant Cell, 23(9), 3353-3373. doi:10.1105/tpc.111.087742Leyva, M. O., Vicedo, B., Finiti, I., Flors, V., Del Amo, G., Real, M. D., … González-Bosch, C. (2008). Preventive and post-infection control ofBotrytis cinereain tomato plants by hexanoic acid. Plant Pathology, 57(6), 1038-1046. doi:10.1111/j.1365-3059.2008.01891.xLi, J., Brader, G., Kariola, T., & Tapio Palva, E. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46(3), 477-491. doi:10.1111/j.1365-313x.2006.02712.xManacorda, C. A., Mansilla, C., Debat, H. J., Zavallo, D., Sánchez, F., Ponz, F., & Asurmendi, S. (2013). Salicylic Acid Determines Differential Senescence Produced by Two Turnip mosaic virus Strains Involving Reactive Oxygen Species and Early Transcriptomic Changes. Molecular Plant-Microbe Interactions®, 26(12), 1486-1498. doi:10.1094/mpmi-07-13-0190-rMandadi, K. K., & Scholthof, K.-B. G. (2013). Plant Immune Responses Against Viruses: How Does a Virus Cause Disease? The Plant Cell, 25(5), 1489-1505. doi:10.1105/tpc.113.111658Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 8(4), 409-414. doi:10.1016/j.pbi.2005.05.015Mayers, C. N., Lee, K.-C., Moore, C. A., Wong, S.-M., & Carr, J. P. (2005). Salicylic Acid-Induced Resistance to Cucumber mosaic virus in Squash and Arabidopsis thaliana: Contrasting Mechanisms of Induction and Antiviral Action. Molecular Plant-Microbe Interactions®, 18(5), 428-434. doi:10.1094/mpmi-18-0428Mittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(1), 11-19. doi:10.1016/j.tplants.2016.08.002Miura, K., & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00004Naumann, M., Somerville, S. C., & Voigt, C. A. (2013). Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistantArabidopsislines. Plant Signaling & Behavior, 8(6), e24408. doi:10.4161/psb.24408Navarro, J. A., Genovés, A., Climent, J., Saurí, A., Martínez-Gil, L., Mingarro, I., & Pallás, V. (2006). RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 356(1-2), 57-67. doi:10.1016/j.virol.2006.07.040Nicaise, V. (2014). Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00660Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., … Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.xNováková, S., Flores-Ramírez, G., Glasa, M., Danchenko, M., Fiala, R., & Skultety, L. (2015). Partially resistant Cucurbita pepo showed late onset of the Zucchini yellow mosaic virus infection due to rapid activation of defense mechanisms as compared to susceptible cultivar. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00263Ohki, T., Akita, F., Mochizuki, T., Kanda, A., Sasaya, T., & Tsuda, S. (2010). The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology, 402(1), 129-134. doi:10.1016/j.virol.2010.03.020Pacheco, R., García-Marcos, A., Manzano, A., de Lacoba, M. G., Camañes, G., García-Agustín, P., … Tenllado, F. (2012). Comparative Analysis of Transcriptomic and Hormonal Responses to Compatible and Incompatible Plant-Virus Interactions that Lead to Cell Death. Molecular Plant-Microbe Interactions®, 25(5), 709-723. doi:10.1094/mpmi-11-11-0305Padmanabhan, M. S., Shiferaw, H., & Culver, J. N. (2006). The Tobacco mosaic virus Replicase Protein Disrupts the Localization and Function of Interacting Aux/IAA Proteins. Molecular Plant-Microbe Interactions®, 19(8), 864-873. doi:10.1094/mpmi-19-0864Pallas, V., & García, J. A. (2011). How do plant viruses induce disease? Interactions and interference with host components. Journal of General Virology, 92(12), 2691-2705. doi:10.1099/vir.0.034603-0Park, S.-W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., … Lawrence, C. B. (2013). Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences, 110(23), 9559-9564. doi:10.1073/pnas.1218872110Peng, H., Li, S., Wang, L., Li, Y., Li, Y., Zhang, C., & Hou, X. (2013). Turnip mosaic virus induces expression of the LRR II subfamily genes and regulates the salicylic acid signaling pathway in non-heading Chinese cabbage. Physiological and Molecular Plant Pathology, 82, 64-72. doi:10.1016/j.pmpp.2013.01.006Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., del Toro, F. J., Llave, C., Voinnet, O., & Elena, S. F. (2012). A Meta-Analysis Reveals the Commonalities and Differences in Arabidopsis thaliana Response to Different Viral Pathogens. PLoS ONE, 7(7), e40526. doi:10.1371/journal.pone.0040526Rodriguez, M. C., Conti, G., Zavallo, D., Manacorda, C. A., & Asurmendi, S. (2014). TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thalianaviral infection. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0210-xScalschi, L., Sanmartín, M., Camañes, G., Troncho, P., Sánchez-Serrano, J. J., García-Agustín, P., & Vicedo, B. (2014). Silencing ofOPR3in tomato reveals the role of OPDA in callose deposition during the activation of defense responses againstBotrytis cinerea. The Plant Journal, 81(2), 304-315. doi:10.1111/tpj.12728Scalschi, L., Vicedo, B., Camañes, G., Fernandez-Crespo, E., Lapeña, L., González-Bosch, C., & García-Agustín, P. (2012). Hexanoic acid is a resistance inducer that protects tomato plants againstPseudomonas syringaeby priming the jasmonic acid and salicylic acid pathways. Molecular Plant Pathology, 14(4), 342-355. doi:10.1111/mpp.12010Serra-Soriano, M., Pallás, V., & Navarro, J. A. (2014). A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. The Plant Journal, 77(6), 863-879. doi:10.1111/tpj.12435Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167(3), 201-208. doi:10.1016/j.jplph.2009.08.003Taheri, P., & Tarighi, S. (2011). A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. Journal of Plant Physiology, 168(10), 1114-1122. doi:10.1016/j.jplph.2011.01.001Tamogami, S., Noge, K., Abe, M., Agrawal, G. K., & Rakwal, R. (2012). Methyl jasmonate is transported to distal leaves via vascular process metabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. Plant Signaling & Behavior, 7(11), 1378-1381. doi:10.4161/psb.21762Ueki, S., & Citovsky, V. (2002). The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology, 4(7), 478-486. doi:10.1038/ncb806Vatén, A., Dettmer, J., Wu, S., Stierhof, Y.-D., Miyashima, S., Yadav, S. R., … Helariutta, Y. (2011). Callose Biosynthesis Regulates Symplastic Trafficking during Root Development. Developmental Cell, 21(6), 1144-1155. doi:10.1016/j.devcel.2011.10.006Vicedo, B., Flors, V., de la O Leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., … González-Bosch, C. (2009). Hexanoic Acid-Induced Resistance Against Botrytis cinerea in Tomato Plants. Molecular Plant-Microbe Interactions®, 22(11), 1455-1465. doi:10.1094/mpmi-22-11-1455Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47(1), 177-206. doi:10.1146/annurev.phyto.050908.135202Wang, X., Sager, R., Cui, W., Zhang, C., Lu, H., & Lee, J.-Y. (2013). Salicylic Acid Regulates Plasmodesmata Closure during Innate Immune Responses in Arabidopsis. The Plant Cell, 25(6), 2315-2329. doi:10.1105/tpc.113.110676Zhu, F., Xi, D.-H., Yuan, S., Xu, F., Zhang, D.-W., & Lin, H.-H. (2014). Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance Against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 27(6), 567-577. doi:10.1094/mpmi-11-13-0349-rZhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C., & Li, Y. (2005). The Rice Dwarf Virus P2 Protein Interacts with ent-Kaurene Oxidases in Vivo, Leading to Reduced Biosynthesis of Gibberellins and Rice Dwarf Symptoms. Plant Physiology, 139(4), 1935-1945. doi:10.1104/pp.105.07230
    corecore