39 research outputs found

    A Parametric Study on Free Vibration of Multi-perforated Rectangular Plates

    Get PDF
    AbstractThis work involves study of the first three natural frequencies of the perforated plates. The effect of the parameters which influence them have been studied. The parameters considered are the shape of perforations, pattern of the perforations, aspect ratio of the plate, dimensions of the plate, ligament efficiency and the mass remnant ratio (MRR). The study is focused on the effect of the most influencing parameter on the free vibrations

    The fluid structures for soft-sphere potentials via the zero-separation theorems on molecular distribution functions

    Get PDF
    10 pags., 10 figs., 5 tabs.We present a class of closures specifically designed to satisfy the zero-separation theorems for the correlation functions y(r) (the cavity function), γ(r) = h(r) - C(r) (the indirect correlation), and B(r) (the bridge function) at coincidence r=0 for soft-sphere pair potentials. The rationale is to ensure the correct behavior of these correlation functions inside the core r<σ. Since the coincidence theorems implicate the thermodynamic properties of the bulk fluid: the isothermal compressibility, the internal energy and the chemical potentials, we can hopefully enforce consistency between the structure and thermodynamic properties. We solve the Ornstein-Zernike equation for the Lennard-Jones molecules where plentiful Monte Carlo data are available for testing. It turns out that not only consistency is achieved, we also obtain accurate structures: the pair correlation function g(r), the cavity function, and the bridge function for wide ranges of fluid states (0.72<T*<1.5, p*<0.9). Comparison with MC data attests to the accuracy. The closure of the zero-separation type (ZSEP), is sufficiently robust and flexible to ensure not only fulfillment of the zero-separation theorems but also pressure consistency. Success with the Lennard-Jones potential implies its applicability to other similar soft-sphere potentials. © 1996 American Institute of Physics.E.L. acknowledges support from the Spanish Direccion General de Investigacion Cientıfica y Tecnica under Grant No. PB94-0112

    A Modular Design for Distributed Measurement of Human–Robot Interaction Forces in Wearable Devices

    No full text
    Measurement of interaction forces distributed across the attachment interface in wearable devices is critical for understanding ergonomic physical human–robot interaction (pHRI). The main challenges in sensorization of pHRI interfaces are (i) capturing the fine nature of force transmission from compliant human tissue onto rigid surfaces in the wearable device and (ii) utilizing a low-cost and easily implementable design that can be adapted for a variety of human interfaces. This paper addresses both challenges and presents a modular sensing panel that uses force-sensing resistors (FSRs) combined with robust electrical and mechanical integration principles that result in a reliable solution for distributed load measurement. The design is demonstrated through an upper-arm cuff, which uses 24 sensing panels, in conjunction with the Harmony exoskeleton. Validation of the design with controlled loading of the sensorized cuff proves the viability of FSRs in an interface sensing solution. Preliminary experiments with a human subject highlight the value of distributed interface force measurement in recognizing the factors that influence ergonomic pHRI and elucidating their effects. The modular design and low cost of the sensing panel lend themselves to extension of this approach for studying ergonomics in a variety of wearable applications with the goal of achieving safe, comfortable, and effective human–robot interaction
    corecore