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We present a class of closures specifically designed to satisfy the zero-separation theorems for the
correlation functionsy(r ) ~the cavity function!, g(r )5h(r )2C(r ) ~the indirect correlation!, and
B(r ) ~the bridge function! at coincidencer50 for soft-sphere pair potentials. The rationale is to
ensure the correct behavior of these correlation functions inside the corer,s. Since the coincidence
theorems implicate the thermodynamic properties of the bulk fluid: the isothermal compressibility,
the internal energy and the chemical potentials, we can hopefully enforce consistency between the
structure and thermodynamic properties. We solve the Ornstein–Zernike equation for the
Lennard-Jones molecules where plentiful Monte Carlo data are available for testing. It turns out that
not only consistency is achieved, we also obtain accurate structures: the pair correlation function
g(r ), the cavity function, and the bridge function for wide ranges of fluid states~0.72,T*,1.5,
r*,0.9!. Comparison with MC data attests to the accuracy. The closure of the zero-separation type
~ZSEP!, is sufficiently robust and flexible to ensure not only fulfillment of the zero-separation
theorems but also pressure consistency. Success with the Lennard-Jones potential implies its
applicability to other similar soft-sphere potentials. ©1996 American Institute of Physics.
@S0021-9606~96!50720-8#

I. INTRODUCTION

Recent trends in the study of fluid structures have
strengthened the needs for obtaining the molecular distribu-
tion functions from the integral equation~IE! methods.1

However, the existing schemes for calculating these struc-
tures, with some bright spots here and there, have been
weakened by inaccuracies at high densities and low tempera-
tures and the inability to treat more complicated but im-
mensely interesting molecules. The computer simulation
methods: Monte Carlo~MC! and molecular dynamics~MD!
have supplanted the IE methods in many interesting cases
~e.g., the water molecules, adsorption in pores, and polymer
melts!. Empirical and theoretically based equations of state
~or free energy equations: e.g., SAFT2! can achieve substan-
tial accuracy with faster computer speed. Some important
advances in integral equations will have to be made in order
for IE to remain viable and competitive.

We have essayed a number of approaches earlier3 for
simple molecules such as the hard spheres.4,5 Currently, we
are examining soft sphere molecules. Most common integral
equations are based on one of two theoretical formalisms:~i!
the Born–Bogoliubov–Green–Kirkwood–Yvon6 ~BBGKY!
hierarchy and~ii ! the Ornstein–Zernike~OZ! equation.7 Both
give the molecular distribution functions, such as the pair
correlation function~pcf! g(r ). We shall study the OZ ap-
proach below:

g~r ![h~r !2C~r !5rE dr 8h~r 8!C~ ur2r 8u!, ~1.1!

whereh(r ) is the total correlation function~tcf! h(r )[g(r )
21; C(r ), the direct correlation function~dcf!; g(r ), the
indirect correlation function~icf!; r the number density. This
equation can be considered as a definition for the dcfC(r ).
To solve Eq.~1.1!, one needs to supplement by a second
condition, theclosure relation,1 which relates the correlation
functions to the pair potentialu(r ). The closure relation can
be givenformally as

ln y~r ![ ln g~r !1bu~r !5h~r !2C~r !1B~r !. ~1.2!

This equation introduces a new functionB(r ) the bridge
function @where y(r )[g(r )exp(bu(r )) is the cavity func-
tion, and b[1/kT is the reciprocal temperature,
k5Boltzmann constant#. One of the advantages of the OZ
approach is that the cluster diagrams for the correlation func-
tions are known. For example, the cluster diagram forB(r )
is well known.8 The bridge function is actually thekey to
success of the IE method: accurateB(r ) will give accurate
pcf’s, vice versa. However, to calculate ‘‘exactly’’ the bridge
function according to the cluster integrals is computationally
impossible even for a simple fluid such as hard spheres. Only
few low density clusters are known thereof. Approximate IEs
@e.g., Percus–Yevick~PY!9 and hypernetted chain~HNC!10

equations# make estimates ofB(r ), thus producing approxi-
mate pcf’s. HNC simply setsB(r )50 identically. PY postu-
lates

BPY~r !' ln@11g~r !#2g~r !. ~1.3!
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The errors of the approximations show up at high fluid den-
sities and low temperatures.11 First, there is the question of
thermodynamic consistency. The pcf’s from these approxi-
mate IEs, when substituted into the thermodynamic formulas
for energyU, pressureP and isothermal compressibilityKT ,
do not yield consistent values~for example, not obeying the
Maxwell relations!. Thus thermodynamic inconsistencies are
telltale indications of the inaccuracies in the approximate
closures. Second, these approximate correlation functions
fail to match exact machine results from MC and MD.

We have two issues confronting us: one fundamental,
and the other practical.~a! The fundamental question is how
to obtain the bridge functions accurately fromfirst prin-
ciples. ~b! The practical question is how toconstructbridge
functions that give accurate and consistent thermodynamic
properties. These two questions are, of course, interrelated.
Exact correlation functions necessarily give consistent ther-
modynamic properties~the necessityargument!. But consis-
tent thermodynamic properties do not imply ‘‘exactness’’ of
the correlation functions~thesufficiencyargument!. Itema is
a far more challenging enterprise, solution of which is tanta-
mount to a solution of theN-body problem. In fact, we al-
ready know the cluster diagrams of the bridge function.8 In
addition, its functional expansion in infinite series is also
known.12 Both are difficult if not impossible to evaluate nu-
merically. Itemb is less theoretically based, but more doable
and useful. In this article, we shall pursue avenueb.

Fundamentally, given a pair potentialu(r ) in the Hamil-
tonian, there corresponds uniquely a pcfg(r ) for the state of
the fluid ~preferably away from the phase boundaries!. Then
all other correlation functions are also uniquely determined
through physics. We express this relation between any two
correlation functions by afunctional: e.g.,B5f@ln y(r )#, or
B5c[g(r )]. Namely, giveny(r ) or some related function
g(r ), one can in principle go through afunctionalc to get
B(r ). Functionals differ from functions by the former being
dependent on all ther values of the argument functiong(r )
instead of on a single value ofg. Only under special circum-
stances will a functional reduce to afunction, B5B̂(g* ). We
call this the ‘‘reducibility’’ condition. All approximate clo-
sures in literature were attempts to achieve this reducibility
@e.g., PY, HNC, Martynov–Sarkisov~MS!,13 Ballone–
Pastore–Galli–Gazillo14 ~BPGG!, and modified Verlet
~VM !15#. Some succeeded for particular cases, most failed to
achieve consistency. First, we inquire whether, for general
pair potentials, such reduction exists~the mathematicalexist-
encequestion!. Second, if the functional is reducible~under
conditions to be found!, is the reduction unique~theunique-
nessquestion!. Namely, are there several reductions that will
equally satisfy the representation? When both conditions~ex-
istenceand uniqueness! are met, we say this reduction has
achievedunique reducibility, or unique functionality. From
pioneering studies by Zerah–Hansen,16 Vompe–Martynov,17

Llano-Restrepo–Chapman18 and Duh–Haymet,19 it has be-
come clear that the reducibility for the closures is closely
hinged upon~i! the renormalization of the base function
g*5g1Dg, and ~ii ! optimization of the pair potential:
u(r )5uSR(r )1uLR(r ). If the functional is ever re-

ducible,B should be afunctionof a renormalized function
g* for an optimized potentialuLR. Thus the question can
now be framed mathematically: by searching through the
entire function space, can we find~the existenceof! a func-
tion B̂~g* ! matching the given functionalB5c[g(r )] by
continually adjusting~tuning! the argument functiong*
through certain combined optimization renormalization?
This task is beyond our reach at the present time. Instead, we
opt for b, by checking the thermodynamic and other consis-
tency conditions for the closures.

There are several aspects of thermodynamic consistency.
There is partial consistency~e.g., the pressure consistency20!.
And there are the Helmholtz free energy8,21 generating func-
tionals: approximate ones~e.g., the HNC generating func-
tional21! as well as the exact one~a formal expression in
terms of coupling parameter integration21!. These generating
functionals have the property that their variational deriva-
tives give the closure relation, the OZ relation and definitions
of these correlation functions. The prominent examples are
the HNC functional and the RISM functional.22 The exact
Helmholtz functional suffers again from intractability.
Evaluation of such functionals is equivalent to thermody-
namic integration. But the integrand is not ‘‘exact.’’ New
efficient methods in the integration of functionals should be
developed first. Approximate functionals give again incon-
sistent thermodynamic properties~e.g., PnÞPc in HNC!.
The approach we choose here is to select some boundary
conditions and properties~hopefully the right ones! we know
that all ‘‘exact’’ correlation functions must satisfy, then in-
corporate them in the closure expressions at the outset, so the
resulting correlations and properties will be consistent with
these criteria. These criteria should include the class of zero-
separation theorems~ZST! on the cavity functiony~0!, the
icf g~0!, and the bridge functionB~0! for reasons to be ex-
plained. We characterize our main thrust beingthe explora-
tion and use of these zero-separation theorems in a new
class of closure relations. However, there is noa priori guar-
antee that such requirements will produce any better correla-
tion functions or properties. Testing is paramount.

Thermodynamic consistency to us means conforming
with classical thermodynamic relations. For example, the
Helmholtz free energyA obeys the Gibbs–Helmholtz rela-
tion

d~bA!5Udb2~bP!dV, b51/kT. ~1.4!

In order forA to be an exact differential, the cross partial
derivatives should be equal:

]U

]V c
T

52
]bP

]b c
V

. ~1.5!

The energyU8 and virial pressurePn are obtained from the
usual formulas1 ~prime indicates the configurational proper-
ties!:

bU8

N
5

r

2 E dr bu~r !g~r !, ~1.6!
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bPn

r
512

r

6kT E dr r
du~r !

dr
g~r !. ~1.7!

This is called thedU–dP consistency by Martynov and
Vompe.17,23 In addition, the virial pressurePn after differen-
tiation be equal to the isothermal compressibilityKT

]bPn

]r c
T

5KT[
]bPc

]r
512rE dr C~r !. ~1.8!

This is called thedPn–dPc consistency20 @consistency be-
tween the virial theorem, Eq.~1.7! and the compressibility
integral, Eq.~1.8!#. The HNC and PY theories, being ap-
proximations, do not satisfy this condition. Lomba and Lee3

used the Gibbs–Duhem relation as another example of ther-
modynamic consistency

]P

]m c
T

5r. ~1.9!

In addition to these thermodynamic consistencies, there are
the coincidence values~r→0! of the correlation functions:
y~0!, g~0!, andB~0!. These must satisfy the zero-separation
theorems~to be presented in Sec. II!. The ZSTs are not part
of the macroscopic thermodynamics and are independent
conditions from the latter. Lately, there have been increased
interests in the zero-separation theorems for correlation
functions.4,24 A notable case is the cavity functiony~0! for
hard spheres, lny~0!5bm8 the configurational chemical po-
tential. The closures PY and HNC give poor zero-separation
values fory~0! andB~0!, thus poorbm8.

Martynov and Vompe17 have used thedPn–dPc and
dU–dP thermodynamic consistencies in constructing their
closures. Lomba and Lee3 used thedPn–dPc and Gibbs–
Duhem relation as conditions. The arguments were thatdU–
dP condition is not ‘‘effective’’ in deciding values of corre-
lation functions in the core regionr,s ~s being the
Lennard-Jones potential size parameter!, because bothU and
P derive most their contributions from function values at
r.0.8s. The Gibbs–Duhem relation is based on the chemi-
cal potential. The chemical potential is sensitive toy(r ),
B(r ), and g(r ) inside the core,r,s. Thus the Gibbs–
Duhem Eq.~1.9! should provide ‘‘better’’ determination ofy
andB at smallr ’s. In the present work, the ZSTs serve the
same purpose and more directly. We directly requireg, y,
andB at r50 to conform to the ZSTs.

In Sec. II, we present the closure, ZSEP, that satisfies the
three zero separation theorems. In Sec. III, we present the
direct chemical potential formula that yieldsbm8 without
coupling parameter integration. In Sec. IV, we apply the
ZSEP closure to the Lennard-Jones~LJ! potential. Results of
calculation for the correlation functions as well as thermody-
namic quantities are compared with simulation data. Section
V draws some conclusions and anticipates future researches.

II. THE ZERO-SEPARATION THEOREM-BASED
CLOSURES

The coincidence values of the correlation functionsy~0!,
g~0!, andB~0! have been known for sometime.25 For general

potentials, the cavity function is the ‘‘excess chemical poten-
tial,’’ i.e., the energy required to insert a dimeric molecule of
bond lengthL into a bath of monomers over~in excess of!
the energies of inserting the two constituent monomers
separately26 ~see Fig. 1!:

2 ln y~L !5bm28~L !22bm18 , ~2.1!

where the argumentL in bm28(L) indicates a dimer with
bond lengthL. As L→0, the dimer merges into a twice
strong monomer~a dimer with the same ‘‘size’’s of a
monomer, but with doubled potential energy, 2e!. Thus

2 ln y~0!5bm28~0!22bm18 . ~2.2!

For hard spheres, the potential energy is either` or 0. Dou-
bling of ` or 0 gives back̀ or 0, respectively:bm28(0)
5 bm18 . Thus we recover lnyHS(0) 5 bm18 , the well-known
zero-separation theorem for hard spheres.27 Equation~2.2! is
more general and is applicable to soft-sphere potentials.

The values ofbm18 can be obtained~i! from the solution
of the integral equation and the direct chemical potential
formula ~3.1!, ~ii ! from an accurate equation of state~EOS!,
or ~iii ! from computer simulation. As will be seen, we shall
use the EOSs@route ~ii !#. Some evaluation by Monte Carlo
method will also be carried out. The value of the twice-
strong monomerbm28(0) can also be obtained via one of the
three routes outlined above. Again, we choose route~ii !
~EOS! in this study. For other options, we shall discuss in
Sec. V.

For the icf, it is known that it obeys the OZ relation at all
r , including r50.28 Thus

g~0!5
]bP

]r
2122

bU8

N
1rE dr g~r !@C~r !1bu~r !#.

~2.3!

The integral in ~2.3! would be zero in the soft MSA
approximation.16 Thus we define

IMSA[rE dr g~r !@C~r !1bu~r !#. ~2.4!

This quantity turns out to be a relatively small number for
dense fluids. Its importance shows up only for dilute states.

The bridge function atr50 can be obtain from~1.2!,
B~0!5ln y~0!2g~0!:

B~0!52bm182bm282Fb ]P

]r
2122

bU8

N
~4!1IMSAG .

~1! ~2! ~3! ~4! ~5!
~2.5!

It is seen that all terms@exceptIMSA , term ~5!# on the RHS
are thermodynamic in nature. The zero-separation theorems
serve as the nexus connecting the thermodynamic properties
of the bulk fluid with the correlation functions at coinci-
dence! As mentioned before, we have many choices for de-
termining these thermodynamic properties in terms~1! to
~4!: from the IE itself, or from an equation of state for the
bulk fluid, or from simulation. For the sake of testing the
zero-separation methodology, we opt in this work using ‘‘ex-
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ternally’’ supplied thermodynamic properties, namely, from
the Nicolas equation29 of state for Lennard-Jones~LJ! fluids.
Other accurate EOSs are also available.30

The closure that is flexible enough for this task and has
been tested earlier, for example for hard spheres, is the ZSEP
closure4

B~g* !52
zg* 2

2 S 12
fag*

~11ag* ! D , ~2.6!

whereg* is a ‘‘renormalized’’ icf ~see below!; a, f, andz
are parameters that are to be determined by satisfying the
zero-separation theorem Eq.~2.5!. Since there are three pa-
rameters~a, f, and z! we need three conditions for their
determination. The second condition chosen is thedPn–
dPc consistency

KT5b
]Pn

]r c
T

. ~2.7!

The third condition is to require that the energy from ZSEP
be the same as~or very close to! the MD energy values of
Johnson31 ~at the same temperature and density of the bulk
fluid!

U8ZSEP5U8MD. ~2.8!

We note that~2.8! is not a consistencycondition. It does not
require any differential equality. It is to enforce theabsolute
values of energy~same as the MD data!. The choice of the
criteria appears, at the outset, arbitrary. For example, in
Lomba and Lee,3 the criteria used were the pressure consis-
tency and the Gibbs–Duhem relation. Vompe and
Martynov17 used thedPn–dPc anddU–dP criteria. As a
consequence, the quality of results will depend very much on
whether a ‘‘judicious’’ choice was made. The testing of a
‘‘pudding,’’ so to speak, is in the ‘‘eating.’’ As we intend to
incorporate the zero-separation theorems in the closures, test-
ing will follow to see if this is a good choice.

Another important ingredient for the success of the clo-
sure is the use of arenormalizedindirect correlation func-
tion. Renormalization ofg is almost indispensible in achiev-
ing the unique functionality requirement, as shown in
previous closures proposed by Zerah–Hansen,16 Duh–Hay-
met,19,32 Llano-Restrepo and Chapman,18 and
Vompe–Martynov.17 As a trial case, we renormalize using
the attractive part of the pair potential. The Lennard-Jones
potential is split according to Weeks–Chandler–Andersen33

as

uLJ~r !54eF S s

r D
12

2S s

r D
6G5u0~r !1ua~r !, ~2.9!

where

ua~r !52e, r,6
&s

5uLJ~r !, r>6
&s. ~2.10!

Thus

g* ~r ![g~r !2bua~r ! ~2.11!

~e is the energy parameter, ands is the size parameter for the
LJ potential!. In literature, more complicated choices have
been proposed and tried~Duh–Haymet,19,32 Kang and
Ree34!. The recipes tried were quite varied and with varying
degrees of sophistication. Equation~2.11! is not optimized.
We use~2.11! due to its simplicity and ease of comparison
with previous works where~2.11! was also used.16–18

Equations~2.5!, ~2.7!, and~2.8! provide the three condi-
tions needed to uniquely determine the three parametersa,
f, and z. We shall allowa, f, and z to be functions of
temperature and density of the bulk fluid. Note that Eq.~2.6!
reduces to the VM closure if we setz51, andf51. Thus
~2.6! can be considered as a more versatile version of the
VM closure. ZSEP was successful for hard spheres.4 It be-
hooves us to investigate whether ZSEP is also effective for
soft spheres.

III. THE DIRECT CHEMICAL POTENTIAL FORMULA

For the chemical potential, a direct formula is available35

that gives thebm8 from the correlation functions at the given
state without coupling parameter~l! or density integration.
The proviso is that the bridgeB must be expressed as a
unique function~unique functionality! of some known corre-
lation function ~renormalized function, if necessary!. The
formula we present this time is slightly different from Ref.
35:

bm85rE dr @ ln y~r !2h~r !

1~1/2!h~r !g~r !1h~r !B~r !#2S* , ~3.1!

where thestar series S* is given by

S*5rE dr h~r !E
0

1

dl B~r ;l!. ~3.2!

If B is a unique function of a renormalized icfg* ,
B5B̂(g* ), and

g* ~l!5g0~r !1lg~r !, ~3.3!

then theS* integral in ~3.2! can be evaluated as

S*5rE dr
h~r !

g~r ! F E
x5g* ~0!

x5g* ~1!
dx B̂~x!G . ~3.4!

In the present case,

g* ~0!5g0~r !52bua~r !, and g* ~1!5g~r !2bma~r !.
~3.5!

Thus Eq.~3.4! can be integrated accordingly withB̂ given by
~2.6!. The analytical expression is given below in indefinite
form:

E
0

x

dx B̂~x!52
z~ax!3

6a3 1
zf

6a3 F ~11ax!32
9

2
~11ax!2

19~11ax!23 ln~11ax!2
11

2 G , ~3.6!
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This formula will be used in the evaluation of the chemical
potentials from correlation functions obtain from the ZSEP
closure.

IV. RESULTS OF CALCULATION

We propose to study a typical soft-sphere potential: the
Lennard-Jones potential. All units will be expressed in terms
of the LJ parameters: thus temperatureT*5kT/e, and den-
sity r*5rs3. Closure~2.6! has been solved together with the
OZ equation~1.1!. Numerical solution of the integral equa-
tion was carried out with 1024 grid points inr and grid size
Dr50.02s. Convergence was achieved when the absolute
convergence of the Cauchy sequence ofg became inferior to
an dmax,0.2E204. More stringent criteria have been used
with little difference in the answer. The densities studied
were for conditions where simulation data are available: for
T*51.5, r*50.4, 0.6, 0.7, 0.8, and 0.9; forT*51.0,
r*50.8; forT*50.81,r*50.8; and forT*50.72,r*50.85.
The parametersa, f, andz determined are listed in Table I.

With these parameters, we can obtain the structures
B(r ), y(r ), C(r ), andg(r ) and the thermodynamic proper-
ties accurately. The validity extends over ranges of density
as high as;0.9 and temperatures as low as 0.72. In addition,
the thermodynamic values are pressure consistent because of
the requirement~2.7!: the virial pressure be equal to the com-
pressibility pressure.

The zero separation values of the bridge function
BZSEP~0! at eight state conditions are given in Table II, plus

the MC, EOS, and PY values. For most states, ZSEP is
within 0.1%24% of the MC numbers. The EOS values are
listed for the purpose of verification, since condition~2.5!
enforces equality between ZSEP and EOS. Let us explain
how these EOS thermodynamic properties were obtained.
Terms 1, 3, and 4@Eq. ~2.5!# for bm18 , b]/P]r, andU8 were
straightforward calculations from the Nicolas equation for
LJ. Term 2, the coincident dimerbm28 was calculated from
the Nicolas EOS for binary mixtures of LJ molecules, as-
suming van der Waals one-fluid~vdW1! mixing rules, with
the coincident dimer at infinite dilution in the monomers~see
Fig. 1!. This is an approximation, since we are not all that
certain about the vdW1 theory for the strong monomer~co-
incident dimer! in solution. To ascertain the validity, we
have carried out MC simulations atT*51.5 for several den-
sities to testbm28 . The results are presented in Table III,
together with the MC monomerbm18 values ~see Fig. 2!.
Canonical ensemble (N–V–T) was used. 108 LJ molecules
were arranged initially on a fcc lattice and subsequently
‘‘melted’’ in 10 million random walk moves~these were
discarded!. Afterwards for every 1000 moves, 1000 fictitious
particle insertions36 were attempted. These included separate
insertions of a LJ monomer as well as a coincident dimer
~with twice the monomere! into a bath of 108 monomers.
After equilibration, another 10 million configurations were
generated. The cutoff distance of the LJ potential was 2.5s.
Long range corrections were applied to recover the full LJ
properties. For the infinitely dilute dimer, the long-range cor-
rection was twice the magnitude of the monomer correction.
Statistics~error bars! were obtained from packet averages
after every 13106 insertions.

We note that there was an earlier study on Henry’s law
constants37 for the infinite dilute dimer. Their values check
with the present estimation~Fig. 2!. The simulation data are
filled ~darkened! symbols~triangles forbm18 and squares for
bm28!. The EOS values are solid lines. The chemical poten-
tials bm28 can be back-calculated from the Llano-Restrepo
MC data on lny~0! according to~2.2! and are shown as open
rhombics~i.e., frombm28 5 2bm1MC8 2 ln y(0)Llano–MC!. We
see that the vdW1bm28 overestimates~less negative than!
MC data. There is agreement between the present MC~Table
III ! calculations and the derived Llano-Restrepo values. The

FIG. 1. A dimer molecule at infinite dilution in a bath of monomers (m).
The dimer is formed of two monomers fused to a bond length ofL. In the
limit L→0, we form a coincident dimer or astrong ‘‘monomer’’ with same
size ~s! but twice energetic~2e!.

TABLE I. The parametersa, f, andz used in the ZSEP closure~2.6! that
satisfy the zero-separation theorems: Eqs.~2.5!, ~2.7!, and~2.8!.

T* r* a f z

1.5 0.4 0.90 1.0 0.5356
1.5 0.6 0.70 1.022 0.80
1.5 0.7 0.69 1.015 0.90
1.5 0.8 0.745 1.004 0.98
1.5 0.9 0.825 0.999 1.05
1.0 0.8 0.725 1.005 0.99
0.81 0.8 0.70 1.0065 1.0
0.72 0.85 0.65 1.005 1.0

TABLE II. The coincidence values of the bridge functionB~0! of ZSEP for
the Lennard-Jones potential.

Ta ra

B~0!

MCa EOSb ZSEPc PY

1.5 0.4 20.93 21.04 21.0 22.1
0.6 23.88 23.87 23.82 25.7
0.7 27.03 27.19 27.04 29.29
0.8 212.46 212.7 212.36 215.1
0.9 220.45 221.49 220.36 224.23

1.0 0.8 215.18 215.55 215.24 217.0
0.81 0.8 217.28 216.74 217.07 217.97
0.72 0.85 225.74 224.52 225.8 223.27

aMC from Llano-Restrepo and Chapman~Ref. 18!.
bEOS from Nicolaset al. ~Ref. 29!.
cZSEP from Eq.~2.6!.
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qualitative trends are also correct. There are some discrepan-
cies in monomerbm18 from EOS too as compared with MC:
bm1EOS

8 53.2 andbm1MC
8 53.4 atr*50.9. The uncertainties

in the MC data is60.4. The differences are not that substan-
tial. Due to cancellation of errors@B(0)52bm182bm28
2g(0)#, theBEOS~0! values are surprisingly close to the MC
values of Llano-Restrepo.18 Term 5 in Eq.~2.5! was obtained
directly from the IE solution. Any differences between ZSEP
and EOS after numerical iterative solution of the OZ are the
residual inconsistency. Table II shows that the residuals are
quite small~within 5%!. We consider the consistency check
to be satisfactory~between EOS and ZSEP!. TheB~0! values
from the PY closure are shown as counter-examples. They
are for the most part too negative, from 3%~the best case! to
100% off the MC values, especially at higher temperatures
~T*51.5!. We conclude that the PY closure does not satisfy
the zero-separation theorem equation~2.5! for the states con-
sidered.

For a same separationr , Duh and Haymet19 proposed
plotting the the valuesB(r ) vs g* (r ) as check of the closure
relations. We construct the Duh–Haymet plot in Fig. 3

for B~g* ! of ZSEP and compare with MC. We observe that
the ZSEP results follow the MC simulation data of Llano-
Restrepoet al. extremely well, from zero separation~the
right extremities of the curves! to contact. TheB vs r plots at
temperatures:T*51.5, 1.0, 0.81, and 0.72 are shown in Figs.
4~a! and 4~b!. The ZSEP closure equation~2.6! provides
equally accurate results.

We observe from Fig. 3 atr*50.4 to 0.9 that the five
curves are notcoincident~there isbranching in the B2g*
curves!. From experience, the degree of conformality in the
Duh–Haymet plots is an indication of the success of the
renormalization ofg. ~Collapsing of curves means better
renormalizedg* !. This lack ofcollimation indicates that the
renormalization~2.11! has not quite achieved the unique
functionality requirement. More work on renormalization of
g* is needed.

The coincidence values ofg~0! are shown in Table IV.
We observe the close agreement of theg~0! from MC31 and
from the ZSEP. Although the EOS values@Eq. ~2.3!# were
not directly used in enforcing ZSEP, the agreement between
EOS and ZSEP is also reasonable.@For ZSEP, Eq.~2.5! was
required#. The PYg~0! are too low, especially at lower tem-

FIG. 2. The chemical potentials of monomer and coincident dimer~L50! at
T*51.5 for the Lennard-Jones potential. Solid lines: Equation of state re-
sults @Nicolas ~Ref. 29!#. Dotted line: Simulation results from Ghonsagi
et al. ~Ref. 37!. m: Present MC simulation for monomers.j: Present MC
simulation for coincident dimers~at infinite dilution!. L: Derived values
from the MC simulation of lny~0! of Llano-Restrepoet al. ~Ref. 18!.

FIG. 3. The ZSEP bridge functionB̂~g* ! for Lennard-Jones molecules at
T*51.5. Symbols are from the MC data of Llano-Restrepoet al. ~Ref. 18!.
s: r*50.9; h: r*50.8; n: r*50.7; L: r*50.6; ,: r*50.4. Lines are
from ZSEP prediction. Close agreement between ZSEP and MC is achieved.

TABLE III. The chemical potentials of monomers and the coincident dimer in Lennard-Jones fluid.

Ta ra

bm18 bm28

MCa EOS ZSEPb MCa EOS From lny~0!c

1.5 0.4 21.32960.0053 21.34 21.35 25.36260.012 24.9 25.24
0.6 ••• 21.19 21.28 ••• 26.46 26.77
0.7 20.40360.0024 20.485 20.8 27.0560.058 26.58 26.81
0.8 ••• 0.88 0.2 ••• 25.91 26.35
0.9 3.42360.421 3.2 2.1 24.6260.911 24.11 24.16

1.0 0.8 ••• 22.3 23.1 ••• 213.3 214.3
0.81 0.8 ••• 24.72 25.67 ••• 218.8 219.7
0.72 0.85 ••• 25.38 27.0 ••• 222.2 223.3

aMC values from this work.
bZSEP calculated from~2.6! and the directbm18 formula ~3.1!.
cbm28 inferred from MC data of Llano-Restrepo:bm28 5 2bm18 2 ln y(0).bm18 from MC was used when available. Otherwise,bm18 from EOS was substituted.
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peratures. Consequently, the PY cavity functions are too low.
The pair correlation functionsg(r ) are compared in

Figs. 5 and 6 at two different states~T*51.5 or r*;0.8,
0.85!. The MD data~symbols! are from Johnson.31 For all
the states studied, they are in close agreement, from low
densities up tor*50.9 and for temperatures down to
T*50.72. Low density results are also satisfactory. The first
peak heights are well reproduced. The oscillations are in
phase. The usual defects of IEs arecured and no longer
present a problem.

The cavity functions are compared in Figs. 7 and 8: one
set atT*51.5, and the other atr*;0.8. Again good agree-
ment with MC data is in evidence. The zero-separation val-
ues are well reproduced. Next, we compare the thermody-
namic properties.

Thermodynamic properties.Figure 9 shows the internal
energybU8/N, the virial pressureZ5bPn/r, and the con-
figurational chemical potentialbm18 . The MD data~sym-
bols! are from Johnson31 and the present work. The lines are

FIG. 4. The bridge function as predicted by the ZSEP closure, Eq.~2.6!.
Symbols are MC data of Ref. 18. Lines are from ZSEP.~a! For temperature
T*51.5. ~b! For densitiesr*50.8, and 0.85. Close agreement is observed
for high as well as low densities.

FIG. 5. The pair correlation function as predicted by the ZSEP closure, Eq.
~2.6!. Symbols are MD data of Johnson~Ref. 31! atT*51.5. Lines are from
ZSEP. The curves have been shifted up with adécalageof unity for display
purpose. The first peaks and oscillations are in good accord with MC data.

FIG. 6. The pair correlation function as predicted by the ZSEP closure, Eq.
~2.6!. Symbols are MD data of Johnson~Ref. 31!. Lines are from ZSEP.
Temperatures vary from 0.72 to 1.0. Densities50.8 and 0.85. The curves
have been shifted up for display.

TABLE IV. The coincidence values of the indirect correlation functiong~0!
for Lennard-Jones fluid.

Ta ra

g~0!

MCa ZSEPb PY Eq. ~2.3!c IMSA

1.5 0.4 3.52 3.57 3.57 3.26 0.285
1.5 0.6 8.28 8.33 7.84 7.95 0.111
1.5 0.7 13.02 13.18 11.80 12.80 20.319
1.5 0.8 20.59 20.61 17.9 20.39 20.713
1.5 0.9 31.81 31.55 27.46 32.01 21.45
1.0 0.8 24.86 24.85 19.94 24.3 20.758
0.81 0.8 27.59 27.54 20.93 26.08 20.995
0.72 0.85 38.24 38.5 26.63 36.01 21.88

aMC from Llano-Restrepo and Chapman~Ref. 18!.
bTerms in~2.3! are from the Nicolas EOS~Ref. 29!. IMSA from the solution
of the integral equation.
cZSEP from Eq.~2.6!.
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from Nicolas EOS and the present ZSEP calculations. The
energy and the pressure are well predicted by ZSEP. The
chemical potential from ZSEP is valid up tor*;0.6. For
r*.0.7, the ZSEP values are lower than the EOS and MC
values: i.e., ZSEP,EOS,MC. We have mentioned that the
renormalization~2.11! was deemed inadequate judging from
the Duh–Haymet plots. This affected the chemical potential
calculation at high densities, where even small inaccuracies
in unique functionality became sensitive and magnified.
Equation~2.11! does not affect much the results for the cor-
relation functionsg(r ), B(r ), and lny(r ). This is attributed
to the robustness of the functional form~2.6! and use of the
zero-separation theorem~2.5!.

Since the internal energy was used as a criterion in de-
termining the ZSEP closure, we compare thebU8/N in
Table V. We have also included the virial pressures for com-
parison. The numbers from all calculations~MD, EOS, and
ZSEP! are in close agreement~mostly within 1%!. This jus-
tifies the condition~2.8!. The pressure, being a more sensi-
tive quantity than the energy, is surprisingly well predicted.

Figure 10 displays the isothermal compressibility ob-
tained from the direct correlation function, Eq.~1.8!. Com-
pared to EOS, ZSEP gives very fiduciary values. Note that
due to the pressure consistency, the compressibility pressure
Pc is equal to the virial pressurePv.

V. CONCLUSIONS

We have shown that~i! the ZSEP closure~2.6!, though
containing a dose of empiricism, is sufficiently general in
producing accurate bridge functionsB(r ), cavity functions
y(r ), and pair correlation functionsg(r ) for the Lennard-
Jones fluid over a wide spectrum of densities and tempera-
tures: 0.72,T*,1.5 andr*,0.9. The three conditions: the
zero-separation theorem onB(r ), the pressure consistency
dPv5dPc, and the energy requirement are sufficient in de-
termining the closure parametersa, f, andz. The thermody-
namic quantities: pressure, isothermal compressibility, inter-
nal energy, and chemical potential are all accurately
reproduced.~ii ! The renormalization of the indirect correla-
tion g* is important in obtaining the chemical potential
through the direct formula, and the unique function relation

FIG. 7. The cavity function is predicted by the ZSEP closure, Eq.~2.6!.
T*51.5. Symbols are MC data of Ref. 18. Lines are from ZSEP. From top
down: densityr*50.9, 0.8, 0.7, 0.6, and 0.4, respectively.

FIG. 8. The cavity function as predicted by the ZSEP closure, Eq.~2.6!.
T*50.72, 0.81, and 1.0. Symbols are MC data of Ref. 18. Lines are from
ZSEP. Densities vary from 0.8 to 0.85.

FIG. 9. Thermodynamic properties of the Lennard-Jones fluid atT*51.5.
Z5Pv/rkT, the virial compressibility,bm85excess chemical potential.
bU8/N5excess internal energy. Lines: ZSEP results. Open symbols
~s,n,h!: equation of state results~Ref. 29!. Filled symbols~d,m,j!: MC
simulation results.

TABLE V. The internal energy and virial pressure from ZSEP for Lennard-
Jones fluids.

Ta ra

bU8/N bPv/r

MCa EOSb ZSEPc MCa EOSb ZSEPc

1.5 0.4 21.8 21.781 21.784 0.465 0.447 0.447
1.5 0.6 22.639 22.635 22.629 0.856 0.791 0.868
1.5 0.7 23.052 23.0458 23.0456 1.516 1.479 1.516
1.5 0.8 23.466 23.4 23.414 2.737 2.715 2.723
1.5 0.9 23.674 23.657 23.673 4.717 4.721 4.719
1.0 0.8 25.533 25.523 25.52 1.288 1.309 1.316
0.81 0.8 27.046 27.027 27.026 0.106 0.204 0.179
0.72 0.85 28.5 28.43 28.498 0.386 0.490 0.36

aMD from Johnson~Ref. 31!.
bEOS from the Nicolas EOS~Ref. 29!.
cZSEP from Eq.~2.6!.

8065Lee, Ghonasgi, and Lomba: Fluid structures for soft spheres

J. Chem. Phys., Vol. 104, No. 20, 22 May 1996



B2g* . ~i! and~ii ! are related, but can also be decoupled to a
certain extent. If the closure form is robust, as in~2.6!, it can
give good correlation functions despite some weaknesses in
renormalization. The direct chemical potential formula is
sensitive to the degree of unique functionality in the renor-
malization. Currently,bm8 obtained from~3.6! is valid up to
r*<0.6. We believe that it can be improved beyondr*>0.6
if a better renormalization ofg* is used.

We have demonstrated that it is possible with ZSEP to
obtain very accurate correlation functions for the Lennard-
Jones fluid. We attribute this primarily to the closure~2.6!
and the enforcement of the zero-separation theorems~2.2!,
~2.3!, and ~2.5!. They ensure the correct behavior ofB(r ),
g(r ), andy(r ) at r50 inside the core.

To obtain the thermodynamic quantities in the zero sepa-
ration B~0!, Eq. ~2.5!, we have used an equation of state
~Nicolas29!. This choice is for convenience.~If one already
knows the properties of Lennard-Jones fluids, there is prob-
ably little incentive to go through an integral equation to
recalculate the same quantities!! However, the goal of this
investigation is to see if the concept of enforcing the zero-
separation theorems works. The outcome from a combina-
tion of closure~2.6! and conditions~2.5!, ~2.7!, and~2.8! has
been shown to be very promising. The agreement with MC
data is excellent. This avenue of investigation proves produc-
tive.

Once the concepts have been proven valid, we propose
further studies for the future. Improvements are sought:~i! to
obtain the thermodynamic quantitiesautochthonously~i.e.,
from the integral equation itself!; ~ii ! to search for better
renormalization of the icfg* so as to attain unique function-
ality. To achieve~i!, the chemical potential of the coincident
dimerbm28 poses as a problem: it is a heterogeneous species,
though spherical, from the monomeric LJ spheres. This value
cannot be obtained from solving for the pure LJ fluid alone,
no matter what closure is used. We shall devise means to
treat this. To achieve~ii !, better theoretically based renormal-
ization of g or similar functions is needed. The monomer
chemical potential and the Duh–Haymet plots are sensitive
measures of unique functionality, and consequently the
renormalization scheme. These can be used as guides.

We have chosen the Lennard-Jones potential as the sub-
ject of study due to the availability of simulation data. The
zero-separation approach, once proven valid, can be general-
ized to treat other soft-sphere potentials.
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