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The fluid structures for soft-sphere potentials via the zero-separation
theorems on molecular distribution functions

Lloyd L. Lee and Dhananjay Ghonasgi
School of Chemical Engineering and Materials Science, University of Oklahoma, Norman, Oklahoma 73019

Enrique Lomba
Instituto de Quimica Fisica Rocasolano CSIC, el Serrano 119, 28006 Madrid, Spain

(Received 22 January 1996; accepted 20 February)1996

We present a class of closures specifically designed to satisfy the zero-separation theorems for the
correlation functions/(r) (the cavity function, y(r)=h(r)—C(r) (the indirect correlation and

B(r) (the bridge functiohat coincidence =0 for soft-sphere pair potentials. The rationale is to
ensure the correct behavior of these correlation functions inside the cereSince the coincidence
theorems implicate the thermodynamic properties of the bulk fluid: the isothermal compressibility,
the internal energy and the chemical potentials, we can hopefully enforce consistency between the
structure and thermodynamic properties. We solve the Ornstein—Zernike equation for the
Lennard-Jones molecules where plentiful Monte Carlo data are available for testing. It turns out that
not only consistency is achieved, we also obtain accurate structures: the pair correlation function
g(r), the cavity function, and the bridge function for wide ranges of fluid sté@ez2<T* <1.5,
p*<0.9). Comparison with MC data attests to the accuracy. The closure of the zero-separation type
(ZSEB, is sufficiently robust and flexible to ensure not only fulfillment of the zero-separation
theorems but also pressure consistency. Success with the Lennard-Jones potential implies its
applicability to other similar soft-sphere potentials. 1®96 American Institute of Physics.
[S0021-960626)50720-9

I. INTRODUCTION whereh(r) is the total correlation functioftcf) h(r)=g(r)

) . —1; C(r), the direct correlation functioidcf); (r), the
Recent trends in the study of fluid structures have

o _'“YSindirect correlation functiotticf); p the number density. This
strengthened the needs for obtaining the molecular d'St”bLléquation can be considered as a definition for theG{cf).
tion functions from the integral equatioiE) methods:

- / To solve Eq.(1.1), one needs to supplement by a second
However, the existing schemes for calculating these strucsqngition, theclosure relationt which relates the correlation

tures, with some bright spots here and there, have beefy tions to the pair potential(r). The closure relation can
weakened by inaccuracies at high densities and low tempergz, givenformally as

tures and the inability to treat more complicated but im-
mensely interesting molecules. The computer simulation
methods: Monte CarlMC) and molecular dynamic8viD)

have supplanted the IE methods in many interesting cases . o ) )
(e.g., the water molecules, adsorption in pores, and polyme}"iS equation introduces a new functid(r) the bridge
melt9. Empirical and theoretically based equations of statdunction [wherey(r)=g(r)exp(8u(r)) is the cavity func-
(or free energy equations: e.g., SAFEan achieve substan- ton. and B=1KkT ‘s the reciprocal temperature,
tial accuracy with faster computer speed. Some importarf = Boltzmann constaiit One of the advantages of the OZ

advances in integral equations will have to be made in orde®Pproach is that the cluster diagrams for the correlation func-
for IE to remain viable and competitive. tions are known. For example, the cluster diagramB¢6r)

We have essayed a number of approaches eaftier is well known® The bridge function is actually thkey to
simple molecules such as the hard sphéfesurrently, we ~ SUCCESS of the IE method: accur&ér) will give accurate

are examining soft sphere molecules. Most common integrdic!'S; vice versa. However, to calculate “exactly” the bridge
equations are based on one of two theoretical formaligins: function according to the cluster integrals is computationally

the Born—Bogoliubov—Green—Kirkwood—YVOIiBBGKY) impossible even for a simple fluid such as hard spheres. Only
hierarchy andii) the Ornstein—Zerniké0Z) equation’ Both few low density clu_sters %re known thereof. App_roxima}g IEs
give the molecular distribution functions, such as the pail€-9-» Percus—YevickPY)” and hypernetted chaifiNC)

correlation function(pcf) g(r). We shall study the Oz ap- auation$ make estimates d(r), thus producing approxi-
proach below: mate pcf’'s. HNC simply setB(r) =0 identically. PY postu-

lates

In y(r)=In g(r)+ Bu(r)=h(r)—C(r)+B(r). (1.2

Y(Y)Eh(r)—c(r)zpf dr’h(r’)C(|r—r'|), (1.0 Bpy(r)=~IN[1+ y(r)]— y(r). (1.3
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The errors of the approximations show up at high fluid den-ducible, B should be &unction of a renormalized function
sities and low temperaturéS First, there is the question of »* for an optimized potential-R. Thus the question can
thermodynamic consistency. The pcf's from these approxinow be framed mathematically: by searching through the
mate IEs, when substituted into the thermodynamic formulagntire function space, can we firithe existenceof) a func-
for energyU, pressureP and isothermal compressibilitg;,  tion B(y*) matching the given functionaB= [ y(r)] by
do not yield consistent valugfor example, not obeying the continually adjusting(tuning the argument functiony”
Maxwell relationg. Thus thermodynamic inconsistencies arethrough certain combined optimization renormalization?
telltale indications of the inaccuracies in the approximateThis task is beyond our reach at the present time. Instead, we
closures. Second, these approximate correlation functionspt for b, by checking the thermodynamic and other consis-
fail to match exact machine results from MC and MD. tency conditions for the closures.

We have two issues confronting us: one fundamental, There are several aspects of thermodynamic consistency.
and the other practicala) The fundamental question is how There is partial consistendg.g., the pressure consistefy
to obtain the bridge functions accurately frofinst prin-  And there are the Helmholtz free enefgygenerating func-
ciples (b) The practical question is how tonstructbridge  tionals: approximate one.g., the HNC generating func-
functions that give accurate and consistent thermodynamiéonaf’) as well as the exact on@ formal expression in
properties. These two questions are, of course, interrelateterms of coupling parameter integratfon These generating
Exact correlation functions necessarily give consistent therfunctionals have the property that their variational deriva-
modynamic propertieéthe necessityargument. But consis- tives give the closure relation, the OZ relation and definitions
tent thermodynamic properties do not imply “exactness” of Of these correlation functions. The prominent examples are
the correlation functionéhe sufficiencyargument ltemais  the HNC functional and the RISM function@.The exact
a far more challenging enterprise, solution of which is tantaHelmholtz functional suffers again from intractability.
mount to a solution of thé-body problem. In fact, we al- Evaluation of such functionals is equivalent to thermody-
ready know the cluster diagrams of the bridge funcfion. namic integration. But the integrand is not “exact.” New
addition, its functional expansion in infinite series is alsoe€fficient methods in the integration of functionals should be
known? Both are difficult if not impossible to evaluate nu- developed first. Approximate functionals give again incon-
merically. ltemb is less theoretically based, but more doablesistent thermodynamic properti€s.g., P"#P® in HNC).
and useful. In this article, we shall pursue avehue The approach we choose here is to select some boundary

Fundamentally, given a pair potentia(r) in the Hamil- ~ conditions and propertiggopefully the right oneswe know
tonian, there corresponds uniquely a g¢f) for the state of ~ that all “exact” correlation functions must satisfy, then in-
the fluid (preferably away from the phase boundari@en corporate them in the closure expressions at the outset, so the
all other correlation functions are also uniquely determinedesulting correlations and properties will be consistent with
through physics. We express this relation between any twéhese criteria. These criteria should include the class of zero-
correlation functions by #unctional e.g.,B=¢[Iny(r)], or ~ Separation theorem&ST) on the cavity functiory(0), the
B=y[ y(r)]. Namely, giveny(r) or some related function icf 10), and the bridge functioi®(0) for reasons to be ex-
r), one can in principle go through fanctional s to get ~ plained. We characterize our main thrust beihg explora-
B(r). Functionals differ from functions by the former being tion and use of these zero-separation theorems in a new
dependent on all the values of the argument functiop(r) class of closure relationgHowever, there is na priori guar-
instead of on a single value of Only under special circum- antee that such requirements will produce any better correla-
stances will a functional reduce tdunction B=B(y*). We  tion functions or properties. Testing is paramount.
call this the “reducibility” condition. All approximate clo- Thermodynamic consistency to us means conforming
sures in literature were attempts to achieve this reducibilityvith classical thermodynamic relations. For example, the
[e.g., PY, HNC, Martynov—Sarkism(MS),” Ballone— Helmholtz free energyA obeys the Gibbs—Helmholtz rela-
Pastore—Galli-Gazill§ (BPGG), and modified Verlet tion
(VM)*®]. Some succeeded for particular cases, most failed to
achieve consistency. First, we inquire whether, for general d(BA)=UdB—(BP)dV, B=1KT. (1.4
pair potentials, such reduction existee mathematicatxist-
encequestion. Second, if the functional is reduciblender
conditions to be found is the reduction uniqué&he unique-
nessquestion. Namely, are there several reductions that will
equally satisfy the representation? When both conditiers &
istenceand uniquenessare met, we say this reduction has N
achievedunique reducibility or unique functionality From
pioneering studies by Zerah—Hans&yompe—Martynot’  The energyU’ and virial pressurd” are obtained from the
Llano-Restrepo—Chapm¥hand Duh—Haymet? it has be- usual formulas (prime indicates the configurational proper-
come clear that the reducibility for the closures is closelyties):
hinged upon(i) the renormalization of the base function
v*=y+Ay, and (ii) optimization of the pair potential:
u(r)=uSR(r)+uR(r). If the functional is ever re-

In order for A to be an exact differential, the cross partial
derivatives should be equal:

__9BP
=T (1.5

U/
ﬁTZngf Bu(r)g(r), (1.6)

J. Chem. Phys., Vol. 104, No. 20, 22 May 1996
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BP” p du(r) potentials, the cavity function is the “excess chemical poten-
e 1= 6T f drr —5—9(r). (1.7 tial,” i.e., the energy required to insert a dimeric molecule of
bond lengthL into a bath of monomers ovéin excess of

This is called thedU—-dP consistency by Martynov and the energies of inserting the two constituent monomers
Vompe!"?*In addition, the virial pressurB” after differen-  separatel? (see Fig. 1

tiation be equal to the isothermal compressibilty , ,
—Iny(L)=Buy(L)—2Bu;, (2.2

dBPY dBP°
o L K=, :1—/0[ dr C(r). (1.8)  where the argument in Bu,(L) indicates a dimer with
T bond lengthL. As L—0, the dimer merges into a twice

This is called thed Pv—dPc consistencsf [consistency be- Strong monomer(a dimer with the same “size”s of a
tween the virial theorem, Eq1.7) and the compressibility monomer, but with doubled potential energy).2ZThus
integral, Eq.(1.8)]. The HNC and PY theories, being ap- _ i /
proximations, do not satisfy this condition. Lomba andiee I y(0)=Bra(0)=28p; 2.2
used the Gibbs—Duhem relation as another example of theFor hard spheres, the potential energy is either 0. Dou-

modynamic consistency bling of « or 0 gives backe or 0, respectively;3u,(0)
= Bu1. Thus we recover Iyyg(0) = Bu;, the well-known

w» =p. (1.9  zero-separation theorem for hard sphéfeSquation(2.2) is
Ipd more general and is applicable to soft-sphere potentials.

In addition to these thermodynamic consistencies, there are, The_ values oy 1 can be obtamg(i) from th? solution .

the coincidence value& —0) of the correlation functions: of the integral equation and the direct chemical potential
) . formula(3.1), (ii) from an accurate equation of std€09),

y(0), v(0), andB(0). These must satisfy the zero-separation ... : : .

theorems(to be presented in Sec)IThe ZSTs are not part or (i) from computer simulation. As will be seen, we shall

of the macroscopic thermodynamics and are independerLﬁSe the EOSgroute (ii)]. Some evaluation by Monte Carlo

o . Hwethod will also be carried out. The value of the twice-
conditions from the latter. Lately, there have been increase rong monome4(0) can also be obtained via one of the
interests in the zero-separation theorems for Correlatioﬁwreegroutes o lﬁﬁt‘] 2e d above. Again, we choose rdite
functions*?* A notable case is the cavity function(0) for - Agam,

hard spheres, Ifi(0)=gu’ the configurational chemical po- (EOS in this study. For other options, we shall discuss in

. . . Sec. V.
I/ZTS:Q ;T;(S;OZ%EBS ((I)D)Ytﬁzg Sc:\:)?ﬁilye poor zero-separation For the icf, it is known that it obeys the OZ relation at all

Martynov and Vomp¥ have used thelPv—dPc and r, includingr =0."" Thus

dU-dP thermodynamic consistencies in constructing their JBP BU’
closures. Lomba and Leised thedPv—dPc and Gibbs— n0)=— 127y +PJ dr g(n[C(r)+pu(r)].
Duhem relation as conditions. The arguments weredhbt (2.3

dP condition is not “effective” in deciding values of corre-
lation functions in the core regiom<o (o being the
Lennard-Jones potential size paramgteecause both) and
P derive most their contributions from function values at
r>0.80. The Gibbs—Duhem relation is based on the chemi- IMSAEPJ dr g(r)[C(r)+pu(r)]. (2.4
cal potential. The chemical potential is sensitive y@), . ] )
B(r), and 1(r) inside the corer<o. Thus the Gibbs— This quar_mty turns out to be a relatively small r_1umber for
Duhem Eq.(1.9) should provide “better” determination of dense f|UId'S. Its |mpqrtance shows up only for dilute states.
andB at smallr’s. In the present work, the ZSTs serve the e bridge function at =0 can be obtain fron(1.2),
same purpose and more directly. We directly requirg,  B(Q=Iny(0)—+(0):
andB atr=0 to conform to the ZSTs. JP BU’

In Sec. I, we present the closure, ZSEP, that satisfies the B(O)=2,8,M1—B,u§—[,8 a——l—ZT(4)+ I msal-
three zero separation theorems. In Sec. lll, we present the P
direct chemical potential formula that yield8u' without (1) (2) (3) (4) (5)
coupling parameter integration. In Sec. IV, we apply the (2.5
ZSEP closure to the Lennard-Jor(es) potential. Results of

: . . It is seen that all termpexceptlysa, term(5)] on the RHS
caICL_JIanon f(_)r_ the correlation func_t|on§ as W_e” as thermod_y-are thermodynamic in nature. The zero-separation theorems
namic quantities are compared with simulation data. Sectio

Vd usi d anticioates fut h Yerve as the nexus connecting the thermodynamic properties
raws some conclusions and anticipates Tuture research€sy yne pulk fluid with the correlation functions at coinci-

dence! As mentioned before, we have many choices for de-

termining these thermodynamic properties in ter¢hp to

(4): from the IE itself, or from an equation of state for the
The coincidence values of the correlation functigi@), bulk fluid, or from simulation. For the sake of testing the

Y0), andB(0) have been known for sometimi@For general  zero-separation methodology, we opt in this work using “ex-

The integral in(2.3) would be zero in the soft MSA
approximation'® Thus we define

Il. THE ZERO-SEPARATION THEOREM-BASED
CLOSURES

J. Chem. Phys., Vol. 104, No. 20, 22 May 1996
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ternally” supplied thermodynamic properties, namely, from (e is the energy parameter, ands the size parameter for the
the Nicolas equati()?ﬁ of state for Lennard-JongkJ) fluids. LJ potentia). In literature, more complicated choices have
Other accurate EOSs are also availafle. been proposed and triedDuh—Haymet®3? Kang and
The closure that is flexible enough for this task and hasRe€”). The recipes tried were quite varied and with varying
been tested earlier, for example for hard spheres, is the ZSERegrees of sophistication. Equati¢n1]) is not optimized.

closuré We use(2.11) due to its simplicity and ease of comparison
o . with previous works wher¢2.11) was also usef 8
B(y*)=— &y (1_ pay ' 2.6 Equations(2.5), (2.7), and(2.8) provide the three condi-
2 (1+ay*) tions needed to uniquely determine the three parameters

¢, and . We shall allowa, ¢, and { to be functions of
htgmperature and density of the bulk fluid. Note that €06)
reduces to the VM closure if we sét=1, and¢=1. Thus
(2.6) can be considered as a more versatile version of the
VM closure. ZSEP was successful for hard sphérise-
hooves us to investigate whether ZSEP is also effective for
soft spheres.

where v* is a “renormalized” icf (see below; a, ¢, and{
are parameters that are to be determined by satisfying t
zero-separation theorem E@.5). Since there are three pa-
rameters(a, ¢, and ) we need three conditions for their
determination. The second condition chosen is ditv—
dPc consistency

aP”
ap T

Kr=8 2.7

. s . Ill. THE DIRECT CHEMICAL POTENTIAL FORMULA

The third condition is to require that the energy from ZSEP
be the same ar very close tp the MD energy values of For the chemical potential, a direct formula is availdble
Johnsof' (at the same temperature and density of the bulkhat gives the3u’ from the correlation functions at the given
fluid) state without coupling parametéx) or density integration.

" ZSEP_ (J/MD 2.9 Th_e proviso_ is thz_;\t the bri(_ng must be expressed as a

unique function(unique functionality of some known corre-

We note tha{2.8) is not a consistencyondition. It does not lation function (renormalized function, if necessaryThe
require any differential equality. It is to enforce thbsolute ~ formula we present this time is slightly different from Ref.
values of energysame as the MD dataThe choice of the 35:
criteria appears, at the outset, arbitrary. For example, in
Lomba and Leé the criteria used were the pressure consis- Bu' =pf dr[In y(r)—h(r)
tency and the Gibbs—Duhem relation. Vompe and
Martynov*’ used thed Pv—dPc anddU—dP criteria. As a +(1/2)h(r)y(r)+h(r)B(r)]—S*, (3.9
consequence, the quality of results will depend very much on . N
whether a “judicious” choice was made. The testing of awhere thestar series S is given by
“pudding,” so to speak, is in the “eating.” As we intend to 1
incorporate the zero-separation theorems in the closures, test- S*:Pf dr h(f)fo dx B(r;\N). (3.2
ing will follow to see if this is a good choice.

Another important ingredient for the success of the clo-If B is a unique function of a renormalized icf*,
sure is the use of aenormalizedindirect correlation func- B=B(y*), and
tion. Renormalization ofy is almost indispensible in achiev- *0y Y
ing the unique functionality requirement, as shown in Y (M= 50(n) FAy(n), @3
previous closures proposed by Zerah—Harl§dbyh—Hay-  then theS* integral in(3.2) can be evaluated as
met!®32  Llano-Restrepo and  Chapmé&h, and
Vompe—MartynoVt’ As a trial case, we renormalize using St = f d @ JF’/*”) E

, p r dx B(x)]|.

the attractive part of the pair potential. The Lennard-Jones (1) [ Jx=y*0)
potential is split according to Weeks—Chandler—Andetsen In the present case,

(3.9

as
1 5 ¥*(0)=1yo(r)=—Buy(r), and y*(1)=y(r)—Bua(r).
g g 3.
uy(r)=4e (7) —<7> =Uo(r) +ugy(r), (2.9 . _ . (
Thus Eq.(3.4) can be integrated accordingly wiBhgiven by
where (2.6). The analytical expression is given below in indefinite
form:
us(n=—e, r<%2¢ ) Ha® (4 9
=u4(r), r=%90. (2.10 fodx B(X):—W‘f‘m (1+ax)3—§(1+aX)2
Thus 11
+9(1+ax)—3In(1+ ax)— —=|, 3.6
P (1)=9(1)~ Bu(r) (211 (15 @) =3 In(L+ ax) 2} (39

J. Chem. Phys., Vol. 104, No. 20, 22 May 1996
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TABLE |. The parameters, ¢, and{ used in the ZSEP closur@.6) that
satisfy the zero-separation theorems: H@s5), (2.7), and(2.8).

T* P* a ¢ § @ @
15 0.4 0.90 1.0 0.5356 @
15 0.6 0.70 1.022 0.80 @

15 0.7 0.69 1.015 0.90

1.5 0.8 0.745 1.004 0.98

15 0.9 0.825 0.999 1.05 -

1.0 0.8 0.725 1.005 0.99 dimer
0.81 0.8 0.70 1.0065 1.0

0.72 0.85 0.65 1.005 1.0

FIG. 1. A dimer molecule at infinite dilution in a bath of monomens) (
The dimer is formed of two monomers fused to a bond length.dh the
limit L—0, we form a coincident dimer or strong“monomer” with same

This formula will be used in the evaluation of the chemlcalsize(a) but twice energeti2e).

potentials from correlation functions obtain from the ZSEP
closure.

the MC, EOS, and PY values. For most states, ZSEP is
IV. RESULTS OF CALCULATION within 0.1%—4% of the MC numbers. The EOS values are

We propose to study a typical soft-sphere potential: théisted for the purpose of verification, since conditi@h5)

Lennard-Jones potential. All units will be expressed in term nforces equality between ZSE.P and EQS' Let us explam
of the LJ parameters: thus temperatdie=kT/e, and den- ow these EOS thermodynam|c/ properties were obtained.
sity p* =pa>. Closure(2.6) has been solved together with the Terr_ns 1,3, and fEq. (2'5)] for Bus, 'Balp.ﬂp’ andu were

OZ equation(1.1). Numerical solution of the integral equa- straightforward calgulgnons from tbe Nicolas equation for
tion was carried out with 1024 grid points inand grid size LJ. Tgrm 2, the commd'ent dlm'db?,uz was calculated from
Ar=0.02. Convergence was achieved when the abs;olutéhe N'COIaS EOS for binary mixtures Of. L.‘J molecule_s, as-
convergence of the Cauchy sequencey diecame inferior to suming van der_ Waals_one_—flu(tx_kd\/_Vl) mixing rules, with

an 8,,<0.2E—04. More stringent criteria have been usedth_e 00|nC|d_en_t dimer at |nf|_n|te _dllutlo_n in the monomésse
with little difference in the answer. The densities studiedF'g' 1). This is an approximation, since we are not all that

were for conditions where simulation data are available: fof:er.tain abc_)ut th.e VdWl. theory for the ;trong monqr(rmr—
T*=15, ;*=0.4, 0.6, 0.7, 0.8, and 0.9; fol*=1.0, incident dimey in solution. To ascertain the validity, we

p* =0.8: for T*=0.81, p* =0.8; and forT* =0.72, o* =0.85. have carried out MC simulations &t =1.5 for several den-

The parameters, ¢, and¢ determined are listed in Table |. SitieS to testBpu,. The results are presented in Table I,
With these parameters, we can obtain the structure?9ether \IN'th the 'IVIC monomeB; values (see F'?' ?-I
B(r), y(r), C(r), andg(r) and the thermodynamic proper- canonical ensemb 'd\I(I_V_T) v¥as lljse,d' 108 LJ molecu esl
ties accurately. The validity extends over ranges of density’®'© arra_nged initially on a fcc lattice and subsequently

as high as-0.9 and temperatures as low as 0.72. In addition, melted in 10 million random walk moves(these were

the thermodynamic values are pressure consistent becausedifcarded Afterwards for every 1000 moves, 1000 fictitious

the requirement2.7): the virial pressure be equal to the com- _partic!e insertion® were attempted. These inclgdr—__\d sepa_rate
pressibility pressure. insertions of a LJ monomer as well as a coincident dimer

The zero separation values of the bridge function(With twice the monomek) into a bath of 108 monomers.

B,<e{0) at eight state conditions are given in Table II, p|usAf'[er equilibration, anot_her 10 million configurgtions were
generated. The cutoff distance of the LJ potential wass2.5
Long range corrections were applied to recover the full LJ
TABLE II. The coincidence values of the bridge functiBi0) of ZSEP for properties. For the infinitely dilute dimer, the long-range cor-
the Lennard-Jones potential. rection was twice the magnitude of the monomer correction.
B(0) Statistics(error bar$ were obtained from packet averages
after every X 10° insertions.

™ ” MC* EOS ZSEP PY We note that there was an earlier study on Henry’s law
15 0.4 -0.93 —1.04 -1.0 -21 constant¥’ for the infinite dilute dimer. Their values check
0.6 -3.88 —-3.87 —3.82 -5.7 with the present estimatiofirig. 2). The simulation data are
0.7 —7.03 —7.19 —7.04 —9.29 filled (darkenedl symbols(triangles forBu; and squares for
0.8 -12.46 -12.7 -12.36 -15.1 / c .
0.9 2045 _21.49 _50.36 2403 Bus). The EOS values are solid lines. The chemical poten-
1.0 08 _1518 1555  -1524  -17.0 tials Bu, can be back-calculated from the Llano-Restrepo
0.81 0.8 —-17.28 -16.74 —-17.07 —-17.97 MC data on Iny(0) according ta2.2) and are shown as open
0.72 085  —25.74 —24.52 -25.8 -23.27 rhombics(i.e., fromBus = 2B vue — N Y(O)iano_mo- We
! H .
3MC from Llano-Restrepo and ChapméRef. 18. see that the VdWZlG,uz overestimategless negative than
bEOS from Nicolaset al. (Ref. 29. MC data. There is agreement between the presen{®Ble
°ZSEP from Eq(2.6). lII') calculations and the derived Llano-Restrepo values. The
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TABLE lll. The chemical potentials of monomers and the coincident dimer in Lennard-Jones fluid.

Bri Bz
T2 o MC? EOS ZSEP Mc? EOS From Iny(0)°
15 0.4 —1.329+0.0053 —-1.34 -1.35 —5.362+0.012 —4.9 —5.24
0.6 -1.19 -1.28 —6.46 -6.77
0.7 —0.403+0.0024 —0.485 -08 —7.05+0.058 -6.58 -6.81
0.8 0.88 0.2 -5.91 -6.35
0.9 3.423-0.421 3.2 2.1 —4.62+0.911 -4.11 -4.16
1.0 0.8 -23 -31 -13.3 -14.3
0.81 0.8 —4.72 ~5.67 -18.8 -197
0.72 0.85 -5.38 -7.0 —222 233

3MC values from this work.
bZSEP calculated froni2.6) and the direcBu, formula(3.1).
°Bu, inferred from MC data of Llano-RestrepBu, = 281, — In y(0). B, from MC was used when available. Otherwigg; from EOS was substituted.

qualitative trends are also correct. There are some discrepafer B(y*) of ZSEP and compare with MC. We observe that
cies in monomeB; from EOS too as compared with MC: the ZSEP results follow the MC simulation data of Llano-
,B,uiEOS= 3.2 and,B,uiMC=3.4 atp*=0.9. The uncertainties Restrepoet al. extremely well, from zero separatiofthe
in the MC data is+0.4. The differences are not that substan-fight extremities of the curveso contact. Thd vsr plots at
tial. Due to cancellation of error§B(0)=28u]— Bu} temperaturesT*=1.5, 1.0, 0.81, and 0.72 are shown in Figs.
— ¥(0)], theBgod0) values are surprisingly close to the MC 4(@) and 4b). The ZSEP closure equatiof2.6) provides
values of Llano-Restrepl¥.Term 5 in Eq.(2.5) was obtained ~€qually accurate results.
directly from the IE solution. Any differences between ZSEP ~ We observe from Fig. 3 at*=0.4 to 0.9 that the five
and EOS after numerical iterative solution of the OZ are thecUrves are notoincident(there isbranchingin the B—»*
residual inconsistencyTable Il shows that the residuals are Curves. From experience, the degree of conformality in the
quite small(within 5%). We consider the consistency check Puh—Haymet plots is an indication of the success of the
to be satisfactorybetween EOS and ZSEPTheB(0) values ~ fenormalization ofy. (Collapsing of curves means better
from the PY closure are shown as counter-examples. Thegenormalizedy*). This lack ofcollimation indicates that the
are for the most part too negative, from 3the best cageo ~ renormalization(2.1) has not quite achieved the unique
100% off the MC values, especially at higher temperaturedunctionality requirement. More work on renormalization of
(T*=1.5). We conclude that the PY closure does not satisfy?" iS needed.
the zero-separation theorem equatiarb) for the states con- The coincidence values of(0) are shown in Table IV.
sidered. We observe the close agreement of #6) from MC3 and
For a same separatian Duh and Haymé® proposed from the ZSEP. Although the EOS valufg. (2.3)] were
plotting the the valueB(r) vs y*(r) as check of the closure ot directly used in enforcing ZSEP, the agreement between

relations. We construct the Duh—Haymet plot in Fig. 3EOS and ZSEP is also reasonaljfeor ZSEP, Eq(2.5) was
required. The PY 4(0) are too low, especially at lower tem-

P 0 10 20 30

Yx=7-PBua

FIG. 2. The chemical potentials of monomer and coincident diner0) at
T*=1.5 for the Lennard-Jones potential. Solid lines: Equation of state re- R
sults [Nicolas (Ref. 29]. Dotted line: Simulation results from Ghonsagi FIG. 3. The ZSEP bridge functioB(y*) for Lennard-Jones molecules at

et al. (Ref. 37. A: Present MC simulation for monome: Present MC T*=1.5. Symbols are from the MC data of Llano-Restrepal. (Ref. 18.
simulation for coincident dimergat infinite dilution. ¢: Derived values  O: p*=0.9; O0: p*=0.8; A: p*=0.7; ¢: p*=0.6; V: p*=0.4. Lines are
from the MC simulation of Iry(0) of Llano-Restrepeet al. (Ref. 18. from ZSEP prediction. Close agreement between ZSEP and MC is achieved.
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paEEag,
at S0 ngoppaaREBRE

w8 SBapoeB”

carEDea
; 'QO A oen .Zﬁ—avﬂ":"ﬁé BAA A A p g A Bt A

' < oy 0.4
1 |--aa”’ 9' O ey 30 O OO0 D 0-0:0.6-0:0-0 60000

08 10 12 14 16 18 20 22 24 26 28 30

! ! . L : . . . r
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r FIG. 5. The pair correlation function as predicted by the ZSEP closure, Eq.
(2.6). Symbols are MD data of Johns@Ref. 3]) at T*=1.5. Lines are from
ZSEP. The curves have been shifted up wittezalageof unity for display
(b) purpose. The first peaks and oscillations are in good accord with MC data.

peratures. Consequently, the PY cavity functions are too low.
The pair correlation functiong(r) are compared in
Figs. 5 and 6 at two different stat¢$*=1.5 or p*~0.8,
0.85. The MD data(symbolg are from Johnsoft For all
the states studied, they are in close agreement, from low
‘ densities up top*=0.9 and for temperatures down to
20 . T*=0.72. Low density results are also satisfactory. The first
peak heights are well reproduced. The oscillations are in
25| phase. The usual defects of IEs amered and no longer
170729 =085 ‘ ‘ ‘ | | present a problem.
e 0z 04 06 08 10 12 14 The cavity functions are compared in Figs. 7 and 8: one
r set atT*=1.5, and the other gt* ~0.8. Again good agree-
ment with MC data is in evidence. The zero-separation val-

FIG. 4. The bridge function as predicted by the ZSEP closure,(E§). ues are well reproduced. Next, we compare the thermody-
Symbols are MC data of Ref. 18. Lines are from ZSEP For temperature . .
namic propertles.

T*=1.5. (b) For densitiesp*=0.8, and 0.85. Close agreement is observed . L .
for high as well as low densities. Thermodynamic propertiegigure 9 shows the internal

energyBU’/N, the virial pressureZ= 8P"/p, and the con-
figurational chemical potentigBu;. The MD data(sym-
bols) are from Johnsati and the present work. The lines are

45| ex o T=0.81,p=0.8

TABLE IV. The coincidence values of the indirect correlation functigf) 5 iy
for Lennard-Jones fluid.
4
Y0)
3
T2 o? Mc2  ZSEP PY Eq.(2.3° I wsa o
; s E S X s
15 0.4 3.52 3.57 3.57 3.26 0.285 2 M,’ Bog o T: 0.81 :Osﬂeaaaaamaaeﬂﬂm‘
/ e .81, p=0.

1.5 0.6 8.28 8.33 7.84 7.95 0.111 :

15 0.7 13.02 13.18 11.80 12.80 -0.319 1 resnd

15 0.8 20.59 20.61 17.9 20.39 -0.713 T=0.72,p=0.85

15 0.9 31.81 31.55 27.46 3201 -1.45 0 ‘ ‘

1.0 0.8 24.86 24.85 19.94 24.3 —0.758 08 1.0 12 14 16 18 20 22 24 26 28 30

0.81 0.8 27.59 27.54 20.93 26.08 —0.995

0.72 0.85 38.24 38.5 26.63 36.01 -—1.88 r
MC from Llano-Restrepo and ChapméRef. 18. FIG. 6. The pair correlation function as predicted by the ZSEP closure, Eq.
bTerms in(2.3) are from the Nicolas EOSRef. 29. I msa from the solution (2.6). Symbols are MD data of JohnsdRef. 31. Lines are from ZSEP.
of the integral equation. Temperatures vary from 0.72 to 1.0. Densiti€s8 and 0.85. The curves
‘ZSEP from Eq(2.6). have been shifted up for display.
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13 i T=1.5

iny

FIG. 7. The cavity function is predicted by the ZSEP closure, @) FIG. 9. Thermodynamic properties of the Lennard-Jones fluii*at1.5.

T*=1.5. Symbols are MC data of Ref. 18. Lines are from ZSEP. From topZ=P’/pkT, the virial compressibility, 3u'=excess chemical potential.

down: densityp*=0.9, 0.8, 0.7, 0.6, and 0.4, respectively. BU’/N=excess internal energy. Lines: ZSEP results. Open symbols
(O,A,0): equation of state resultRef. 29. Filled symbols(®,A,H): MC
simulation results.

from Nicolas EOS and the present ZSEP calculations. The

energy and the pressure are well predicted by ZSEP. The Figure 10 displays the isothermal compressibility ob-

chemical potential from ZSEP is valid up & ~0.6. For tained from the direct correlation function, E{.8). Com-

p*>0.7, the ZSEP values are lower than the EOS and M@ared to EOS, ZSEP gives very fiduciary values. Note that

values: i.e., ZSEREOS<MC. We have mentioned that the due to the pressure consistency, the compressibility pressure

renormalization2.11) was deemed inadequate judging from P¢ is equal to the virial pressurie’.

the Duh—Haymet plots. This affected the chemical potential

calculation at high densities, where even small inaccuracie¥. CONCLUSIONS

in unique functionality became sensitive and magnified.  \ye have shown thati) the ZSEP closuré2.6), though

Equation(2.11) does not affect much the results for the cor- .niaining a dose of empiricism, is sufficiently general in

relation functionsg(r), B(r), and Iny(r). This is attributed  .oqucing accurate bridge functior), cavity functions

to the robust_ness of the functional forf.6) and use of the y(r), and pair correlation functiong(r) for the Lennard-

zero-separation theore(@.5). ~ Jones fluid over a wide spectrum of densities and tempera-

Since the internal energy was used as a criterion in deg,res: 0.72:T*<1.5 andp*<0.9. The three conditions: the

termining the ZSEP closure, we compare th&)'/N in ;015 separation theorem dB(r), the pressure consistency

Table V. We have also included the virial pressures for comy P'=dP®, and the energy requirement are sufficient in de-

parison. The numbers from all calculatiodD, EOS, and  {ermining the closure parametats ¢, andZ. The thermody-

ZSEP are in close agreemefmostly within 19. This jus-  hamijc quantities: pressure, isothermal compressibility, inter-

tifies the condition2.8). The pressure, being a more sensi-n, energy, and chemical potential are all accurately

tive quantity than the energy, is surprisingly well predicted. ;oproduced(ii) The renormalization of the indirect correla-
tion v* is important in obtaining the chemical potential
through the direct formula, and the unique function relation

&
2 [ ! TABLE V. The internal energy and virial pressure from ZSEP for Lennard-
| O T=072p=085 .
10 ' A T-10p-08 Jones fluids.
O T=081,p=08
8| BU’IN BP,Ip
; 6 T2 PR MC? EOQ ZSEF MC* EOY ZSEPF
4 15 04 -18 —1.781 —1.784 0.465 0.447 0.447
ol 1.5 0.6 -2639 -2.635 -2629 0.856 0.791 0.868
1.5 07 —3.052 -3.0458 -—3.0456 1516 1.479 1516
of 1.5 0.8 -3466 -3.4 —-3.414 2,737 2715 2.723
15 09 —3.674 -3657 —3.673 4717 4721 4719
2 0 o5 70 e 20 25 a0 1.0 08 -5533 -5523 -552 1288 1.309 1.316
0.81 08 —7.046 —7.027 —7.026 0.106 0.204 0.179
r 0.72 085 -85 —8.43  —8.498 0.386 0.490 0.36

FIG. 8. The cavity function as predicted by the ZSEP closure, (E®). aMD from Johnson(Ref. 31).
T*=0.72, 0.81, and 1.0. Symbols are MC data of Ref. 18. Lines are fronPEOS from the Nicolas EOfRef. 29.
ZSEP. Densities vary from 0.8 to 0.85. ¢ZSEP from Eq.(2.6).
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B dP/dp -1

FIG. 10. Isothermal compressibilitygdP/dp—1 for Lennard-Jones fluid at
T*=1.5. Line: equation of state of NicoldRef. 29. ¢ : ZSEP results.

B—+*. (i) and(ii) are related, but can also be decoupled to a

certain extent. If the closure form is robust, ag2r6), it can
give good correlation functions despite some weaknesses

We have chosen the Lennard-Jones potential as the sub-
ject of study due to the availability of simulation data. The
zero-separation approach, once proven valid, can be general-
ized to treat other soft-sphere potentials.
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