51 research outputs found

    Optimal placement of fuses and switches in active distribution networks using value-based MINLP

    Get PDF
    Contingency conditions in distribution networks create financial losses for different parts of the system including electricity customers, electricity retailers, distributed generation (DG) units, etc. Therefore, protective device allocation methods have been introduced in recent years to enhance the reliability of the power system. In this study, a new formulation is proposed to find the optimal places of sectionalizing switches and fuses while taking the financial loss of both electricity customers and DG units into account. The current method has the flexibility to consider DG effect on any location of the network and its islanded operation in case of contingencies. Moreover, the uncertainty in load and renewable generation is taken into account using stochastic programming. The results demonstrate that the DG units and their financial loss can change the results of switch and fuse placement dramatically when there are no tie switches in the network. Furthermore, it is found that this method can decrease the total reliability costs by 3.86% when high penetration of DG units is introduced into a modified Roy Billinton test system (RBTS). The problem is modeled as a mixed-integer nonlinear (MINLP) formulation and is handled using BARON solver in GAMS environment

    Assessing the impact of spatial resolution of UAS-based remote sensing and spectral resolution of proximal sensing on crop nitrogen retrieval accuracy

    Get PDF
    Foliar nitrogen (N) plays a central role in photosynthetic machinery of plants, regulating their growth rates. However, field-based methods for monitoring plant N concentration are costly and limited in their ability to cover large spatial extents. In this study, we had two objectives: (1) assess the capability of unoccupied aerial system (UAS) and non-imaging spectroscopic data in estimating sorghum and corn N concentration and (2) determine the impact of spatial and spectral resolution of reflectance data on estimating sorghum and corn N concentration. We used a UAS and an ASD spectroradiometer to collect canopy- and leaf-level spectral data from sorghum and corn at experimental plots located in Stillwater, Oklahoma, U.S. We also collected foliage samples in the field and measured foliar N concentration in the lab for model validation. To assess the impact of spectral scale on estimating N concentration, we resampled our leaf-level ASD data to generate datasets with coarser spectral resolutions. To determine the impact of spatial scale on estimating N concentration, we resampled our UAS data to simulate five datasets with varying spatial resolutions ranging from 5 cm to 1 m. Finally, we used a suite of vegetation indices (VIs) and machine learning algorithms (MLAs) to estimate N concentration. Results from leaf-level ASD spectral data showed that the resampled data matching the spectral resolution of our UAS-based data at five spectral bands ranging from 360 to 900 nm provided sufficient spectral information to estimate plot-level sorghum and corn N concentration. Regarding spatial resolution, canopy-level UAS data resampled at multiple pixel sizes, ranging from 1 cm to 1 m were consistently capable of estimating N concentration. Overall, our findings indicate the possibility of developing monitoring instruments with optimal spectral and spatial resolution for estimating N concentration in crops

    Applying acoustic emission technique for detecting various damages occurred in PCL nanomodified composite laminates

    Get PDF
    Interleaving composite laminates by nanofibers is a well-known method of increasing interlaminar fracture toughness. Among many possibilities, polycaprolactone (PCL) nanofibers is one of the best choices for toughening composite laminates. The influence of PCL on delamination mode of failure is considered before. However, the effect of PCL on other damage modes, such as fiber breakage and matrix cracking, is yet to be studied. In this study, the acoustic emission (AE) technique is applied to determine the effect of toughening composite laminates by PCL nanofibers on matrix cracking, fiber/matrix debonding, and fiber breakage failure mechanisms. For this purpose, mode I and mode II fracture tests are conducted on modified and non-modified glass/epoxy laminates. Three different methods, i.e., peak frequency, wavelet transform, and sentry function, are utilized for analyzing the recorded AE data from mode I test. The results show that applying PCL nanofibers not only increases the mode I critical strain energy release rate by about 38%, but also decreases different failure mechanisms by between 75 and 94%

    Fair-Optimal Bilevel Transactive Energy Management for Community of Microgrids

    Get PDF
    The inappropriate mechanism designs for demand response (DR) in the community of microgirds (CoMGs) may cause massive problems, such as increase of consumers’ costs, rebound peaks, and thereby lack of optimality in the network. In this article, a bilevel energy management system (EMS) is proposed to tackle the challenges associated with DR programs for CoMGs. The current structure successfully models users’ behavior and dissatisfaction in the first level of optimization to develop best DR program for each of them. Moreover, in the second level, power system constraints are taken into account to prevent voltage and current deviation from their statutory limits. Each user is assumed to be part of a microgrid (MG) whose operation is controlled and optimized through its local EMS in the first level. On the other hand, the overall operation of all MGs is delegated to the whole system operator, which acts as the central EMS (CEMS) in the second level. An iterative transactive energy management method is proposed by CEMS to fairly limit the excess power of the MGs one day ahead for voltage and current regulation. The obtained results indicate the effectiveness of the proposed structure in preventing discomfort issues, voltage deviation and creation of the rebound peaks in the system

    Evaluation of knowledge and health behavior of University of Medical Sciences students about the prevention of COVID-19

    Get PDF
    Background: Coronaviruses are a large family of viruses that have symptoms ranging from the common cold to severe respiratory syndromes. Objective: The purpose of this study is to provide appropriate strategies to raise knowledge and health behavior of students of the University of Medical Sciences to prevent COVID-19. Methods: This study was conducted as a cross-sectional and descriptive study, and the online questionnaire was used by random sampling. Our sample size was 360 subjects and the statistical population was the students of the University of Medical Sciences. We used the nonparametric test (Kruskal Wallis, Mann-Whitney U) and (Chi-Square t-test) for statistical analysis. Results: The test results were statistically significant for students' health behavior (p<0.01, df -99). The knowledge of women was higher than men (F=5.32, p<0.02). Conclusion: The results show that the Ministry of Health has acted well in promoting students' knowledge and health-promoting behaviors. Therefore, it is recommended that such research be conducted in the public statistical population

    Canopy spectral reflectance detects oak wilt at the landscape scale using phylogenetic discrimination

    Get PDF
    The oak wilt disease caused by the invasive fungal pathogen Bretziella fagacearum is one of the greatest threats to oak-dominated forests across the Eastern United States. Accurate detection and monitoring over large areas are necessary for management activities to effectively mitigate and prevent the spread of oak wilt. Canopy spectral reflectance contains both phylogenetic and physiological information across the visible near-infrared (VNIR) and short-wave infrared (SWIR) ranges that can be used to identify diseased red oaks. We develop partial least square discriminant analysis (PLS-DA) models using airborne hyperspectral reflectance to detect diseased canopies and assess the importance of VNIR, SWIR, phylogeny, and physiology for oak wilt detection. We achieve high accuracy through a three-step phylogenetic process in which we first distinguish oaks from other species (90% accuracy), then red oaks from white oaks (Quercus macrocarpa) (93% accuracy), and, lastly, infected from non-infected trees (80% accuracy). Including SWIR wavelengths increased model accuracy by ca. 20% relative to models based on VIS-NIR wavelengths alone; using a phylogenetic approach also increased model accuracy by ca. 20% over a single-step classification. SWIR wavelengths include spectral information important in differentiating red oaks from other species and in distinguishing diseased red oaks from healthy red oaks. We determined the most important wavelengths to identify oak species, red oaks, and diseased red oaks. We also demonstrated that several multispectral indices associated with physiological decline can detect differences between healthy and diseased trees. The wavelengths in these indices also tended to be among the most important wavelengths for disease detection within PLS-DA models, indicating a convergence of the methods. Indices were most significant for detecting oak wilt during late August, especially those associated with canopy photosynthetic activity and water status. Our study suggests that coupling phylogenetics, physiology, and canopy spectral reflectance provides an interdisciplinary and comprehensive approach that enables detection of forest diseases at large scales. These results have potential for direct application by forest managers for detection to initiate actions to mitigate the disease and prevent pathogen spread

    Using airborne and DESIS imaging spectroscopy to map plant diversity across the largest contiguous tract of tallgrass prairie on earth

    Get PDF
    Grassland ecosystems are under threat globally, primarily due to land-use and land-cover changes that have adversely affected their biodiversity. Given the negative ecological impacts of biodiversity loss in grasslands, there is an urgent need for developing an operational biodiversity monitoring system that functions in these ecosystems. In this paper, we assessed the capability of airborne and spaceborne imaging spectroscopy (also known as hyperspectral imaging) to capture plant α-diversity in a large naturally-assembled grassland while considering the impact of common management practices, specifically prescribed fire. We collected a robust insitu plant diversity data set, including species composition and percent cover from 2500 sampling points with different burn ages, from recently-burned to transitional and pre-prescribed fire at the Joseph H. Williams Tallgrass Prairie Preserve in Oklahoma, USA. We expressed in-situ plant α-diversity using the first three Hill numbers, including species richness (number of observed species in a plant community), exponential Shannon entropy index (hereafter Shannon diversity; effective number of common species, where species are weighed proportional to their percent cover), and inverse Simpson concentration index (hereafter Simpson diversity; effective number of dominant species, where more weight is given to dominant species) at four different plot sizes, including 60 m × 60 m, 120 m × 120 m, 180 m × 180 m, and 240 m × 240 m. We collected full-range airborne hyperspectral data with fine spatial resolution (1 m) and visible and near-infrared spaceborne hyperspectral data from DESIS sensor with coarse spatial resolution (30 m), and used the spectral diversity hypothesis— i.e., that the variability in spectral data is largely driven by plant diversity—to estimate α-diversity remotely. In recently-burned plots and those at the transitional stage, both airborne and spaceborne data were capable of capturing Simpson diversity—a metric that calculates the effective number of dominant species by emphasizing abundant species and discounting rare species—but not species richness or Shannon diversity. Further, neither airborne nor spaceborne hyperspectral data sets were capable of capturing plant α-diversity of 60 m × 60 m or 120 m × 120 m plots. Based on these results, three main findings emerged: (1) management practices influence grassland biodiversity patterns that can be remotely detected, (2) both fine- and coarse-resolution remotely-sensed data can detect the effective number of dominant species (e.g., Simpson diversity), and (3) attention should be given to site-specific plant diversity field data collection to appropriately interpret remote sensing results. Findings of this study indicate the feasibility of estimating Simpson diversity in naturally-assembled grasslands using forthcoming spaceborne imagers such as National Aeronautics and Space Administration’s Surface Biology and Geology mission

    Coupling spectral and resource-use complementarity in experimental grassland and forest communites

    Get PDF
    Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n-dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity

    Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments

    Get PDF
    Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy datawere used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly

    The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield

    Get PDF
    Foreknowledge of the spatiotemporal drivers of crop yield would provide a valuable source of information to optimize on-farm inputs and maximize profitability. In recent years, an abundance of spatial data providing information on soils, topography, and vegetation condition have become available from both proximal and remote sensing platforms. Given the wide range of data costs (between USD $0−50/ha), it is important to understand where often limited financial resources should be directed to optimize field production. Two key questions arise. First, will these data actually aid in better fine-resolution yield prediction to help optimize crop management and farm economics? Second, what level of priority should stakeholders commit to in order to obtain these data? Before fully addressing these questions a remaining challenge is the complex nature of spatiotemporal yield variation. Here, a methodological framework is presented to separate the spatial and temporal components of crop yield variation at the subfield level. The framework can also be used to quantify the benefits of different data types on the predicted crop yield as well to better understand the connection of that data to underlying mechanisms controlling yield. Here, fine-resolution (10 m) datasets were assembled for eight 64 ha field sites, spanning a range of climatic, topographic, and soil conditions across Nebraska. Using Empirical Orthogonal Function (EOF) analysis, we found the first axis of variation contained 60–85 % of the explained variance from any particular field, thus greatly reducing the dimensionality of the problem. Using Multiple Linear Regression (MLR) and Random Forest (RF) approaches, we quantified that location within the field had the largest relative importance for modeling crop yield patterns. Secondary factors included a combination of vegetation condition, soil water content, and topography. With respect to predicting spatiotemporal crop yield patterns, we found the RF approach (prediction RMSE of 0.2−0.4 Mg/ha for maize) was superior to MLR (0.3−0.8 Mg/ha). While not directly comparable to MLR and RF the EOF approach had relatively low error (0.5–1.7 Mg/ha) and is intriguing as it requires few calibration parameters (2–6 used here) and utilizes the climate-based aridity index, allowing for pragmatic long-term predictions of subfield crop yield
    • …
    corecore