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ABSTRACT
Foliar nitrogen (N) plays a central role in photosynthetic machinery 
of plants, regulating their growth rates. However, field-based meth
ods for monitoring plant N concentration are costly and limited in 
their ability to cover large spatial extents. In this study, we had two 
objectives: (1) assess the capability of unoccupied aerial system 
(UAS) and non-imaging spectroscopic data in estimating sorghum 
and corn N concentration and (2) determine the impact of spatial 
and spectral resolution of reflectance data on estimating sorghum 
and corn N concentration. We used a UAS and an ASD spectro
radiometer to collect canopy- and leaf-level spectral data from 
sorghum and corn at experimental plots located in Stillwater, 
Oklahoma, U.S. We also collected foliage samples in the field and 
measured foliar N concentration in the lab for model validation. To 
assess the impact of spectral scale on estimating N concentration, 
we resampled our leaf-level ASD data to generate datasets with 
coarser spectral resolutions. To determine the impact of spatial 
scale on estimating N concentration, we resampled our UAS data 
to simulate five datasets with varying spatial resolutions ranging 
from 5 cm to 1 m. Finally, we used a suite of vegetation indices (VIs) 
and machine learning algorithms (MLAs) to estimate 
N concentration. Results from leaf-level ASD spectral data showed 
that the resampled data matching the spectral resolution of our 
UAS-based data at five spectral bands ranging from 360 to 900 nm 
provided sufficient spectral information to estimate plot-level sor
ghum and corn N concentration. Regarding spatial resolution, 
canopy-level UAS data resampled at multiple pixel sizes, ranging 
from 1 cm to 1 m were consistently capable of estimating 
N concentration. Overall, our findings indicate the possibility of 
developing monitoring instruments with optimal spectral and spa
tial resolution for estimating N concentration in crops.
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1. Introduction

N (nitrogen) is a vital macronutrient that is mainly invested in plants’ photosynthesis- 
related proteins and chlorophyll pigments and promotes light use efficiency, carbon 
fixation, and photosynthetic activity of plants (Kokaly et al. 2009; Masclaux-Daubresse 
et al. 2010). Plants absorb N from soil in the form of ammonium and nitrate (Naftel 1931; 
Wright et al. 2004). Therefore, farmers apply N to their fields via fertilization to achieve 
optimal crop yield and quality (Beeckman, Motte, and Beeckman 2018). However, exces
sive fertilization leads to surplus N that leaches from soil into water resources and 
contributes to eutrophication of lakes and streams (Jaynes et al. 2001). Additionally, 
N over-fertilization stimulates nitrous oxide (N2O) emissions from agricultural fields 
which have strong impact on global warming (Skiba and Rees 2014). In contrast, absence 
of sufficient N fertilization adversely affects plant photosynthetic assimilation and crop 
yield (Chlingaryan, Sukkarieh, and Whelan 2018; Milford et al. 1985). The economic 
consequences of reduced crop yield and quality due to plant N deficiency are not 
negligible (Hank et al. 2019). Thus, continuous monitoring of crop N concentration as 
a key plant trait would help farmers understand individual crop N requirements and 
provide an opportunity for improving crop yield and quality through site- and time- 
specific management practices (Weiss, Jacob, and Duveiller 2020).

Traditional approaches for monitoring plant N concentration involve in-situ plant 
sampling and laboratory-based analysis (Lynch and Barbano 1999). These approaches 
are costly, time- and labour-intensive, and their implementation across large fields are not 
often feasible. Instead, optical remote sensing has shown promise in estimating plant 
biochemical and physiological characteristics, including foliar N concentration (Hansen 
and Schjoerring 2003; Inoue, Darvishzadeh, and Skidmore 2018; Ustin and Gamon 2010). 
Nevertheless, the application of remote sensing data for estimating plant biochemical 
traits can be challenging, especially for crops as individual plants are much smaller than 
the spatial resolution (i.e. pixel size) of typical satellite and airborne remote sensing 
platforms. Previous studies have used satellite- and airborne-based remote sensing data 
with spatial resolution of several metres for the retrieval of plant N concentration (Boegh 
et al. 2002; Chen et al. 2010; Coops et al. 2003; Nigon et al. 2015). However, at such spatial 
resolutions, establishing relationships between plant spectral properties and biochemical 
traits is not straightforward since each pixel may contain different plant species, dead 
biomass, and soil. Thus, the application of remote sensing data with coarse spatial 
resolution, such as airborne and satellite data is limited if we are to estimate character
istics (i.e. traits) of individual plants such as N. To address the confounding issue of spatial 
scale, unoccupied aerial systems (UASs; also called drones) with fine spatial resolution 
have been successfully used to monitor and estimate plant N concentration across 
a variety of ecosystems (Jiang et al. 2020; Li et al. 2019; Näsi et al. 2018).

UASs are often equipped with multispectral cameras, which measure the electromag
netic radiation in only a few broad spectral bands within the visible (~400–700 nm), red- 
edge (~700–740 nm), and near-infrared (NIR; ~740–1300 nm) regions of the electromag
netic spectrum. However, the application of coarse spectral resolution multispectral data 
for estimating plant biochemical traits is often deemed limited since capturing subtle 
spectral absorption features of specific plant biochemical traits may require fine- 
resolution spectral data. In contrast, using hyperspectral data with a large number of 
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spectral bands and narrow bandwidth within the full spectrum (i.e. from 400 to 2500 nm) 
or visible near-infrared (VNIR; ~400 to 1300 nm) has shown promise in estimating plant 
N concentration (Kalacska, Lalonde, and Moore 2015; Pullanagari et al. 2021; Wang et al. 
2013). Yet, due to technical constraints related to the design of imaging sensors, there is 
a trade-off between the spatial and spectral resolution of remote sensing data (Al-Wassai 
and Kalyankar 2013). Thus, satellite and airborne imaging spectrometers with fine spectral 
resolution are often characterized with coarser spatial resolution and therefore have 
limited capabilities for predicting vegetation biochemical traits. In this study, we tested 
the impact of spatial and spectral resolution of remotely sensed data for estimating 
sorghum and corn N concentration.

Remote sensing approaches, such as vegetation indices (VIs) and machine learning 
algorithms (MLAs) have shown success at estimating plant N concentration across differ
ent ecosystems. VIs combine information from several discrete spectral bands to develop 
relationships between plant spectral properties and its biochemical traits. For example, 
normalized difference vegetation index (NDVI) and red-edge-based indices including 
chlorophyll red-edge index (CIre) and red-edge inflection point index (REIP) are among 
the common indices that have been extensively used for estimating plant 
N concentration (Barzin et al. 2021; Hassani et al. 2023; He et al. 2016; Jay et al. 2017). 
Although simple VIs have yielded acceptable retrieval accuracies in estimating plant 
N concentration, using only a few spectral bands might weaken our ability to estimate 
N concentration, partly because spectral features that are used for estimating N are 
narrow or are distributed across different regions of the spectrum (Houborg, Fisher, and 
Skidmore 2015; Townsend et al. 2003). Furthermore, established relationships between 
VIs and plant N concentration can be site- and context-dependent and specific to the data 
used for model development, and therefore vary across crop types, growing stages, and 
environmental settings (Atzberger et al. 2011; Gholizadeh, Robeson, and Rahman 2015).

Such constraining factors in estimating plant N concentration can be mitigated using 
the entire available spectrum within the framework of MLAs or multivariate statistical 
approaches (Berger et al. 2020; Pullanagari et al. 2021). Several recent studies have 
provided evidence that different groups of MLAs or multivariate statistical approaches, 
including kernel-based algorithm (e.g. support vector regression (SVR); Cortes and Vapnik 
(1995)), ensemble learning (e.g. random forest; Rasmussen (2003)), and Bayesian algo
rithm (e.g. Gaussian process regression (GPR); Breiman (1996)), or partial least squares 
regression (PLSR) (Wold, Sjöström, and Eriksson 2001) often improve the N concentration 
estimation when compared with VIs (Liang et al. 2018; Miphokasap and Wannasiri 2018; 
Yao et al. 2015).

In this study, we assessed the capabilities of remotely sensed UAS data and 
proximal spectroradiometer data in estimating sorghum and corn N concentration 
(%) at different spatial and spectral resolutions. Specifically, we addressed two objec
tives: (1) assess the ability of UAS- and proximal spectroradiometer-derived metrics in 
estimating sorghum and corn N concentration over the growing season and (2) 
determine the impact of spatial and spectral resolutions on retrieval accuracy of 
sorghum and corn N concentration. We expected that finer spatial and spectral 
resolutions of spectral data can improve N concentration estimation for sorghum 
and corn. To achieve the specific objectives, we used UAS-mounted red-green-blue 
(RGB) and multispectral sensors and a proximal ASD FieldSpec 3 Standard 

INTERNATIONAL JOURNAL OF REMOTE SENSING 4443



spectroradiometer (Analytical Spectral Devices, ASD, Malvern, UK) to collect spectral 
data from sorghum and corn at our experimental plots located in Stillwater, Oklahoma, 
U.S. For ground-truthing, we measured foliage N concentration through field sampling. 
To test the impact of spectral scale (i.e. spectral range, bandwidth, and the number of 
spectral bands), spectral measurements collected using the field spectroradiometer 
were used to simulate datasets with spectral resolutions of MicaSense RedEdge-MX 
multispectral UAS sensor, Sentinel 2-A, and Landsat 8 OLI. To test the impact of spatial 
scale, remotely sensed UAS datasets with spatial resolution of 1 cm were used to 
simulate additional datasets at coarser spatial resolutions (i.e. 5 cm, 10 cm, 25 cm, 50  
cm, and 1 m). Finally, we used the original and simulated datasets to estimate sor
ghum and corn N concentration using VIs, MLAs, and PLSR. Findings from this work 
can potentially help identifying appropriate spatial and spectral resolutions for remote 
sensing of crop N concentration and developing rapid and efficient N monitoring 
systems.

2. Methods

2.1. Study site

We conducted our experiment at Efaw site (36° 08’N, W 97° 06’) in Stillwater, Oklahoma, 
U.S. The experiment period was the active sorghum and corn growing season from April 
to August 2020. The soil type of the experiment site was silty loam (fine-silty, mixed, super 
active, thermic fluventic Haplustolls). For each trial, five N treatment rates of 0, 50, 100, 
150, and 200 kg/ha with four replications were applied prior to planting. For each crop, 
there were 20 plots (i.e. 40 plots in total) and the size of each plot was 3 m × 6 m with 
a spacing of 3 m between plots (Figure 1).

2.2. Data collection

2.2.1. Collecting leaf samples for plant N concentration quantification
We collected 800 sunlit top-of-canopy leaf samples from 40 plots during the growing 
season. Specifically, we collected ten leaf samples per plot during each field campaign, 
including the tillering and booting stages. We stored the samples in bags and transferred 
them to The Soil, Water, and Forage Analytical Laboratory (SWFAL) at Oklahoma State 
University. We then quantified N concentration (%) from 0.15 g of each leaf sample using 
a combustion analyser (Leco CN628, LECO Corporation, St. Joseph, Michigan, U.S.).

2.2.2. Leaf-level spectral sampling
We collected leaf-level spectral measurements within the 350–2500 nm range using an 
ASD FieldSpec 3 Standard spectroradiometer with a spectral resolution of 2 nm in the 
350–1050 nm range and 10 nm in the 1050–2500 nm range. Leaf samples were placed on 
a black non-reflective surface and their spectral signatures were collected using the ASD 
spectroradiometer equipped with a contact leaf probe. We collected spectral measure
ments from the same plants that were used for N concentration sampling immediately 
after harvesting the leaf samples. For each leaf sample, three spectral measurements were 
taken from the leaf adaxial surface; each spectrum was the average of 30 readings. We re- 
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calibrated the spectroradiometer for dark current and referenced it to a white calibration 
panel every 10 minutes (Labsphere, North Sutton, New Hampshire, U.S.).

2.2.3. UAS data collection for spectral sampling
We conducted two flight missions on July 7 and August 20 in 2020 during clear-sky 
conditions and collected multispectral data from the study site. Both flights were con
ducted between 10:00 am (15:00 GMT) and 11:00 am local time (16:00 GMT). We used a DJI 
Matrice 600 Pro hexacopter equipped with a MicaSense RedEdge-MX sensor (MicaSense, 
Seattle, Washington, U.S.) to collect the multispectral data. The MicaSense RedEdge-MX 
had five 1.2 megapixel global-shutter single band cameras that imaged in the blue (centre 
wavelength 475 nm), green (centre wavelength 560 nm), red (centre wavelength 668 nm), 
red-edge (centre wavelength 717 nm), and NIR (centre wavelength 840 nm) spectral 
bands. The flights were planned using the Mission Planner software (3D Robotics, San 
Diego, CA, U.S.) and conducted at an altitude of approximately 30 m above ground level. 
The UAS images were acquired at 90% forward overlap and 60% side overlap. The final 
UAS multispectral images had a spatial resolution of 1 cm.

The UAS image preprocessing steps, including georeferencing, generation of ortho
mosaics, and radiometric correction of the multispectral data were performed in Agisoft 
Metashape software (Agisoft LLC., St. Petersburg, Russia). The process of generating 

(a)

(b)

Figure 1. (A) Corn and (b) sorghum field trials within the Efaw site (date of imagery: July 7, 2020). Red 
numbers below each plot represent pre-plant applied soil N treatment (kg/ha).
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orthomosaics included the initial camera alignment, geometric correction, building dense 
point clouds, and production of multispectral orthomosaics. To improve the positional 
accuracy and model alignment of the UAS data, we established nine ground control 
points (GCPs) across the experimental site and recorded their coordinates using a Trimble 
R4 RTK (Trimble Inc., Sunnyvale, California, U.S.) global positioning system (GPS) receiver. 
We used two of our nine GCPs as check points to assess to accuracy of georeferencing. 
Finally, UAS radiance data were converted to reflectance using calibration tarps. 
Specifically, using an ASD FieldSpec 3 Standard spectroradiometer, spectral reflectance 
of six calibration panels, including black, blue, green, grey, red, and white were taken 
during the UAS flights. We used these data to calculate surface reflectance by applying 
the empirical line correction method (Conel et al. 1987).

2.3. Data analysis

2.3.1. Data simulation
Spectral resampling: For spectral resampling, we used the spectral response curve of each 
sensor, including the MicaSense RedEdge-MX, Sentinel 2-A, and Landsat 8 OLI and 
calculated the weighted average of the spectra from ASD spectroradiometer with the 
corresponding sensitivity factors derived from each sensor’s spectral response curve as 
the weight. Following this procedure, we simulated the reflectance of each band for 
MicaSense RedEdge-MX, Sentinel 2-A, and Landsat 8 OLI sensors.

Spatial resampling: To assess the impact of spatial scale on estimating N concentration, 
we used the UAS-derived mosaics with spatial resolution of 1 cm to simulate reflectance 
datasets with coarser spatial resolutions at 5 cm, 10 cm, 25 cm, 50 cm, and 1 m through 
block averaging.

2.3.2. Estimating sorghum and corn N concentration using remote sensing metrics
We calculated three commonly used VIs, including NDVI, CIre, and REIP to estimate plant 
N concentration from our multispectral UAS, ASD, and both spectrally- and spatially- 
simulated datasets (Table 1). Additionally, we used linear regression, PLSR, and three 
MLAs, including SVR, GPR, and RF to estimate sorghum and corn N concentration from 
multispectral UAS, ASD, and both spectrally- and spatially-simulated datasets. In doing so, 
we assessed the performance of commonly used VIs compared to more complicated 
MLAs.

2.3.3. Assessing model performance
We assessed model performance of VIs using coefficient of determination (R2) between 
the measured and estimated N concentration for the entire dataset containing 80 samples 
where relationships with P < 0.05 were considered significant. To assess the performance 
of MLAs and PLSR models, 60% of data were randomly selected and used for developing 
(or training) MLAs and PLSR models and the remaining 40% of the data were used for 
model validation. Specifically, the reflectance data from the ASD spectroradiometer and 
the spectrally-simulated datasets were used as the independent variables and sorghum 
and corn in-situ N concentration was used as the dependent variable. We repeated this 
process 100 times and used the average coefficient of determination and root mean 
square error (RMSE) of 100 runs to evaluate model performance. MLAs and PLSR models 
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were implemented in MATLAB 2020b (MathWorks Inc., Natick, Massachusetts, U.S.A.). For 
brevity, we are reporting results from the validation sets in the manuscript; results 
obtained from the training sets are reported in the Supplementary material.

2.3.4. Determining the contribution of different spectral regions in estimating 
N concentration
We also used PLSR coefficients and variable importance in projection (VIP) scores 
obtained from leaf-level ASD spectroradiometer data to determine the contribution of 
different wavelengths at estimating plant N concentration. Wavelengths with coefficients 
deviating from zero and VIP scores greater than 0.8 were considered important at 
predicting N concentration (Wold, Sjöström, and Eriksson 2001).

3. Results

3.1. Nitrogen concentration estimation using spectrally-resampled datasets

3.1.1. Sorghum N concentration estimation using VIs derived from 
spectrally-simulated datasets
We assessed the capability of three VIs, including NDVI, CIre, and REIP derived from the 
ASD spectroradiometer data and three spectrally-simulated datasets, including the simu
lated MicaSense RedEdge-MX multispectral UAS data, Sentinel 2-A, and Landsat 8 OLI 
(NDVI only) in estimating sorghum and corn N concentration. The relationships between 
VIs and estimated N concentration were determined for each dataset containing 40 
samples and for each crop individually (Figure 2a–j; Fig. S1-4). For sorghum, our results 
showed that all VIs derived from spectrally-resampled leaf-level ASD data had positive 
and significant relationship with N concentration (Figure 2a–j). But red-edge-based 
indices, including REIP and CIre outperformed NDVI in estimating N concentration 
(Figure 2a–j). When using REIP, model performance (R2) ranged from 0.68 (RMSE =  
0.24%) for the spectrally-simulated UAS data to 0.72 (RMSE = 0.22%) for the spectrally- 
simulated Sentinel 2-A and ASD datasets (Figure 2a–c). When using CIre, the range of R2 

varied from 0.68 (RMSE = 0.24%) for the simulated Sentinel 2-A dataset to 0.72 (RMSE =  
0.22%) for the simulated UAS dataset (Figure 2d–f). Additionally, the R2 values for NDVI 
varied between 0.38 (RMSE = 0.33%) in the simulated Sentinel 2-A dataset and 0.43 (RMSE  
= 0.32%) in the simulated Landsat 8 OLI dataset (Figure 2g–j). The ASD data, in general, 
had a slightly better performance at estimating N concentration when compared to the 
spectrally-resampled datasets (Figure 2a and g).

3.1.2. Corn N concentration estimation using VIs derived from spectrally-simulated 
datasets
For corn, similar to sorghum, the results showed that VIs derived from the leaf-level ASD 
data and the spectrally-resampled datasets were capable of estimating corn 
N concentration (Figure 3a–j). Additionally, REIP and CIre had better performances than 
NDVI (Figure 3a–j). Specifically, REIP derived from the spectrally-simulated UAS data had 
the best performance (R2 = 0.81 and RMSE = 0.21%; Figure 3a–c). For CIre, similar to REIP, 
the simulated UAS data showed the best performance (R2 = 0.85 and RMSE = 0.18%; 
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Figure 3d–f). When using NDVI, R2 values ranged from 0.45 (RMSE = 0.36%) for the original 
ASD data to 0.55 (RMSE = 0.32%) for the simulated Landsat 8 OLI dataset (Figure 3g–j).

3.1.3. Sorghum N estimation using MLAs derived from spectrally-resampled datasets
When using the validation data set (40% of the data points permuted 100 times), all 
models, including linear regression and MLAs produced significant and positive associa
tions with sorghum N concentration (Figure 4). Additionally, results from our leaf-level 
ASD data showed that using the resampled data matching the spectral resolution of the 

1.5

2.0

2.5

712 714 716 718
REIP-ASD

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.5

2.0

2.5

702.5 705.0 707.5 710.0 712.5
REIP-Sentinel 2-A

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.0

1.5

2.0

2.5

696.6 696.9 697.2 697.5 697.
REIP-UAS

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.5

2.0

2.5

0.4 0.6 0.8 1.0
CIre-ASD

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.6

2.0

2.4

2.8

0.6 0.8 1.0 1.2
CIre-Sentinel 2-A

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.5

2.0

2.5

4.0 4.5 5.0 5.5
CIre-UAS

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.5

2.0

2.5

0.55 0.60 0.65 0.70
NDVI-ASD

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.6

2.0

2.4

2.8

0.45 0.50 0.55 0.60
NDVI-Sentinel 2-A

N
 c

on
ce

nt
ra

tio
n 

(%
)

(h)

1.6

2.0

2.4

2.8

0.84 0.85 0.86 0.87 0.88 0.89
NDVI-UAS

(i)

N
 c

on
ce

nt
ra

tio
n 

(%
)

1.6

2.0

2.4

2.8

0.40 0.45 0.50 0.55
NDVI-Landsat 8 OLI

N
 c

on
ce

nt
ra

tio
n 

(%
)

(a) (b) (c)

(d) (e) (f)

(g)

(j)

R2 =0.73
RMSE=0.22
P<0.001

R2 =0.71
RMSE=0.23
P<0.001

R2 =0.41
RMSE=0.33
P<0.001

R2 =0.43
RMSE=0.32
P<0.001

R2 =0.38
RMSE=0.33
P<0.001

R2 =0.38
RMSE=0.33
P<0.001

R2 =0.68
RMSE=0.24
P<0.001

R2 =0.72
RMSE=0.22
P<0.001

R2 =0.72
RMSE=0.22
P<0.001

R2 =0.68
RMSE=0.24
P<0.001

Figure 2. Predicted vs. observed sorghum N concentration (%) using (a-c) REIP, (d-f) CIre, and (g-j) 
NDVI based on the ASD and spectrally-simulated datasets, including Sentinel 2-A, UAS, and Landsat 8 
OLI data (NDVI only). The blue lines correspond to the fitted line to the entire dataset containing 40 
samples. Acronyms: REIP: red-edge inflection point index, CIre: chlorophyll red-edge index, NDVI: 
normalized difference vegetation index.
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UAS and Sentinel 2-A, in general, improved the retrieval accuracy of sorghum 
N concentration. Specifically, linear regression using all spectral bands and PLSR derived 
from the spectrally-simulated UAS data showed the highest coefficient of determination 
and lowest RMSE from 100 runs with R2 of 0.83 ± 0.07 (RMSE = 0.18 ± 0.03%) and R2 of 
0.83 ± 0.04 (RMSE = 0.19 ± 0.04%), respectively (Figure 4; Table S1 and S2). Followed by 
these models, GPR derived from the spectrally-simulated Sentinel 2-A and UAS data 
showed the best predictive performances in terms of coefficient of determination and 
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Figure 3. Predicted vs. observed corn N concentration (%) using (a-c) REIP, (d-f) CIre, and (g-j) NDVI 
based on the ASD and spectrally-simulated datasets, including the Sentinel 2-A, UAS, and Landsat 8 
OLI data (NDVI only). The blue lines correspond to the fitted line to the entire dataset containing 40 
samples. Acronyms: REIP: red-edge inflection point index, CIre: chlorophyll red-edge index, NDVI: 
normalized difference vegetation index.
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Figure 4. (A) Coefficient of determination (R2) and (b) RMSE of estimated sorghum N concentration 
(%) using validation datasets. Vertical error bars show ± 1 standard deviation from 100 permutations. 
Acronyms: SVR: support vector regression, GPR: Gaussian process regression, RF: random forest, PLSR: 
partial least squares regression, CIre: chlorophyll red-edge index, REIP: red-edge inflection point index. 
In this figure, ASD refers to the original ASD data collected in the field, whereas the other three 
datasets are spectrally-resampled. Note: Since Landsat 8 OLI does not have a red-edge band, 
calculating CIre and REIP for OLI 8 was not possible.
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RMSE with R2 of 0.81 ± 0.07 (RMSE = 0.19 ± 0.04%) and R2 of 0.79 ± 0.08 (RMSE = 0.20 ±  
0.04%), respectively (Figure 4; Table S1 and S2). GPR model based on the spectrally- 
simulated Landsat 8 OLI data had the weakest agreement among all MLAs and showed 
the lowest GPR model based on the spectrally-simulated Landsat 8 OLI data had the 
weakest agreement among all MLAs and showed the lowest R2 and highest RMSE (R2 =  
0.31 ± 20 and RMSE = 0.61 ± 0.31%; Figure 4; Table S1 and S2). Additionally, RF models 
based on the spectrally-resampled datasets had weak agreements with sorghum 
N concentration (Figure 4).

3.1.4. Corn N estimation using MLAs derived from spectrally-simulated datasets
Similar to sorghum, the results from corn validation data showed that all MLAs had 
positive and significant relationships with N concentration (Figure 5). Additionally, our 
results showed that the spectrally-resampled ASD data matching the spectral resolution 
of the UAS data outperformed other datasets in estimating corn N concentration. 
Specifically, GPR and linear regression derived from the simulated UAS data had the 
best performance based on corn N validation data with R2 of 0.88 ± 0.05 (RMSE = 0.17 ±  
0.04%) and R2 of 0.85 ± 0.07 (RMSE = 0.20 ± 0.04%), respectively (Figure 5; Table S3 and 
S4). Further, PLSR model based on the spectrally-simulated UAS data had a strong 
association with corn N concentration (R2 = 0.81 ± 0.07 and RMSE = 0.21 ± 0.03%; 
Figure 5; Table S3 and S4). Linear regression-predicted N concentration based on the 
original leaf-level ASD data had the weakest agreement with corn N concentration 
validation data (R2 = 0.55 ± 0.19 and RMSE = 0.45 ± 0.14%; Figure 5; Table S3 and S4). 
Additionally, RF models derived from the spectrally-resampled datasets, in general, had 
the highest error rates compared with other MLAs (Figure 5b).

3.2. Contribution of different spectral regions at estimating N concentration 
based on leaf-level ASD data

For both sorghum and corn, PLSR coefficients at leaf-level ASD data showed different 
regions of the spectrum contributing to the estimation of N concentration (Figure 6a and 
c). Considering a threshold value of 0.8 for VIP values, the entire visible (~400–700 nm) 
and red-edge bands (~700–740 nm) were important at estimating sorghum and corn 
N concentration (Figure 6b and d). Additionally, for both sorghum and corn, only a few 
regions of NIR (~740–1100 nm) and shortwave infrared (~1100–2450 nm) were important 
at estimating N concentration (Figure 6a–d).

3.3. N concentration estimation using spatially-simulated datasets

3.3.1. N concentration estimation using VIs derived from spatially-simulated 
datasets
The relationships between VIs (i.e. NDVI, CIre, and REIP) and estimated N concentration 
were determined for each spatially-simulated dataset containing 40 samples and for each 
crop individually (Figure 7a,b). Our results showed that canopy-level UAS data resampled 
at multiple pixel sizes, ranging from 1 cm to 1 m, were consistently capable of estimating 
sorghum N concentration (Figure 7a). Specifically, CIre and NDVI had positive and sig
nificant relationships with N concentration using the original UAS data and spatially- 
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Figure 5. (A) Coefficient of determination (R2) and (b) RMSE of estimated corn N concentration (%) 
using validation datasets. Vertical error bars show ± 1 standard deviation from 100 permutations. 
Acronyms: SVR: support vector regression, GPR: Gaussian process regression, RF: random forest, PLSR: 
partial least squares regression, CIre: chlorophyll red-edge index, REIP: red-edge inflection point index. 
In this figure, ASD refers to the original ASD data collected in the field, whereas the other three 
datasets are spectrally-resampled. Note: Since Landsat 8 OLI does not have a red-edge band, 
calculating CIre and REIP for OLI 8 was not possible.
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simulated datasets (Figure 7a). Additionally, CIre outperformed NDVI in estimating sor
ghum N concentration using the original UAS data and spatially-simulated datasets. No 
significant associations were found between REIP and sorghum N concentration using the 
spatially-resampled datasets (Figure 7a). Our results showed that the performance of 

Figure 6. PLSR coefficients and variable importance in projection (VIP) scores obtained from sorghum 
(a-b) and corn (c-d) leaf-level ASD data using the validation datasets. Independent variables are ASD 
reflectance data and dependent variables are leaf-level N concentration (%). Shaded areas show ± 1 
standard deviation from 100 permutations. Functional trait acronyms: N: nitrogen.
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Figure 7. Coefficient of determination (R2) of estimated N concentration for sorghum (a) and corn (b) 
using NDVI, CIre, and REIP derived from the original UAS data at spatial resolution of 1 cm and 
spatially-simulated datasets at spatial resolutions of 5 cm, 10 cm, 25 cm, 50 cm, and 1 m. Acronyms: 
NDVI: normalized difference vegetation index, CIre: chlorophyll red-edge index, REIP: red-edge 
inflection point index.
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resampled canopy-level UAS data at coarser spatial resolution were comparable to those 
resampled at finer spatial resolutions.

For corn, similar to sorghum, our results showed that spatially-resampled canopy-level 
UAS data ranging from 1 cm to 1 m were consistently capable of estimating 
N concentration (Figure 7b). Specifically, CIre and NDVI derived from the original UAS 
data and spatially-simulated datasets showed strong and similar relationships with 
N concentration (Figure 7b). There were no significant relationships between REIP and 
corn N concentration across all spatial resolutions. Overall, our results showed that the 
performance of our canopy-level UAS data did not weaken after resampling to coarser 
pixel sizes, such as 50 cm and 1 m.

3.3.2. N concentration estimation using MLAs derived from spatially-simulated 
datasets
Using linear regression and MLAs produced significant and positive associations with 
sorghum N concentration based on the original UAS data and spatially-simulated 
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Figure 8. (A) Coefficient of determination (R2) and (b) RMSE of estimated sorghum N concentration 
(%) derived from the original UAS data at spatial resolution of 1 cm and spatially-simulated datasets at 
spatial resolutions of 5 cm, 10 cm, 25 cm, 50 cm, and 1 m. Vertical error bars show ± 1 standard 
deviation from 100 permutations. Acronyms: SVR: support vector regression, GPR: Gaussian process 
regression, RF: random forest, PLSR: partial least squares regression, NDVI: normalized difference 
vegetation index, CIre: chlorophyll red-edge index.
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datasets (Figure 8). Specifically, GPR derived from the spatially-simulated UAS data at 
25 cm (R2 = 0.58 ± 0.14 and RMSE = 0.29 ± 0.04%) and 50 cm (R2 = 0.57 ± 0.14 and RMSE  
= 0.29 ± 0.04%) and RF model at 50 cm (R2 of 0.56 ± 0.15 and RMSE of 0.34 ± 0.05%) 
showed the highest coefficient of determination and lowest RMSEs from 100 runs 
(Figure 8; Table S5 and S6). GPR model derived from the spatially-simulated UAS data 
at 1 m had the weakest agreement with corn N concentration among all MLAs in terms 
of coefficient of determination and RMSE (R2 = 0.39 ± 0.16 and RMSE = 0.35 ± 0.05%; 
Figure 8; Table S5 and S6). Additionally, SVR models based on the spatially-simulated 
datasets had weak agreements with sorghum N concentration (Figure 8; Table S5 and 
S6). Overall, these results showed that at coarser spatial resolutions, such as 25 and 50  
cm, the canopy-level UAS data were still able to successfully estimate sorghum 
N concentration.
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Figure 9. (A) Coefficient of determination (R2) and (b) RMSE of estimated corn N concentration (%) 
derived from the original UAS data at spatial resolution of 1 cm and spatially-simulated datasets at 
spatial resolutions of 5 cm, 10 cm, 25 cm, 50 cm, and 1 m. Vertical error bars show ± 1 standard 
deviation from 100 permutations. Acronyms: SVR: support vector regression, GPR: Gaussian process 
regression, RF: random forest, PLSR: partial least squares regression, NDVI: normalized difference 
vegetation index, CIre: chlorophyll red-edge index.
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Similar to sorghum, the results from corn validation data showed that linear regression 
and MLAs had positive and significant relationships with N concentration based on the 
original and spatially-simulated UAS datasets (Figure 9). Specifically, GPR models derived 
from the spatially-simulated UAS data ranging from 1 cm to 50 cm outperformed other 
models with R2 ranging from 0.62 ± 12 (RMSE = 0.32 ± 0.07%) to 0.66 ± 12 (RMSE = 0.30 ±  
0.06%) (Figure 9; Table S7 and S8). Further, PLSR results obtained from the canopy-level 
UAS data resampled at 1 cm (R2 = 0.50 ± 0.14 and RMSE = 0.36 ± 0.05%) and 5 cm (R2 =  
0.50 ± 0.14 and RMSE = 0.36 ± 0.05%) showed strong associations with corn 
N concentration (Figure 9; Table S7 and S8). RF model derived from the spatially-simulated 
UAS data at 1 m had the weakest agreement with corn validation data (R2 = 0.38 ± 0.18 
and RMSE = 0.40 ± 0.08%; Figure 9; Table S7 and S8).

4. Discussion

4.1. Very fine spectral and spatial resolution data may not be necessary for crop 
N concentration estimation

4.1.1. Impact of spectral resolution on estimating N concentration
Although spectral resolution is known to affect plant N concentration retrieval accuracy 
(Pullanagari et al. 2021; Wang et al. 2020), our results showed that finer spectral resolution 
data did not necessarily improve retrieval accuracies for sorghum and corn N concentration 
(Figure 4 and 5). For instance, using VIs, in general, provided similar or better retrieval 
accuracy than when using all spectral bands (Figure 4 and 5). Additionally, the results from 
our leaf-level ASD data showed that all spectrally-resampled datasets had comparable 
performances (Figure 4 and 5). Based on these results, we conclude that the sensor design 
(i.e. number and placement of spectral bands and Full Width at Half Maximum (FWHM) of 
each spectral band) did not affect N retrieval accuracy and our resampled datasets were 
capable of estimating N concentration as long as they had specific spectral bands, includ
ing the visible, red-edge, and NIR bands. Our PLSR results, further confirmed these findings 
and showed that, the wavelengths in PAR, red-edge, and a few regions in NIR contained 
the most important features for estimating sorghum and corn N concentration (Figure 6a– 
6). We, therefore, argue that UASs with five spectral bands (i.e. blue, green, red, NIR, and 
red-edge) from 360 to 900 nm can provide sufficient and reliable spectral information to 
operationally estimate plot-level sorghum and corn N concentration.

4.1.2. Impact of spatial scale of remote sensing data on estimating N concentration
Previous studies underpinned the importance of spatial resolution of remote sensing data 
in estimating foliar N concentration (Jiang et al. 2020; Näsi et al. 2018). For instance, Zhou 
et al. (2018) showed that the ability of remotely sensed data to estimate N concentration in 
paddy rice decreased at coarse spatial resolutions. Our results showed that canopy-level 
UAS data resampled at multiple pixel sizes, ranging from 1 cm to 1 m, were able to 
successfully estimate sorghum and corn N concentration and therefore, plot-level estima
tion of sorghum and corn in our experiment was not dependent on spatial scale of remote 
sensing data (Figure 7, 8, 9). Specifically, in our experiment, we observed that the perfor
mance of resampled UAS data at coarser spatial resolutions was comparable to those 
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resampled at finer spatial resolutions (R2 ranging between approximately 0.35 and 0.65; 
Figures 7, 8, 9), showing that at plot-level, estimation of sorghum and corn N concentration 
with moderate spatial resolution data was possible likely due to the homogeneity of our 
study site and low structural complexity. Based on these findings, we conclude that in 
homogeneous plant communities, spatial resolution plays a less important role at estimat
ing crop N concentration as opposed to heterogeneous landscapes. Overall, our experi
ment showed that multispectral UAS data over a range of fine to moderate spatial 
resolutions were capable of estimating sorghum and corn N concentration.

4.2. Key spectral regions in estimating sorghum and corn N concentration

Our results showed that the majority of wavelengths in visible and red-edge regions were 
important for estimating sorghum and corn N concentration (Figure 6a–d). In addition, 
a few wavelengths in NIR and shortwave infrared regions contributed to estimating 
sorghum and corn N concentration (Figure 6a–d). We note that N does not have specific 
spectral absorption features and presume that the selection of bands within the PAR 
region (~400–700 nm) may be related to absorption features of N-containing pigments, 
including chlorophyll and other photosynthetic pigments such as carotenoids (Curran 
1989; Gholizadeh et al. 2022; Kokaly and Skidmore 2015). Specifically, we identified 
wavelengths near 430 nm and 660 nm as important regions for estimating N in sorghum 
and corn (Figure 6a–d) which are consistent with known absorption features of chlor
ophyll within the PAR region (Curran 1989; Du et al. 1998; Ustin et al. 2009). Additionally, 
important wavelengths within the 450–480 nm range (Figure 6a–d) matched with known 
absorption features of carotenoids (Du et al. 1998; Kokaly and Skidmore 2015; Ustin et al. 
2009).

In addition to PAR region, the wavelengths in red-edge region were important at 
estimating sorghum and corn N concentration (Figure 6a–d). The importance of red- 
edge region at retrieving N concentration has been reported in previous studies (Clevers 
and Gitelson 2013; Wang et al. 2020). Our leaf-level PLSR models exhibited some of these 
important features, including the feature near 710 nm (Figure 6a–d). Additionally, some 
important wavelengths in NIR and shortwave infrared regions for estimating 
N concentration of sorghum and corn, such as features near 770 nm, 1730 nm, and 
2300 nm (Figure 6a and c) were consistent with known absorption features of lignin, 
protein, and cellulose (Curran 1989; Fourty et al. 1996; Wang et al. 2020). This could be, in 
part, due to associations between plant N concentration and other biochemical compo
nents, including lignin, protein, and cellulose (Kokaly et al. 2009; Wang et al. 2020).

4.3. Optimal remote sensing metrics for estimating sorghum and corn 
N concentration

Based on our results, the choice of remote sensing metrics largely impacts the perfor
mance of remote sensing data when quantifying N concentration. VIs derived from our 
remote sensing data were able to successfully estimate crop N concentration. Specifically, 
our findings showed that sorghum and corn N concentration had stronger associations 
with red-edge-based indices, including CIre and REIP derived from non-imaging spectro
scopic data (Figure 2 and 3). The stronger performance of red-edge-based VIs in 
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estimating plant N concentration has been reported in previous studies and was dis
cussed in Section 4.2 (Barzin et al. 2021; He et al. 2016; Jay et al. 2017).

We also note that previous work has suggested that combining all spectral bands 
within the framework of MLAs provides supplemental information regarding the impact 
of crop structural properties as well as other biochemical properties that are related to 
N concentration (Kokaly et al. 2009; Wang et al. 2020). However, we observed no 
significant improvements in estimating N concentration when using MLAs and linear 
regression with all spectral bands, likely due to information redundancy and multicolli
nearity between bands.

Overall, our findings provided evidence that using red-edge-based VIs, in most cases, 
yielded similar or stronger performance for predicting sorghum and corn N concentration. 
Thus, we argue that these relatively simple VIs can be reliably used as alternatives to MLAs 
for estimating plot-level sorghum and corn N concentration, especially when developing 
MLAs requires multiple extensive in-situ data collection campaigns to properly represent 
variations in crop status and environmental conditions during the growing season.

4.4. Limitations and future research

Crop phenology – the temporal variations in crop physiological traits, such as 
N concentration due to plants life-cycle events – was not considered in this study mainly 
because the significant cost of field data collections and laboratory-based N analysis 
limited our ability to repeat our data collection campaigns over time. Conducting our 
experiment at one point in time is one of the limitations of our study. Studies based on in- 
situ measurements have provided ample evidence that crops foliar N concentration and 
their response to soil N vary over time both within and between years (Raun et al. 2019). 
During warm and moist seasons, and with concurrent increase in soil microorganisms, 
N mineralization rate (i.e. conversion of N in soil organic matter into inorganic ammonium 
and nitrate) increases. Increases in N mineralization rate will, in turn, enhance crop 
N concentration and lower crop dependence on N fertilizer (White et al. 2021). These 
temporal variations in N concentration can potentially affect the quantification of 
N concentration using remotely sensed data as shown in previous remote sensing studies 
(Hassani et al. 2023; Ustin and Gamon 2010).

There is a critical need for continuous monitoring of crop N concentration during 
different crop developmental stages and over the years to understand crop 
N requirements and provide time-specific N management practices; conducting multi- 
temporal remote sensing experiments is essential to understand the impact of phenology 
and environmental variables on crop N concentration.

Our experiment was limited to one site which might limit the transferability of our 
results to other sites. In addition to climate conditions, site characteristics and manage
ment practices play important roles in crop foliar N concentration and crop N demand 
(Lollato et al. 2019). No-till farming and crop rotations have shown to greatly impact the 
amount of N available to crops (Arnall, Edwards, and Godsey 2008) and the capability of 
remote sensing to estimate crop N concentration can vary significantly depending on site 
characteristics. As a result, expanding the current experiment to other sites with different 
management practices can be an interesting future research path.
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5. Conclusion

Traditional field-based methods for monitoring crop N concentration are expensive 
and implementing them for large field trials is not straightforward. Instead, optical 
remote sensing has shown promise in estimating plant N concentration. However, the 
choice of the optimal spatial and spectral resolution and the best remote sensing 
metric to estimate plant N concentration still remains elusive. In this study, we 
examined the capability of UAS and non-imaging spectroscopic spectral data for 
estimating sorghum and corn N concentration at different spectral and spatial resolu
tions over the growing season. Regarding the spectral resolution, our experiment 
showed that the resampled leaf-level ASD data at five spectral bands ranging from 
360 to 900 nm, in general, can be reliably used for estimating plot-level sorghum and 
corn N concentration. Regarding spatial resolution, our resampled canopy-level UAS 
data showed that coarse spatial resolution data at 50 cm are capable of estimating 
sorghum and corn N concentration. These findings can potentially contribute to the 
development of low-cost sensors with optimal spatial and spectral resolution for 
estimating N concentration of crops.
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