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A B S T R A C T   

Grassland ecosystems are under threat globally, primarily due to land-use and land-cover changes that have 
adversely affected their biodiversity. Given the negative ecological impacts of biodiversity loss in grasslands, 
there is an urgent need for developing an operational biodiversity monitoring system that functions in these 
ecosystems. In this paper, we assessed the capability of airborne and spaceborne imaging spectroscopy (also 
known as hyperspectral imaging) to capture plant α-diversity in a large naturally-assembled grassland while 
considering the impact of common management practices, specifically prescribed fire. We collected a robust in- 
situ plant diversity data set, including species composition and percent cover from 2500 sampling points with 
different burn ages, from recently-burned to transitional and pre-prescribed fire at the Joseph H. Williams 
Tallgrass Prairie Preserve in Oklahoma, USA. We expressed in-situ plant α-diversity using the first three Hill 
numbers, including species richness (number of observed species in a plant community), exponential Shannon 
entropy index (hereafter Shannon diversity; effective number of common species, where species are weighed 
proportional to their percent cover), and inverse Simpson concentration index (hereafter Simpson diversity; 
effective number of dominant species, where more weight is given to dominant species) at four different plot 
sizes, including 60 m × 60 m, 120 m × 120 m, 180 m × 180 m, and 240 m × 240 m. We collected full-range 
airborne hyperspectral data with fine spatial resolution (1 m) and visible and near-infrared spaceborne hyper-
spectral data from DESIS sensor with coarse spatial resolution (30 m), and used the spectral diversity hypoth-
esis—i.e., that the variability in spectral data is largely driven by plant diversity—to estimate α-diversity 
remotely. In recently-burned plots and those at the transitional stage, both airborne and spaceborne data were 
capable of capturing Simpson diversity—a metric that calculates the effective number of dominant species by 
emphasizing abundant species and discounting rare species—but not species richness or Shannon diversity. 
Further, neither airborne nor spaceborne hyperspectral data sets were capable of capturing plant α-diversity of 
60 m × 60 m or 120 m × 120 m plots. Based on these results, three main findings emerged: (1) management 
practices influence grassland biodiversity patterns that can be remotely detected, (2) both fine- and coarse- 
resolution remotely-sensed data can detect the effective number of dominant species (e.g., Simpson diversity), 
and (3) attention should be given to site-specific plant diversity field data collection to appropriately interpret 
remote sensing results. Findings of this study indicate the feasibility of estimating Simpson diversity in naturally- 
assembled grasslands using forthcoming spaceborne imagers such as National Aeronautics and Space Adminis-
tration’s Surface Biology and Geology mission.   
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1. Introduction 

1.1. Background 

Grasslands are among the most threatened ecosystems globally, yet 
only a small portion of these biomes are protected (Bardgett et al., 2021; 
Carbutt et al., 2017; Scholtz and Twidwell, 2022). The transformation of 
grasslands to other cover types and their widespread degradation come 
with steep biodiversity and economic tradeoffs and erode ecosystem 
functions that underpin human well-being (Cavender-Bares et al., 2015; 
Purvis and Hector, 2000; Tilman et al., 1997). Given the widespread 
decline of grasslands and associated biodiversity, as well as the far- 
reaching negative impacts of land-management practices that do not 
consider biodiversity conservation (IPBES, 2018, 2019), developing 
monitoring systems to understand the status and patterns of biodiversity 
and inform progress towards biodiversity targets (CBD, 2021) will make 
critical contributions for managing these threatened ecosystems. 
Traditional field surveys are essential in research and management ap-
plications yet are unable to scale to the levels necessary to compre-
hensively monitor extensive grassland systems, which cover 
approximately 25–40% of the Earth land surface (Shantz, 1954; 
Strömberg et al., 2013). Remote sensing is a promising approach to 
monitor certain aspects of plant diversity across ecosystems (Lausch 
et al., 2016; Luque et al., 2018; Schimel et al., 2019; Turner, 2014), 
although details of how best to do this remain largely unanswered. In 
this study, we tested the effectiveness of imaging spectroscopy (also 
known as hyperspectral imaging) for mapping plant diversity at the 
Joseph H. Williams Tallgrass Prairie Preserve in Oklahoma, USA, the 
largest contiguous tract of tallgrass prairie on Earth. 

1.2. Remote sensing of plant diversity 

Recent technological and methodological advances in optical remote 
sensing have improved our ability to estimate plant diversity remotely 
(Cavender-Bares et al., 2022; Kamoske et al., 2022; Lausch et al., 2016; 
Luque et al., 2018; Stavros et al., 2017). Specifically, imaging spec-
troscopy, with its capability to capture fine spectral resolution data, is a 
viable tool for mapping plant diversity (Schimel et al., 2020). The link 
between remotely-sensed data and plant diversity exists since spectral 
reflectance captures vegetation attributes associated with plant diversity 
(Kothari and Schweiger, 2022). One way to formally express the rela-
tionship between spectral data and plant diversity is through spectral 
diversity (Asner and Martin, 2009; Gholizadeh et al., 2019; Laliberté 
et al., 2020; Palmer et al., 2002; Rocchini et al., 2010; Rocchini et al., 
2004; Wang et al., 2018a). The spectral diversity hypothesis states that 
variation in spectral data within a plant community is an indicator of 
plant diversity for that community. Specifically, individual plants spe-
cies display different biochemical, physiological, structural, and 
phenological attributes. These traits, along with other environmental 
factors, influence remotely-sensed spectral data. As such, different plant 
species presumably display themselves differently in remotely-sensed 
data (Asner et al., 2015; Cavender-Bares et al., 2017; Ollinger, 2011; 
Schneider et al., 2017; Serbin and Townsend, 2020; Ustin and Gamon, 
2010), and therefore a diverse plant community is expected to have 
higher spectral variability or diversity. 

Previous studies have provided evidence that spectral diversity is 
capable of capturing different aspects of plant diversity, including 
functional (Schweiger et al., 2018), phylogenetic (Cavender-Bares et al., 
2021), or taxonomic diversity (Laliberté et al., 2020; Rocchini et al., 
2021). These previous studies all support the spectral diversity concept 
and provide critical evidence that remotely-sensed spectral data can be 
utilized as a proxy of different dimensions of biodiversity. However, 
most remote sensing studies of plant diversity have focused on vegeta-
tion types with large canopies such as forests (Féret and Asner, 2014; 
Hauser et al., 2021; Kalacska et al., 2007; Zheng et al., 2021). Remote 
sensing of plant diversity in grasslands is particularly challenging. First, 

grassland plants have much smaller canopies relative to the pixel size of 
typical remote sensing data, such as Landsat-8 or Sentinel-2 constella-
tion with pixel sizes ranging from 10 m to 30 m. Therefore, there is a 
scale mismatch between the size of grassland plants and pixel size of 
most remote sensing data sets (Wang et al., 2018a). This scale- 
dependence of remote sensing of biodiversity–meaning the degree to 
which our ability to remotely estimate diversity varies as a function of 
spatial scale (e.g., pixel size, grain size, plot size)–has been reported in 
previous experiments, and largely influences whether biodiversity, as 
traditionally defined by ecologists, can be detected with remote sensing 
(Gamon et al., 2020). Second, management practices, such as prescribed 
fire or grazing, can promote spatial and temporal variability within and 
across grasslands ecosystems (Collins, 1992; Fuhlendorf et al., 2009; 
Knapp et al., 1999), which likely further influences biodiversity detec-
tion. Thus, we hypothesize that the impact of such management prac-
tices on grassland diversity and our ability to estimate plant diversity 
with remote sensing can also be highly scale-dependent, both in space 
and time (see Section 1.3 below and Dronova and Taddeo, 2022; Gho-
lizadeh et al., 2020; Rossi et al., 2021a; Thornley et al., 2022). 

1.3. Management practices in tallgrass prairies: implications for remote 
sensing of plant diversity 

Biodiversity patterns in North America’s scant remaining tallgrass 
prairies are driven to a large extent by management practices, particu-
larly prescribed fire and grazing. There is strong evidence that these 
management practices have historically maintained grassland biodi-
versity, function, and structure (Collins, 1992; Collins et al., 1998; 
Knapp et al., 1999). Fire can suppress some invasive plants (e.g., woody 
plants) and therefore provide resource access to a more diverse set of 
persistent native species. By removing leaf litter, fire enhances the 
amount of light received at the soil surface. Fire also increases soil nu-
trients (e.g., nitrogen and phosphorous), which in turn improve vege-
tation growth (Frost, 1985; Frost and Robertson, 1985; Peterson and 
Reich, 2008; Rieske, 2002; Skidmore et al., 2010), and stimulates 
germination of certain species that may otherwise lie dormant (Ramos 
et al., 2019; Stone and Juhren, 1953). In addition, when coupled with 
other management practices, fire can further modify grassland ecosys-
tems (Leonard et al., 2010). Grazing is a great example of an attendant 
management practice that is often applied in concert with fire (Fuh-
lendorf and Smeins, 1999). Plants in recently-burned grassland areas are 
more palatable and nutritious, attracting herbivores which further 
modify the plant community through grazing (Allred et al., 2011). 

As a result of management practices, grasslands can be highly het-
erogeneous landscapes. Heterogeneity can have several definitions but 
in the context of grassland ecosystems, we define it as variability in 
vegetation and soil cover, vegetation composition, or stature in space 
and time (Coppedge and Shaw, 1998; Fuhlendorf and Engle, 2004; 
Fuhlendorf and Smeins, 1999). Although this heterogeneity has been 
suggested as the root of biodiversity at different levels of ecological 
organization (Wiens, 1997)–for example, through affecting niche 
availability for different species (Kisel et al., 2011)–it is highly variable 
both in space and time. Therefore, heterogeneity, and thereby its in-
fluence on biodiversity, are likely to be context and scale-dependent and 
both should be monitored across different spatial and temporal scales 
(Fuhlendorf and Smeins, 1999). We argue that spectral diversity is 
capable of capturing such spatial and temporal variations across mul-
tiple scales of observation. 

There is substantial evidence to suggest that spectral diversity can 
capture grassland plant diversity, albeit with highly variable levels of 
uncertainty due to several confounding factors, such as soil exposure 
(Gholizadeh et al., 2018) and spatial resolution (Wang et al., 2018a). 
Previous studies have used spectral diversity to capture plant diversity 
for different grassland ecosystems, including small experimental grass-
land plots (Wang et al., 2018a), restored tallgrass prairies (Gholizadeh 
et al., 2019), semi-arid African savannahs (Oldeland et al., 2010), alpine 
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grasslands (Rossi et al., 2021b), subalpine semi-natural and experi-
mental grasslands (Imran et al., 2021), European mesic meadows (Conti 
et al., 2021), or dry-grazed grasslands (Möckel et al., 2016). However, 
these studies have yet to fully address how and the degree to which 
grassland management practices affect remote sensing of plant diversity. 
Additionally, many previous remote sensing studies of grassland biodi-
versity have been conducted using small-scale, highly manipulated, 
experimental plots that by design cannot fully represent naturally- 
assembled heterogeneous grasslands. We address critical knowledge 
gap concerning the viability of using remote sensing to capture plant 
diversity in naturally-assembled heterogeneous grasslands, as opposed 
to small or experimental grassland plots, and the dependence of the 
spectral diversity-plant diversity relationship on spatial scale. Such 
studies are essential for broadening understanding of the response of 
grassland ecosystems to various environmental changes and identifying 
strategies to maintain their biodiversity. 

In this paper, we seek to understand whether imaging spectroscopy 
can be used to measure plant diversity in naturally-assembled hetero-
geneous grasslands subject to common management practices. We hy-
pothesized that (1) management practices–focusing on prescribed 
fire–influence grassland heterogeneity (variability in vegetation and soil 
cover, vegetation composition, or stature) and affect spectral reflectance 
patterns and thereby spectral diversity and (2) hyperspectral remote 
sensing can detect such changes across multiple levels of spatial reso-
lution as suggested by the optical surrogacy concept (Gamon, 2008). We 
have based these central hypotheses upon previous proof-of-concept 
studies (e.g., Oldeland et al., 2010; Wang et al., 2018a) that have 
shown promise in estimating grassland plant diversity remotely at 
different grassland types. To test our central hypotheses, we defined two 
objectives: (1) determine the effect of prescribed fire–expressed as time 
since fire–on grassland plant α-diversity–expressed as species richness 
(number of observed species), exponential Shannon entropy index 
(effective number of common species, where species are weighed pro-
portional to their percent cover), and inverse Simpson concentration 
index (effective number of dominant species, where more weight is 
given to dominant species)–and (2) assess how time since fire affects our 
ability to remotely estimate grassland plant α-diversity across different 
spatial scales. To achieve our specific objectives, we collected airborne 
hyperspectral data (spatial resolution of 1 m; covering the 400–2450 nm 
range) and spaceborne hyperspectral data from the German Aerospace 
Center (DLR) Earth Sensing Imaging Spectrometer (DESIS; spatial res-
olution of 30 m; covering the 400–1000 nm range; Krutz et al., 2019) in 
summer 2021. While airborne data were used to test the capability of 
spectral diversity to detect grassland plant diversity at a fine spatial 
resolution, DESIS data were used for remote sensing of grassland di-
versity at coarse spatial resolution, comparable to that of planned mis-
sions, such as the National Aeronautics and Space Administration’s 
(NASA) Surface Biology and Geology (SBG) mission (Cawse-Nicholson 
et al., 2021; Schneider et al., 2019) or the European Space Agency’s 
(ESA) Copernicus Hyperspectral Imaging Mission (CHIME) (Nieke and 
Rast, 2019). For validation, we collected in-situ species inventories, 
including species composition and percent cover from 2500 sampling 
locations at The Nature Conservancy’s Tallgrass Prairie Preserve (TGPP; 
also known as the Joseph H. Williams Tallgrass Prairie Preserve), the 
largest contiguous tract of tallgrass prairie on Earth, located in north-
eastern Oklahoma, USA (TNC, 2022). Our multiscale remote sensing 
experiment is a necessary first step for assessing the capability of spec-
tral diversity to detect grassland plant diversity across large spatial ex-
tents. Such an experiment informs how grassland management practices 
affect plant diversity and to what extent remote sensing can capture 
plant diversity under different grassland management regimes. Further, 
through using fine-resolution airborne and coarse-resolution spaceborne 
hyperspectral data, our multiscale study can inform the effectiveness of 
hyperspectral data with coarse spatial resolution to map grassland plant 
diversity and contribute to the development of operational biodiversity 
monitoring approaches applicable to forthcoming imagers, such as 

NASA’s SBG mission. 

2. Methods 

2.1. Study site 

The Nature Conservancy’s TGPP is a ~160 km2 contiguous grass-
land, located 20 km north of Pawhuska, Oklahoma (36o 50′ N, 96o 25′

W) within the Flint Hills Ecoregion (Coppedge et al., 1998; TNC, 2022). 
Mean annual rainfall at TGPP is 960 mm. This site has hot summers with 
average high temperature of 32 ◦C and relatively cold winters with 
average low temperature of 3 ◦C, respectively (Sherrill et al., 2022). 
About 90% of TGPP consists of tallgrass prairie and the remaining land- 
cover is mainly oak woodland (Hamilton, 2007). Dominant grasses at 
TGPP include little bluestem (Schizachyrium scoparium (Michx.) Nash), 
big bluestem (Andropogon gerardii Vitman), switchgrass (Panicum virga-
tum L.), and hairy wild rye (Elymus villosus Muhl. ex Willd.). Dominant 
forbs include western ragweed (Ambrosia psilostachya DC.) and Canada 
goldenrod (Solidago Canadensis L.). 

Our site is managed through synergistic application of prescribed fire 
and grazing where grazers are freely able to interact with patches that 
vary with time-since-fire (Fuhlendorf and Engle, 2004). In this 
approach, which mimics the pre-European settlement management 
practices, fire is applied to different patches of the landscape. Following 
this prescribed fire regime, herbivores are attracted to recently-burned 
patches presumably because of the higher forage quality in these areas 
(Allred et al., 2011). This means that grazing animals are distributed in a 
non-uniform manner across the landscape. The result is a “shifting 
mosaic” landscape characterized by high spatio-temporal variability, 
where the recently-burned patch is heavily grazed and the remaining 
landscape is largely ungrazed (Fuhlendorf and Engle, 2004). Please see 
Section 4.4.4 for more discussion on grassland management practices. 

In our site, about one-third of the TGPP is burned each year with 
prescribed fire to maintain a three-year fire-return interval. Following 
this prescribed-fire regime, grassland units at different stages, including 
recently-burned, transitional, and pre-prescribed fire exist at any given 
time. For our study, about one-third of the grassland units were burned 
less than one year before 2021 remote sensing data collection (i.e., 
recently-burned stage), approximately one-third of the grassland units 
were burned within 1–2 years before remote sensing data collection (i.e., 
transitional stage), and the remaining units were burned >2 years before 
remote sensing data collection (i.e., pre-prescribed fire stage). 

About 47 km2 of TGPP is managed by fire-cattle grazing, 110 km2 is 
managed by fire-bison grazing with American bison (Bison bison L.), and 
a very small portion (~3 km2) is managed with fire only (Sherrill, 2019). 
We limited our experiment to 67 km2 of TGPP (Fig. 1a). Out of this 67 
km2, 47 km2 (approximately 70%) was managed with prescribed fire 
and cattle grazing, 17 km2 (approximately 25%) was managed with 
prescribed fire and bison grazing, and 3 km2 (approximately 4%) was 
managed with prescribed fire-only (i.e., grazers were excluded). 

2.2. Field-based data collection 

2.2.1. Species inventories 
We designed our species inventory sampling protocol with three 

goals in mind: (1) the dimensions of a sampling plot, which we used to 
estimate plant diversity across a fixed extent, must be large enough to 
match the pixel size of our airborne and spaceborne remotely-sensed 
data to reduce the uncertainty associated with small sample size (i.e., 
small number of pixels within each plot), (2) in-situ data must be high- 
quality and accompanied with ancillary data (e.g., soil percent cover), 
and (3) to minimize the impact of plant phenology on our results, the 
length of the field campaign must reasonably correspond to the date of 
remote sensing data collection. With these criteria in mind, we defined 
our plots as 240 m × 240 m squares. Before the field campaign, we 
randomly selected 100 plots, avoiding roads or surface water (Fig. 1a). 

H. Gholizadeh et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 281 (2022) 113254

4

Out of 100 plots, 39 plots were at the recently-burned stage (i.e., burned 
less than one year before remote sensing data collection), 28 plots were 
at the transitional stage (i.e., burned within 1–2 years before remote 
sensing data collection), and 33 plots were at the pre-prescribed fire 
stage (i.e., burned >2 years before remote sensing data collection). 
Within each plot, we documented species composition and percent cover 
in 25 equally-spaced 0.5 m × 0.5 m quadrats (Fig. 1b; 25 sampling 
quadrats per plot × 100 plots = 2500 sampling quadrats in total). While 
a total of 2500 sampling quadrats is remarkably high, this sampling was 
still constrained in that it might not fully capture plant diversity in 
diverse and heterogeneous communities. See also Sections 4.2.2 and 
4.4.1 for further discussion on in-situ data collection. In addition, 
although other sampling protocols (e.g., nested plots, parallel or 
perpendicular transects) have their own advantages, we opted for this 
regular grid sampling as the field data collected following this protocol 
are more compatible with the raster and gridded nature of remotely- 
sensed data. 

The locations of all 2500 sampling quadrats were imported to hand- 
held GPS units (Trimble Geo 7X, Trimble, Sunnyvale, CA, USA) before 
the field campaign; using this handheld GPS unit, the field crew navi-
gated to each plot with an all-terrain vehicle (Kawasaki KAF620R; Ka-
wasaki Heavy Industries, Kobe, Japan) and started data collection from 
the Northwestern sampling quadrat in each plot (Fig. 1b). Collecting 
species inventories started in early-July and concluded in approximately 
four weeks, in early-August 2021. 

When estimating percent canopy cover, we considered all in-
dividuals that were rooted inside the quadrat. The total percent canopy 
cover for all vegetation in each quadrat or plot was not necessarily equal 
to 100% as plant species could overlap (therefore making the total 
canopy cover >100%) or the surface could be partially covered with soil 
(in which case the total vegetation percent cover could be <100%). We 
acknowledge that other measures, such as proportional biomass or the 
number of individuals from each species (to calculate relative abun-
dance), could be used in lieu of percent canopy cover. We used percent 
canopy cover as it is well-documented in the plant ecology literature 
(Daubenmire, 1959; McMillan et al., 2019; Peet et al., 1998) and 
because counting the number of individuals from each grassland species 
is rarely feasible. 

Since previous work has shown the confounding impact of soil and 
vertical heterogeneity on remote sensing of grassland diversity (Conti 

et al., 2021; Gholizadeh et al., 2018), we also documented percent cover 
of soil, rocks, and other non-vegetation surface cover types for each 
quadrat. To assist with interpreting our results and provide further 
ancillary data, we also took an RGB image from each quadrat in near- 
nadir mode using tablet computers. 

2.3. Remote sensing data collection 

2.3.1. Airborne hyperspectral data 
We collected airborne hyperspectral data between 14:12 and 17:12 

GMT on July 31, 2021 using a Twin Commander 500-B aircraft (Aero 
Commander, Oklahoma City, OK) during clear sky conditions. Airborne 
hyperspectral imagery was captured in 21 flight lines with minimum 
side overlap of 25% using a full-range pushbroom imaging spectrometer 
(AISA Fenix 1K, Specim, Oulu, Finland) covering the 400–2450 nm 
range in 323 bands and spectral resolution of approximately 4.5 nm in 
the 400–970 nm range and 14 nm in the 970–2450 nm range. With 1024 
spatial pixels, field of view of 40◦, and operational altitude of approxi-
mately 1400 m above ground level, the resulting airborne imagery had 
spatial resolution (i.e., pixel size) of 1 m. To increase the geometric 
accuracy of the imagery, the hyperspectral sensor and the navigation 
system of the aircraft were boresight-calibrated, and TerraStar® real- 
time differential corrections were used to maximize the accuracy of 
navigation data. All 21 flight lines were geometrically and radiometri-
cally corrected (i.e., converting raw data to at-sensor radiance) in the 
CaliGeoPRO software (Specim, Oulu, Finland). We used 1 m digital 
elevation model (from USGS 3DEP) for ortho-correction of hyperspectral 
data. ATCOR-4 package based on MODTRAN-5 radiative transfer model 
was used for atmospheric correction of the airborne data (Berk et al., 
2006; Richter and Schläpfer, 2002). Finally, we removed noisy bands or 
those affected by atmospheric water vapor absorption. Final airborne 
hyperspectral data had 238 bands that included wavelengths between 
431.10 and 1299.36 nm, 1487.71–1775.03 nm, and 1998.23–2353.76 
nm. We also established 15 ground control points (GCPs) throughout the 
study area for post-hoc geometric correction of our hyperspectral data. 
However, since we did not detect any major systematic or visual mis-
alignments in our remotely-sensed data, and the deviation between 
measured GCP coordinates and their image coordinates was less than a 
pixel, we did not deem post-hoc geometric correction necessary and 
therefore did not apply it. Processed full-range 1-m airborne 

Fig. 1. (a) True colour composite of the study area at The Nature Conservancy’s Tallgrass Prairie Preserve (also known as the Joseph H. Williams Tallgrass Prairie 
Preserve) in Oklahoma, USA. Each black square represents a 240 m × 240 m sampling plot. Orange lines show the boundaries of airborne flight lines. Date of 
imagery: July 31, 2021. (b) Schematic diagram of a single plot showing species inventory sampling design. Blue squares in Fig. 1b represent 0.5 m × 0.5 m quadrats. 
There are 100 plots in total (Fig. 1a) and within each plot, we sampled species composition and percent cover in 25 quadrats (Fig. 1b). In other words, we sampled 
species composition and percent cover in a total of 2500 quadrats. Quadrats are not drawn to scale. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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hyperspectral data can be downloaded from the NASA Earth Observing 
System Data and Information System (EOSDIS) Land Processes Distrib-
uted Active Archive Center (Gholizadeh, 2022). 

2.3.2. Spaceborne hyperspectral data 
Spaceborne DESIS hyperspectral data (Krutz et al., 2019) were 

collected six days after our airborne data collection on August 06, 2021 
at 17:48 GMT. We used the Level 2A DESIS product with no spectral 
binning applied. DESIS Level 2A product is the surface reflectance data 
generated using DLR’s Python Atmospheric Correction (PACO) library 
based on the ATCOR package (de los Reyes et al., 2020). The data 
covered the 401.9–999.5 nm range in 235 spectral bands with spectral 
resolution of approximately 3 nm and spatial resolution of 30 m. Due to 
manufacturing defects in the first 10 DESIS bands, etaloning effect, and 
uncertainties associated with water vapor correction for longer wave-
lengths, especially for bands around 940 nm, we used 195 DESIS bands 
between ~430 and 927.1 nm (Alonso et al., 2019; Hu et al., 2018). 

2.4. Data analysis 

2.4.1. Calculating α-diversity from species inventories 
We used Hill numbers (Hill, 1973) to express α-diversity of our 

sampling plots, which provide a generalized approach to calculating 
species diversity, instead of focusing on one metric. Specifically, we 
focused on the first three Hill numbers, including species richness, 
exponential Shannon entropy index (eH; hereafter referred to as Shan-
non diversity), and inverse Simpson concentration index (D− 1; hereafter 
referred to as Simpson diversity) (Chao et al., 2014). Species richness 
reports the number of observed species within each sampling plot 
regardless of their abundance and therefore places the same weight on 
rare and dominant species. Shannon and Simpson indices, on the other 
hand, both consider the abundance of all species. The main difference 
between Shannon and Simpson diversity is their sensitivity to rare 
species. Shannon diversity places weight on species based on their fre-
quency and is an indicator of common species in a plant community, 
whereas Simpson diversity puts more weight on dominant species. By 
including three measures of α-diversity, we do not argue which of these 
three metrics are more suitable to express diversity, but rather we 
wanted to interpret what a remote sensing instrument can see from 
above (see Interpretation column in Table 1 below). We acknowledge 
that other modified versions of Shannon and Simpson indices also exist. 

2.4.2. Calculating spectral diversity to map α-diversity 
We used coefficient of variation (CV; Lucas and Carter, 2008) in 

MATLAB 2020b (Mathworks Inc., Natick, Massachusetts, USA) to 
calculate spectral diversity. We calculated the average coefficient of 
variation of the pixels inside each 240 m × 240 m plot using bands 
between 431.10 and 2353.76 nm, while excluding water vapor ab-
sorption bands, for airborne data and bands between ~430 and 927.1 
nm for DESIS data. Larger CV values correspond to higher spectral di-
versity whereas smaller CV values correspond to lower spectral 

diversity. More details on CV calculation, including its formula are 
provided in Appendix A in Supplementary material. To assess the 
agreement between field-based and remotely-sensed α-diversity values, 
we used the proportion of explained variance (R2) between measured 
plant diversity (Section 2.4.1) and spectral diversity. There is no perfect 
spectral diversity metric (Fassnacht et al., 2022; Gholizadeh et al., 2018; 
Schmidtlein and Fassnacht, 2017). Consequently, in addition to CV, we 
also tested two others metrics of spectral diversity, including convex hull 
volume (CHV) (Dahlin, 2016) and spectral angle mapper (Kruse et al., 
1993). Our preliminary results showed that CV and SAM had compa-
rable performance while CHV underperformed (results not shown here). 
To improve the readability of the manuscript, we used CV as our primary 
spectral diversity metric in this paper. 

To determine how soil exposure affects the capability of spectral 
diversity to capture plant α-diversity, we used a partial correlation 
analysis (Erb, 2020). Specifically, we assessed the association between 
spectral diversity (from airborne and DESIS data) and three metrics of 
plant diversity, including species richness, Shannon diversity, and 
Simpson diversity whilst controlling for the effect of soil cover. 

2.4.3. Impact of time since fire on measured and remotely-sensed plant 
diversity 

To determine the impact of time since fire on measured and 
remotely-sensed plant diversity, we compared plots at recently-burned, 
transitional, and pre-prescribed fire stages. Specifically, we assessed the 
impact of time since fire on measured plant diversity–including species 
richness, Shannon diversity, and Simpson diversity–as well as remotely- 
sensed plant diversity (i.e., spectral diversity) using one-way analysis of 
variance (ANOVA; at significance level of 0.05 or 5%) followed by pair- 
wise group comparisons using the Tukey’s honestly significant differ-
ence procedure (Tukey, 1949). 

To provide further context to whether the impact of time since fire on 
measured and remotely-sensed plant diversity varied across space, we 
looked at the species richness-area relationship (hereafter referred to as 
species-area relationship) and spectral diversity-area relationship. The 
species-area relationship shows the general pattern of observed species 
versus sampled area (Preston, 1960). Although several mechanisms 
have been identified to explain the species-area relationship (see Hill 
et al., 1994; Rosenzweig, 1995), the shape of species-area cur-
ve–particularly, its slope–has been associated with heterogeneity and 
species turn-over (β-diversity; Connor and McCoy, 1979). Based on a 
similar premise, the spectral diversity-area relationship describes the 
spectral diversity values as a function of sampled area, and has been 
adapted to elucidate patterns of plant diversity across space using 
remotely-sensed data in the absence of in-situ species diversity mea-
surements (Dahlin, 2016). 

Our expectation was that grassland communities with shorter time 
since fire are more heterogeneous and have higher species and spectral 
variability across space. We expect this pattern to manifest itself as 
species- and spectral diversity-area curves with steeper slopes in 
recently-burned communities. To test this hypothesis, we used the 

Table 1 
Metrics used to express α-diversity in our in-situ data (Chao et al., 2014). In these equations, N is the total number of species observed by the botanist in a plot, p is the 
vegetation cover of the ith species in a plot calculated by taking the average of measured percent cover in 25 quadrats within each plot divided by 100%, and ln is 
natural logarithm.  

Index Hill 
number 

Equation Interpretation 

Species richness 0 N Number of observed species in a plant community. 
Exponential Shannon entropy index (referred to as 

Shannon diversity in the manuscript) 
1 exp(− Σ pi ln pi) Effective number of common species in a plant community. Gives weight to 

species proportional to their abundance. 
Inverse Simpson concentration index (referred to as 

Simpson diversity in the manuscript) 
2 1/ Σ pi

2 Effective number of dominant species in a plant community. Gives more weight 
to dominant species in a plant community.  
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analysis of covariance on the species- and spectral diversity-area 
regression lines in the ln-ln space (natural logarithm) with the time 
since fire category as the treatment effect. 

To develop our species- and spectral diversity-area curves, we fol-
lowed a non-contiguous and non-spatially explicit category IIIB 
approach (Scheiner, 2003) similar to Dahlin (2016). Specifically, we 
randomly selected one plot, calculated diversity (both species richness 
and spectral diversity), and incrementally added additional randomly- 
selected plots up to 25 plots. We repeated this process 100 times for 
recently-burned (n = 39), transitional (n = 28), pre-prescribed fire (n =
33), and all plots combined (n = 100) and used the average and 95% 
confidence interval from 100 runs to show variability in our species- and 
spectral diversity-area relationships. 

2.4.4. Capability of spectral diversity to map plant diversity across spatial 
scales 

To test the capability of spectral diversity to detect grassland α-di-
versity across multiple spatial resolutions, we used airborne data (spatial 
resolution of 1 m) and DESIS data (spatial resolution of 30 m) collected 
at almost the same time of the year (only six days apart). Additionally, 
we used airborne imagery to generate additional data sets with coarser 
spatial resolutions (5 m, 10 m, 15 m, 20 m, 25 m, and 30 m pixel sizes) 
through resampling original images in MATLAB 2020b. Unlike our 
airborne sensor, the DESIS sensor does not cover the shortwave infrared 
(SWIR) region of the electromagnetic spectrum. Therefore, to assess the 
added value of SWIR region for remote sensing of plant diversity, we 
repeated this resampling experiment two times: using the full-range 
airborne data–that included the visible, near-infrared (NIR) and SWIR 
regions–and then for the airborne data using the visible and near- 
infrared (VNIR) regions (up to 927 nm) but without the SWIR region. 
This multiscale analysis assisted us to assess (1) the performance of 
spectral diversity across different spatial resolutions in naturally- 
assembled heterogeneous grasslands and (2) the capability of forth-
coming spaceborne imagers, such as NASA’s SBG mission–which will 
have comparable spatial resolution to DESIS data and include the SWIR 
region–for mapping grassland plant diversity. 

Another less-studied component of spatial scale in remote sensing of 
plant diversity is plot size, which is a construct used to estimate plant 
diversity across a fixed extent. We selected plot size of 240 m × 240 m in 
our study, yet it was unclear how this choice of plot size would affect our 
results. To fill this knowledge gap, in addition to our native plot size of 
240 m × 240 m, we defined additional 60 m × 60 m, 120 m × 120 m, 
and 180 m × 180 m plot sizes (see Fig. 2) and revisited the plant 
diversity-spectral diversity relationship. Through this analysis, we were 
particularly interested to find out whether remote sensing is more 
suitable to capture plant diversity for small or large herbaceous plant 
communities. 

3. Results 

3.1. Impact of time since fire on measured and remotely-sensed plant 
diversity 

Time since fire did not affect plant diversity expressed as species 
richness or Shannon diversity according to our ANOVA analysis (Fig. 3a- 
b), although Simpson diversity was significantly higher directly 
following fire (Fig. 3c). Results also showed that the average and range 
of spectral diversity values–calculated using CV–from airborne and 
DESIS data were significantly higher for recently-burned plots (Fig. 4a- 
b), due to significantly higher heterogeneity (i.e., variability in vegeta-
tion and soil cover, vegetation composition, or stature) in recently- 
burned plots compared to those at the pre-prescribed fire stage 
(Fig. 4c and 5a-b; see also Fig. S1 in Supplementary material for the 
spectral diversity-soil percent cover relationship). Since soil has strik-
ingly different spectral signature from green vegetation, we expected 
higher spectral variability, and thereby higher spectral diversity in 

recently-burned plots. To illustrate this contrast, we selected two plots 
with short distance from each other (approximately 1 km) but with 
different time since fire: a recently-burned plot (Fig. 5a) and a plot at the 
pre-prescribed fire stage (Fig. 5b). Results obtained from both airborne 
(Fig. 5c) and DESIS data sets (Fig. 5d) highlighted the clear contrast 
between these two plots. Specifically, the recently-burned plot had 
higher spectral diversity across all regions of the spectrum. Of specific 
note are two regions of the electromagnetic spectrum with high spectral 
variability: one region in the 670–680 nm range (Fig. 5c-d) and another 
region in the ~2000–2350 nm range within the SWIR portion of the 
spectrum (Fig. 5c). 

3.1.1. Assessing the impact of time since fire on measured and remotely- 
sensed plant diversity across scales using species- and spectral diversity-area 
curves 

Species-area curves: As expected, species-area curves for plots with 
different time since fire were not the same (Fig. 6a). The curve for the 
recently-burned plots had the highest final species richness value 
whereas the plots at the pre-prescribed fire stage had the lowest final 
species richness. In terms of initial values of the curves, recently-burned 
plots and those at the transitional and pre-prescribed fire stages had 
comparable species richness values, confirming the lack of significant 
difference in species richness observed in Fig. 3a. The curve generated 
by pooling data from all plots, regardless of time since fire, fell between 
the recently-burned and transitional-stage curves. Contrary to our 
expectation, the slope of four curves (in the natural log-log space), which 
is an indicator of β-diversity across scales, was not significantly different 
(Fig. 6d; see Table S1 in Supplementary material for statistical analysis 
results). 

Spectral diversity-area curves: Similar to species-area curves, the shape 
of the spectral diversity-area curves obtained from airborne and DESIS 
data varied with time since fire (Fig. 6b-c). In addition, spectral 
diversity-area curves for the recently-burned plots had the highest 
overall spectral diversity and largest initial values. Plots at the pre- 
prescribed fire and transitional stages had overlapping curves for 
smaller sampling areas (i.e., smaller values on x-axes). Comparing the 

Fig. 2. The orange square shows a 60 m × 60 m plot consisting of 4 DESIS 
pixels; the yellow square shows a 120 m × 120 m plot consisting of 16 DESIS 
pixels; the green square shows a 180 m × 180 m plot consisting of 36 DESIS 
pixels; the large black square shows a 240 m × 240 m plot consisting of 64 
DESIS pixels. Quadrats are not drawn to scale. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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results obtained from airborne and DESIS data revealed that there was a 
larger overlap between the spectral diversity-area curves over smaller 
sampling areas when we used DESIS data (Fig. 6c). These results indicate 
that mapping heterogeneity over smaller areas using the coarse- 
resolution DESIS VNIR data may be challenging. Similar to the 
species-area curve (Fig. 6d), the slope of the spectral diversity-area 
curves for airborne and DESIS data were not significantly different 
(Fig. 6e-f; see Tables S2–3 in Supplementary material for statistical 
analysis results). 

3.2. Capability of remotely-sensed data as proxies for grassland plant 
α-diversity 

3.2.1. Results obtained from airborne data 
We first assessed the association between grassland plant α-diversity 

and spectral diversity using airborne data with spatial resolution of 1 m. 
Specifically, we compared species richness, Shannon diversity, and 
Simpson diversity with spectral diversity. When stratifying our plots 
based on time since fire, there was no significant relationship between 

(a) (b) (c)

Fig. 3. (a) Species richness, (b) Shannon diversity, and (c) Simpson diversity of our 240 m × 240 m plots with different time since fire. We used ANOVA test to assess 
differences between groups at significance level of 0.05. Numbers below each boxplot show the number of plots in each treatment. In these boxplots, each box shows 
the middle 50% of the data points, whiskers represent the rest of the data points excluding outliers, the blue horizontal line in each box indicates the data median, the 
shaded regions can be used to assess whether medians are significantly different from each other, and hollow blue circles show outliers. Outliers are defined as values 
that are larger than 1.5 × interquartile range away from the top or bottom edges of each box. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

(a)     (b) (c)

Fig. 4. (a) Spectral diversity calculated using the 1-m airborne data, (b) spectral diversity calculated using the 30-m DESIS data, and (c) field-measured soil percent 
cover in plots with different time since fire. We used ANOVA test to assess differences between groups at significance level of 0.05. Numbers below each boxplot show 
the number of plots in each treatment. Note: In (c), “soil” refers to percent cover of soil and exposed rocks together. In these boxplots, each box shows the middle 50% 
of the data points, whiskers represent the rest of the data points excluding outliers, the blue horizontal line in each box indicates the data median, the shaded regions 
can be used to assess whether medians are significantly different from each other, and hollow blue circles show outliers. Outliers are defined as values that are larger 
than 1.5 × interquartile range away from the top or bottom edges of each box. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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species richness and spectral diversity (Fig. 7a). When we combined all 
plots together regardless of time since fire, we observed a very weak 
species richness-spectral diversity relationship (Fig. 7a; R2 = 0.08; p-val 
= 0.001). 

Similar to species richness data, spectral diversity did not have a 
significant relationship with Shannon diversity for any of the time since 
fire categories we measured (Fig. 7b). When we considered all plots 
together regardless of time since fire, the Shannon diversity-species 
richness relationship remained non-significant. 

In contrast to species richness and Shannon diversity, Simpson di-
versity was highly associated with spectral diversity for plots at the 
transitional stage (i.e., burned 1–2 years before airborne data collection; 
Fig. 7c; R2 = 0.47; p-val < 0.001). We also observed four outliers in our 
Simpson diversity-spectral diversity relationship (see the inset in Fig. 7c) 
in the recently-burned plots with high soil percent cover (average soil 
percent cover of 61%, 59%, 50%, and 21%); three of these had the 
highest soil percent cover among our 100 plots. When we removed these 
four outliers, the Simpson diversity-spectral diversity relationship for 
the recently-burned plots and all plots combined was significant (Fig. 7c; 
R2 = 0.37 and p-val < 0.001 for recently-burned plots and R2 = 0.45 and 
p-val < 0.001 when considering all plots). 

3.2.2. Results obtained from DESIS data 
Results obtained from DESIS data (spatial resolution of 30 m) agreed 

with those from airborne data, although the R2 of in-situ plant diversity- 
spectral diversity relationships were consistently weaker for DESIS data. 
We did not observe significant species richness-spectral diversity rela-
tionship for any of our time since fire categories; however, we observed 
a very weak species richness-spectral diversity relationship when all 
plots were combined regardless of time since fire (Fig. 7d; R2 = 0.07; p- 

val = 0.01). Similar to airborne data, no significant Shannon diversity- 
spectral diversity relationship was observed for any of our time since 
fire categories and all plots combined (Fig. 7e). Spectral diversity 
calculated using DESIS data had a significant relationship with Simpson 
diversity for plots at the transitional stage (Fig. 7f; R2 = 0.28; p-val =
0.00) and recently-burned stage (Fig. 7f; R2 = 0.35; p-val < 0.001), and 
all plots combined (Fig. 7f; R2 = 0.33; p-val < 0.001) after excluding four 
outliers in our recently-burned plots. 

3.2.3. Association between spectral diversity and plant diversity before and 
after controlling for the effect of soil 

Partial correlation results indicated that, for airborne data with 
spatial resolution of 1 m, after controlling for the effect of soil cover, 
associations between species richness and spectral diversity in recently- 
burned plots and Shannon diversity and spectral diversity for all data 
points combined became significant (Table 2). For DESIS data with 
spatial resolution of 30 m, after controlling for the effect of soil cover, 
partial correlations between Simpson diversity and spectral diversity in 
recently-burned plots became non-significant (Table 3). 

Since the Simpson diversity-spectral diversity association was, in 
general, the only consistently significant relationship among the three 
metrics of plant diversity for both airborne and DESIS data, we limited 
our subsequent analyses to Simpson diversity. 

3.2.4. Synthesizing results obtained from airborne and DESIS data 
Three main findings emerged from analyzing the relationship be-

tween field- and remote sensing-based plant α-diversity (Fig. 8). First, 
the association between plant diversity (Simpson diversity) and spectral 
diversity was strongly affected by time since fire. Specifically, although 
remotely-sensed spectral diversity was not capable of capturing plant 

(a) (b)

(c) (d)
Fig. 5. Our 25 sampling quadrats from two plots with the highest and lowest measured soil percent cover: (a) A plot burned on March 2021 (recently-burned stage 
with measured soil percent cover of 61%), and (b) a plot burned on March 2019 (pre-prescribed fire stage with average soil percent cover of 0%). The order of 
quadrats is the same as Fig. 1b (e.g., the top left panels in a-b represent the northwestern quadrat in Fig. 1b). The white frame in each panel is our 0.5 m × 0.5 m 
sampling quadrat. The corresponding reflectance and spectral diversity spectra of these two plots from (c) airborne data and (d) DESIS data. The inset in (c) shows the 
same wavelength range as DESIS data in (d). 
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diversity in plots at the pre-prescribed fire stage (blue line in Fig. 8a), the 
association between plant diversity and spectral diversity was signifi-
cant at the transitional and recently-burned stages across different 
spatial resolutions ranging from 1 m to 30 m (dark orange and yellow 
lines in Fig. 8a). 

Second, results suggested that spectral diversity calculated using 
coarse-resolution DESIS data can be used as a proxy for plant diversity at 
transitional-stage and recently-burned plots with R2 ranging from 0.28 
to 0.35 (dark orange and yellow pentagram symbols in Fig. 8a). When 
we combined all plots together regardless of time since fire, the asso-
ciation between plant diversity and spectral diversity was significant 
across different spatial resolutions and for both airborne and DESIS data 
(grey line and pentagram in Fig. 8a). 

Third, the results obtained from full-range (Fig. 8a) and VNIR 
airborne data (Fig. 8b) showed the added value of SWIR region of the 
spectrum for enhancing our ability to map plant diversity remotely. For 
instance, including SWIR bands increased the percent of explained 
variance (% R2) in plant diversity by approximately 10% across different 
spatial resolutions–including 30-m pixel size–when we combined all 
plots together (see Fig. S2 in Supplementary material). 

3.2.5. Capability of remotely-sensed data for mapping grassland plant 
diversity: Impact of plot size 

Sampling plot size had a considerable impact on our observed plant 
diversity-spectral diversity association (Fig. 9). While we did not 
observe any significant relationship between plant diversity and spectral 
diversity for smaller 60 m × 60 m and 120 m × 120 m plots, the 

relationship significantly improved for our larger 180 m × 180 m and 
240 m × 240 m plots at transitional and recently-burned categories, and 
for all plots combined (Fig. 9b-d). Another notable finding was the 
comparable performance of coarse-resolution DESIS data with fine- 
resolution airborne data, particularly in recently-burned plots (Fig. 9c) 
and all plots together (Fig. 9d). Collectively, these findings indicate that, 
in our experiment, the plant diversity-spectral diversity relationship was 
stronger at larger plot sizes for both airborne and spaceborne data. 

4. Discussion 

4.1. Remote sensing of plant diversity in naturally-assembled grasslands 

The challenges associated with mapping grassland plant diversity 
remotely have largely been attributed to the small size of grassland plant 
species compared to the spatial resolution of spectroscopic imagery 
(commonly referred to as “scale mismatch”; see Section 4.2 below or 
Gamon et al., 2020). Management practices in naturally-assembled 
grasslands also strongly influence heterogeneity–here, defined as vari-
ability of vegetation and soil cover, vegetation composition, or statur-
e–adding to the challenges of remote sensing of grassland plant 
diversity. Despite its importance for prairie biodiversity conservation 
(Fuhlendorf et al., 2009), the impact of management-induced hetero-
geneity on remote sensing of plant diversity remains a critical knowl-
edge gap that limits our ability to monitor plant diversity at large spatial 
extents. 

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Species-area curves, (b) spectral diversity-area curves calculated from 1 m-resolution airborne data, (c) spectral diversity-area curves calculated from 30 
m-resolution DESIS data, (d) species-area curves in ln-ln (natural logarithm) space, (e) airborne spectral diversity-area curves in ln-ln space, and (f) DESIS spectral 
diversity-area curves in ln-ln space. In these graphs, blue lines and symbols represent plots at the pre-prescribed fire stage, orange lines and symbols represent plots at 
the transitional stage, yellow lines and symbols represent recently-burned plots, and grey lines and symbols represent all burn stages combined. The shaded regions in 
(a-c) show 95% confidence intervals from 100 runs. Note: The species-area curves in (a) are generated using a subset of plots as discussed in Section 2.4.3. In 
addition, most of the species in our site are rare with low probability of being sampled. The low probability of detecting rare species means that a reasonable and 
representative sampling effort will not capture all species in the system. Therefore, the curves or whether they reach an asymptote need to be interpreted accordingly 
and cautiously. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.1.1. Spectral diversity calculated from airborne and spaceborne data was 
associated with some but not all components of plant diversity in our site 

Our findings showed that spectral diversity calculated from both 
airborne and DESIS data was, in general, strongly associated with 
Simpson diversity (Fig. 7-8). However, when we measured plant di-
versity using species richness or Shannon diversity, the plant diversity- 
spectral diversity relationship was either very weak or non-significant. 
The superior performance of spectral diversity at estimating Simpson 
diversity compared to Shannon diversity and species richness has been 
reported in previous studies in grasslands (Wang et al., 2018a) and 
tropical forests (Schäfer et al., 2016), and is likely a consequence of 
dominant species markedly influencing electromagnetic radiation 

reflected from plant communities. 
Specifically, Simpson diversity places more weight on dominant 

species in the plant community (see Table 1 and Chao et al., 2014), and 
we presume this bias towards dominant species might explain why 
Simpson diversity was strongly associated with spectral diversity 
calculated from both airborne and spaceborne data. Although we 
documented 253 species during our in-situ data collection campaign, 
most of them were rare species. For instance, the 10 most dominant 
species in our site altogether covered >65% of TGPP and the 20 most 
dominant species covered approximately 80% of our research site (Fig. 
S3 in Supplementary material). Each of the remaining species had 
average percent cover of around or <1% indicating that these rare 

(a) (b) (c)

(d) (e) (f)

Fig. 7. Association of (a) species richness, (b) Shannon diversity, and (c) Simpson diversity with spectral diversity calculated using airborne data (spatial resolution 
of 1 m). Relationship of (d) species richness, (e) Shannon diversity, and (f) Simpson diversity with spectral diversity calculated using DESIS data (spatial resolution of 
30 m). Blue circles represent plots at the pre-prescribed fire stage, dark orange squares show plots at the transitional stage, and yellow diamond symbols represent 
recently-burned plots. The small insets in (c) and (f) show all plots, including four outliers which are identified with dark circles around them. In the graphs, fitted 
lines only for significant relationships at significance level of 0.05 are shown. Equations for Shannon and Simpson diversity indices can be found in Table 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Association between spectral diversity obtained from full-range airborne hyperspectral data with spatial resolution of 1 m and plant diversity before and after con-
trolling for soil cover. In this table, “NS” indicates non-significant relationship at significance level of 0.05. Please see Table S4 for partial correlations between spectral 
diversity and plant diversity whilst controlling for the effect of soil cover.  

Time since fire Species richness-spectral diversity relationship Shannon diversity-spectral diversity 
relationship 

Simpson diversity-spectral diversity 
relationship 

Before controlling for 
the effect of soil 

After controlling for 
the effect of soil 

Before controlling for 
the effect of soil 

After controlling for 
the effect of soil 

Before controlling for 
the effect of soil 

After controlling for 
the effect of soil 

2–3 years after fire NS NS NS NS NS NS 
1–2 years after fire NS NS NS NS Significant Significant 
< 1 year after fire NS Significant NS NS Significant Significant 
All years combined Significant Significant NS Significant Significant Significant  
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species would likely occupy a very small portion of a pixel surface; this 
small percent cover is far less than the required abundance fraction for a 
phenomenon to be remotely-detectable even using subpixel methods 
(see Matteoli et al., 2010 for example). Further, as spatial resolution of 
remotely-sensed data becomes coarser (Fig. 8), the spectral signal of 
dominant species would be presumably still present. Simply put, 
although spatial resolution is coarser, remote sensing data may still see 
the spectrum of dominant species. This might explain why spectral di-
versity calculated using the 30-m DESIS data was still strongly associ-
ated with Simpson diversity despite the smoothing and adjacency effects 

in coarse-resolution images (i.e., when neighboring pixels have similar 
spectral signals). 

4.1.2. Remote sensing of plant diversity is affected by grassland 
management practices 

Time since fire significantly impacted remote estimation of plant 
diversity presumably by impacting heterogeneity, specifically vegeta-
tion and soil percent cover and vegetation height (Fig. 5). We observed a 
strong relationship between Simpson diversity and spectral diversity for 
plots at the transitional stage and those that were burned recently; but 

Table 3 
Association between spectral diversity obtained from VNIR DESIS hyperspectral data with spatial resolution of 30 m and plant diversity before and after controlling for 
soil cover. In this table, “NS” indicates non-significant relationship at significance level of 0.05. Please see Table S5 for partial correlations between spectral diversity 
and plant diversity whilst controlling for the effect of soil cover.  

Time since fire Species richness-spectral diversity relationship Shannon diversity-spectral diversity 
relationship 

Simpson diversity-spectral diversity 
relationship 

Before controlling for 
the effect of soil 

After controlling for 
the effect of soil 

Before controlling for 
the effect of soil 

After controlling for 
the effect of soil 

Before controlling for 
the effect of soil 

After controlling for 
the effect of soil 

2–3 years after fire NS NS NS NS NS NS 
1–2 years after fire NS NS NS NS Significant Significant 
< 1 year after fire NS NS NS NS Significant NS 
All years combined Significant Significant NS NS Significant Significant  

Fig. 8. Association between measured plant 
diversity expressed as Simpson diversity vs. 
spectral diversity using airborne hyper-
spectral data with pixel size of 1 m, DESIS 
hyperspectral data with pixel size of 30 m, 
and resampled airborne data at 5 m, 10 m, 
15 m, 20 m, 25 m, and 30 m resolutions. 
Airborne data used in (a) are full-range data 
(but without water vapor absorption bands) 
while airborne data used in (b) include VNIR 
bands (here, defined as wavelengths shorter 
than 927 nm to match the spectral coverage 
of DESIS). Four outliers identified in Section 
3.2 were not included in these graphs. Since 
species richness and Shannon diversity did 
not show any significant relationship with 
spectral diversity (see Section 3.2), we only 
show Simpson diversity-spectral diversity 
results here.   

Fig. 9. In addition to our 240 m × 240 m 
plots, we defined smaller plot sizes, including 
60 m × 60 m, 120 m × 120 m, and 180 m ×
180 m plots and recalculated the plant 
diversity-spectral diversity association for 
our 1-m full-range airborne data (black lines) 
and VNIR airborne data (green lines) as well 
as 30-m DESIS data (blue lines) for three 
different time since fire categories (panels a- 
c) and all plots combined (except the four 
outliers; panel d). Our sampling design is 
shown in Fig. 1b and Fig. 2. (For interpreta-
tion of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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found no Simpson diversity-spectral diversity relationship in plots at the 
pre-prescribed fire stage (Fig. 7-8). A multi-temporal study across a 
small experimental restored grassland in Central Nebraska, USA (Gho-
lizadeh et al., 2020) also reported a strong response of spectral diversity 
to time since fire, where spectral diversity was capable of estimating 
observed species richness two months after fire but did not effectively 
estimate species richness four months after fire. Results from our 
experiment (see Fig. 3a) and Gholizadeh et al. (2020) indicate that time 
since fire may not necessarily affect species richness but it does affect 
spectral diversity (Fig. 4a-b), with the recently-burned plots having the 
highest spectral variability. We speculate that grassland management 
practices can influence spectral diversity through modifying both hori-
zontal and vertical heterogeneity (Fig. 5a-b) and soil exposure (Fig. 4c); 
such management-driven impacts on spectral diversity were evident in 
our spectral diversity-area curves (Fig. 6b-c). 

We also note that disentangling the impact of soil cover on remote 
sensing of plant diversity in naturally-assembled grasslands can be 
complex, partly due to associations between heterogeneity–which also 
entails soil cover–and biodiversity at different levels of ecological or-
ganization. There might be situations where soil cover can be an indi-
cator of heterogeneity and biodiversity. In these cases, soil is not only an 
indicator of biodiversity but it increases spectral diversity at the same 
time, and thereby aids remote sensing of biodiversity. There also exist 
situations–similar to Fig. 5a–where soil exposure significantly influences 
remote sensing signals apart from any changes in biodiversity, 
hampering our ability to capture plant diversity remotely (Gholizadeh 
et al., 2018). As a result, the degree to which soil exposure matters for 
remote sensing of plant diversity appears to vary along a continuum. 

The impact of management practices on plant and community 
characteristics goes beyond just affecting structural characteristics (e.g., 
vegetation and soil percent cover or vegetation height). Prescribed fire 
can also cause variability in other remotely-observable vegetation 
functional traits that can influence spectral signals and eventually the 
detectability of diversity (Serbin and Townsend, 2020; Wang et al., 
2020). For example, fire can affect plant nutrients (Allred et al., 2011) as 
well as soil nutrients (see Section 1.3), which are also strongly linked to 
aboveground vegetation chemistry and other functional attributes 
(Cavender-Bares et al., 2021). Although we did not evaluate the impact 
of management practices on vegetation functional traits in this study, 
assessing the linkages between spectral diversity and remotely- 
observable functional traits in grasslands under different management 
practices remains an exciting research topic that is worth exploring, 
especially as full-range imaging spectroscopic data are becoming more 
accessible. 

4.2. Spatial scale is more than just spatial resolution: Plot size also needs 
to be considered in remote sensing of plant diversity 

Spatial scale has different components, such as quadrat size (or grain 
size), extent, number, shape and even distribution of grains (Palmer and 
White, 1994). Our interpretation of ecosystems, to a large degree, de-
pends on how we define spatial scale, and this makes spatial scale a 
complex topic. Understanding how spatial scale impacts our estimation 
of biodiversity has been a major endeavor in ecology, and there is a large 
body of literature on the issue of scale and scaling rules (Levin, 1992; 
O’Neill et al., 1996; Wiens, 1989). 

4.2.1. Impact of spatial resolution on remote sensing of plant diversity 
In remote sensing of biodiversity, spatial resolution (i.e., pixel size) 

has often been considered as a primary determinant of spatial scale, but 
it is only one aspect of spatial scale. The influence of spatial resolution 
on grassland plant diversity-spectral diversity relationship has been 
studied extensively, partly because the exercise of simulating coarse- 
resolution data from fine-resolution imagery and re-evaluating the 
plant diversity-spectral diversity relationship–similar to what we did in 
Fig. 8–is straightforward. Such scale-dependence experiments test the 

ecological rule that the grain size of observation should match the size of 
phenomena in question (Levin, 1992). Expressly, this means that the 
pixel size of remote sensing data should be comparable to the size of the 
plant canopy being observed. Obviously, this criterion is rarely met in 
remote sensing studies of plant diversity, especially when using coarse- 
resolution remotely-sensed data. 

Using proximal VNIR hyperspectral data at Cedar Creek Ecosystem 
Science Reserve in Minnesota, USA (Tilman et al., 2001), a significant 
correlation between species richness and spectral diversity was reported 
only for very fine spatial resolutions (1 mm to 10 cm; R2 ranging from 
approximately 0.5 to 0.2; Wang et al., 2018a). In another experiment in 
a restored prairie at Wood River, Nebraska, USA, significant species 
richness-spectral diversity relationships existed for VNIR airborne im-
aging spectroscopic data with larger pixel sizes (0.5 m to 4 m; R2 be-
tween 0.7 and 0.4; Gholizadeh et al., 2019). In our experiment, we 
observed much weaker or non-significant relationships between species 
richness and spectral diversity for airborne and DESIS data (R2 ranging 
between approximately 0.07 and 0.08 at best; Fig. 7a and d), showing 
that mapping species richness across naturally-assembled heteroge-
neous grasslands (as opposed to manipulated experimental plots) might 
be challenging (see Section 4.1). These results, altogether, suggest that 
appropriate pixel size for estimating grassland plant diversity is site- 
specific and varies from one site to another; therefore, identifying a 
universally optimal spatial resolution for capturing grassland plant di-
versity remains complicated. 

4.2.2. Impact of plot size on remote sensing of plant diversity 
One of the aspects of spatial scale that has been largely overlooked in 

remote sensing studies of plant diversity is plot size, which is used to 
estimate plant diversity across a fixed extent within a plant community. 
In our study, by defining and sampling large 240 m × 240 m plot sizes in 
the field, we had the opportunity to study the impact of plot size oper-
ationally through looking at the plant diversity-spectral diversity rela-
tionship at different plot sizes, including 60 m × 60 m, 120 m × 120 m, 
180 m × 180 m, and 240 m × 240 m plots. In recently-burned and 
transitional stage plots, the plant diversity-spectral diversity relation-
ship was significant for 180 m × 180 m and 240 m × 240 m plot sizes 
(Fig. 9); for smaller 60 m × 60 m and 120 m × 120 m plot sizes, the plant 
diversity-spectral diversity relationship was not significant. This was an 
important finding indicating that our remote sensing data were not 
capable of mapping grassland α-diversity for small plot sizes, even when 
we used fine-resolution airborne data. For instance, in case of 120 m ×
120 m plots, we had 14,400 pixels in our airborne data to calculate 
spectral diversity for each plot, yet spectral diversity was not capable of 
capturing observed plant diversity estimated from 10 quadrats (Fig. 9; 
see Fig. 2 for sampling design). Our results were in agreement with 
Oldeland et al. (2010) where a stronger plant α-diversity-spectral di-
versity relationship was reported for larger sampling plots, presumably 
due to higher species and spectral diversity value ranges over larger 
areas. These results indicate that, in our site, remotely-sensed data might 
be capable of capturing regional diversity (i.e., γ-diversity, composed of 
both α- and β-diversity) rather than local diversity (i.e., α-diversity) 
alone. These findings, together, revealed that in addition to spatial 
resolution (i.e., pixel size), dimensions of a sampling plot is an equally 
important aspect of spatial scale that we need to consider in remote 
sensing of plant diversity. 

The importance of plot size is usually overlooked in remote sensing 
studies despite the fact that prior ecological studies have suggested that 
plot size influences our estimates of plant diversity (Kettenring and 
Adams, 2011; Meier and Hofer, 2016). Plot size–or field sampling design 
as a more comprehensive term–in remote sensing studies of plant di-
versity is often decided and finalized prior to planning remote sensing 
data collection or independent from it to address other goals that might 
not overlap with the remote sensing study goals. We consider this 
mismatch between remote sensing and field sampling design a missed 
opportunity. Remote sensing is probably the only feasible means of 
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providing spatially continuous estimates of plant diversity globally, 
beyond small plots. Consequently, it is important to examine what 
remote sensing can measure from above and what the limits are. A 
central question is whether we can measure plant diversity for small 
geographical extents at fine resolution (i.e., α-diversity) or whether it 
would be more accurate to focus on mapping species turnover (i.e., 
β-diversity) or plant diversity across large geographical extents at 
coarser resolution (i.e., γ-diversity). This effort may not be fully realized 
without considering field sampling design in remote sensing studies. In 
the next several years, a number of spaceborne imagers, such as SBG and 
CHIME will be launched; if we are to develop remote sensing metrics to 
map plant diversity and eventually design a global biodiversity moni-
toring network, assessing different components of spatial scale, 
including plot size and sampling strategy is warranted. 

4.3. SWIR region of the spectrum enhances remote sensing of plant 
diversity 

A few studies have explored the contribution of different regions of 
the spectrum to the plant diversity-spectral diversity relationship (Wang 
et al., 2018b). Gholizadeh et al., 2018, for example, reported that the 
670–680 nm range can facilitate distinguishing plant communities with 
different levels of species richness. However, to our knowledge, the 
impact of remotely-sensed SWIR bands versus VNIR bands on the plant 
diversity-spectral diversity relationship has not been extensively stud-
ied, with most studies using one or the other depending upon the in-
strument available. Comparing results obtained from our airborne data 
with and without SWIR bands showed that including this region of the 
electromagnetic spectrum enhanced our ability to map plant diversity 
(Fig. 8 and Fig. S2 in Supplementary material). Contribution of SWIR 
bands can point to the significant impact of specific plant traits, espe-
cially water–which dominates reflectance in the SWIR region (Carter, 
1991)–along with traits such as cellulose, lignin, proteins, and several 
nutrients (Curran, 1989; Fourty et al., 1996; Kokaly et al., 2009). 
Collectively, these findings indicate the promise and utility of full-range 
airborne–and even SBG-like spaceborne data–for mapping plant di-
versity in grasslands. 

4.4. Limitations and future work 

4.4.1. In-situ data collection efforts need to be intensive 
While collecting, pre-processing, and analyzing airborne and space-

borne hyperspectral data with fine and coarse spatial resolution from 
relatively large geographical regions is feasible thanks to recent tech-
nological and methodological advances, these remotely-sensed data 
need to be accompanied with in-situ data to make more reliable in-
ferences. Although we sampled species composition and percent cover 
extensively across a total of 2500 locations within 100 plots in a 
naturally-assembled grassland under different management practices, 
this sampling still had its own limitations. Of note is the total surveyed 
area per plot. We sampled 25 equally-spaced 0.5 m × 0.5 m quadrats 
within each 240 m × 240 m plot. This total surveyed area per plot 
cannot fully capture species diversity, particularly for locations in 
diverse and heterogeneous communities, where the probability of 
sampling all rare species is low (Reichert et al., 2010). While our in-situ 
sampling effort was one to two orders of magnitude larger than previous 
published efforts in terms of the number of sampled locations, the extent 
of the study area, total surveyed area, and person-hours spent on in-situ 
data collection, we still encourage future efforts to be more intensive 
when possible. Such intensive in-situ data collection efforts can further 
reduce the uncertainty associated with validating remote sensing of 
biodiversity results. 

4.4.2. There are many metrics to express in-situ and remotely-sensed plant 
diversity 

In this study, we used three metrics to express in-situ plant diversity 

(Table 1). However, there are a plethora of approaches to express in-situ 
species diversity that we did not test (Maurer and McGill, 2011). Simi-
larly, while we used three different spectral diversity metrics and re-
ported the results of one of these metrics (CV), there are many more 
approaches that we did not use. These metrics can be continuous 
collapsed approaches (similar to CV), discrete spectral species ap-
proaches (Féret and Asner, 2014), or even those based on vegetation 
indices that assume a positive biodiversity-productivity relationship, 
although we did not observe strong association between measured plant 
diversity and proxies of productivity in our site (Fig. S4 in Supplemen-
tary material). Different in-situ or remote sensing metrics of biodiversity 
are used in the literature not necessarily because they are perfect but 
rather because they have been commonly applied in the past or they are 
easy to derive. Therefore, assessing different metrics of biodiversity to 
identify under what circumstances each of these metrics work is still an 
open question in remote sensing studies of biodiversity. 

4.4.3. Impact of seasonal variation on remote sensing of plant diversity 
The majority of remote sensing studies of plant diversity select an 

optimal time for data collection which is determined based on the 
ecosystem under study (e.g., peak growing season for temperate grass-
lands). In our experiment, we collected data at one point in time and 
therefore we did not assess the impact of plant phenology–in and of 
itself–on spectral diversity. In other words, focusing on one remote 
sensing data collection campaign limited our ability to study the impact 
of temporal variation on vegetation and remote sensing of plant di-
versity. Although there was only one cloud-free DESIS image over the 
growing season in our site, promising results obtained from DESIS data 
indicate that forthcoming spaceborne hyperspectral imagers, which will 
have much finer temporal resolution than DESIS, can assist with multi- 
temporal assessment of plant diversity. 

4.4.4. Remote sensing of grassland plant diversity needs to be tested under a 
variety of management practices 

Management across our site is conducted to promote heterogeneity 
(i.e., variability in vegetation and soil cover, vegetation composition, or 
stature in space and time) with the goal of maintaining and enhancing 
grassland biodiversity. We note that not all grassland management re-
gimes are similar in their approach regarding biodiversity maintenance 
or their ability to promote heterogeneity (Fuhlendorf et al., 2012). There 
is a distinct dichotomy between some traditional grassland management 
practices and those at our site. Briefly, traditional practices have his-
torically promoted homogenization of grassland landscapes in line with 
utilitarian objectives such as livestock production. For example, some 
traditional management practices have historically included annual 
prescribed fires applied to the whole landscape (instead of different 
patches as in our experiment) and used infrastructure to promote uni-
form distribution of grazing animals across the landscape. Such tradi-
tional management practices, which have been referred to as “managing 
for the middle” (Fuhlendorf and Engle, 2004) are based upon ecological 
theories, including the intermediate disturbance hypothesis, predicting 
that intermediate levels of disturbance lead to maximum biodiversity 
(Connell, 1978). As a result of such striking differences in grassland 
management approaches and how they influence the landscape (e.g., 
promoting heterogeneity vs. uniformity), we suggest that conducting 
similar experiments in other grasslands with different management 
practices can be a promising future research avenue which benefits both 
the remote sensing and conservation communities. 

5. Conclusions 

In this study, we assessed the capability of remotely-sensed hyper-
spectral data for mapping plant α-diversity in a naturally-assembled 
heterogeneous tallgrass prairie of high conservation importance. We 
tested for associations between spectral diversity and plant diversity by 
comparing fine-resolution airborne (spatial resolution of 1 m) and 
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coarse-resolution DESIS spaceborne imagery (spatial resolution of 30 m) 
to robust in-situ species diversity data. Our results showed that when we 
expressed plant diversity as species richness or Shannon diversity, the 
plant diversity-spectral diversity relationship was non-significant or 
very weak across spatial resolutions (i.e., pixel sizes) ranging from 1 m 
to 30 m. Simpson diversity, on the other hand, was strongly associated 
with spectral diversity calculated using both airborne and spaceborne 
data for grassland plots at the transitional stage or those that were 
burned recently. We found no significant relationship between Simpson 
diversity and spectral diversity in plots at the pre-prescribed fire stage. 
We also found that regardless of spatial resolution and time since fire, 
there was no significant relationship between plant diversity and spec-
tral diversity for small plots (i.e., 60 m × 60 m and 120 m × 120 m). 
These results show that (1) management-induced heterogeneity affects 
remote sensing of plant diversity; therefore, considering the history of 
management practices is necessary for proper interpretation of remote 
sensing results, (2) fine- and coarse-resolution remotely-sensed data can 
be used to estimate grassland plant diversity metrics that are biased 
towards dominant species (e.g., Simpson diversity), and (3) attention to 
sampling design and plot size in remote sensing studies of plant diversity 
is warranted. 

By using DESIS data, our study also provided a first-cut look at the 
potential of forthcoming spaceborne imagers for mapping plant di-
versity in grasslands. Although DESIS collects data only in the VNIR 
portion of the spectrum and does not include SWIR bands, it was still 
capable of estimating grassland plant diversity, when expressed as 
Simpson diversity. These results indicate the promise of forthcoming 
hyperspectral missions–such as NASA’s SBG mission or ESA’s CHIME 
with comparable spatial resolution to DESIS but superior spectral 
coverage with data collection capabilities at both VNIR and SWIR 
regions–for capturing plant diversity in naturally-assembled grasslands. 
Our study contributes to the development of an operational global 
biodiversity monitoring system which can eventually facilitate a deeper 
understanding of the effectiveness of different grassland management 
practices to maintain biodiversity in the face of rapid environmental 
change. 
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