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Abstract
Foreknowledge of the spatiotemporal drivers of crop yield would provide 
a valuable source of information to optimize on-farm inputs and maxi-
mize profitability. In recent years, an abundance of spatial data provid-
ing information on soils, topography, and vegetation condition have be-
come available from both proximal and remote sensing platforms. Given 
the wide range of data costs (between USD $0−50/ha), it is important to 
understand where often limited financial resources should be directed 
to optimize field production. Two key questions arise. First, will these 
data actually aid in better fine-resolution yield prediction to help opti-
mize crop management and farm economics? Second, what level of pri-
ority should stakeholders commit to in order to obtain these data? Before 
fully addressing these questions a remaining challenge is the complex 
nature of spatiotemporal yield variation. Here, a methodological frame-
work is presented to separate the spatial and temporal components of 
crop yield variation at the subfield level. The framework can also be used 
to quantify the benefits of different data types on the predicted crop yield 
as well to better understand the connection of that data to underlying 
mechanisms controlling yield. Here, fine-resolution (10 m) datasets were 
assembled for eight 64 ha field sites, spanning a range of climatic, top-
ographic, and soil conditions across Nebraska. Using Empirical Orthog-
onal Function (EOF) analysis, we found the first axis of variation con-
tained 60–85 % of the explained variance from any particular field, thus 
greatly reducing the dimensionality of the problem. Using Multiple Lin-
ear Regression (MLR) and Random Forest (RF) approaches, we quanti-
fied that location within the field had the largest relative importance for 
modeling crop yield patterns. Secondary factors included a combination 
of vegetation condition, soil water content, and topography. With respect 
to predicting spatiotemporal crop yield patterns, we found the RF ap-
proach (prediction RMSE of 0.2−0.4 Mg/ha for maize) was superior to 
MLR (0.3−0.8 Mg/ha). While not directly comparable to MLR and RF the 
EOF approach had relatively low error (0.5–1.7 Mg/ha) and is intrigu-
ing as it requires few calibration parameters (2–6 used here) and uti-
lizes the climate-based aridity index, allowing for pragmatic long-term 
predictions of subfield crop yield. 

Keywords: Maize and soybean, Yield, Spatiotemporal, Statistics, Remote 
sensing 

1. Introduction 

Understanding the spatiotemporal patterns of crop yield, along with 
our inability to accurately predict those patterns with a reasonable 
lead time, remain key limitations in making management decisions to 
optimize limited resources (e.g., water, energy, and fertilizer) while 
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maximizing on-farm profitability (Maestrini and Basso, 2018 and Gib-
son et al., 2019). In recent years, there has been a rapid rise in the 
types and scales of available remote sensing observations, with a num-
ber of new ground, unmanned and manned aircraft and satellite based 
platforms suitable for field-scale applications that fill this knowledge 
gap (Azzari et al., 2017; Bolton and Friedl, 2013; Mancini et al., 2013; 
McCabe et al., 2017a,b; Manfreda et al., 2018; Ziliani et al., 2018). 
Collectively, remote sensing observations from these data platforms 
provide a suite of variables that can describe topography, soils, veg-
etation condition, and qualitative crop health difference, all of which 
can be used as inputs to parameterize relatively simple (e.g. FAO56; 
Allen et al., 1998) and more complicated crop models (e.g. AquaCrop, 
Hybrid-Maize, DSSAT, APSIM) (Foster et al., 2017; Yang et al., 2013; 
Jones et al., 2003; Holzworth et al., 2014). Although the latter have 
been significantly improved within the last three decades (Jin et al., 
2018), a major limitation of crop models remains their inability to be 
discretized spatially and provide information on spatial variations of 
actual within field condition (Kasampalis et al., 2018). It is expected 
that combining these new remote sensing and in-situ sensing technol-
ogies with crop models will lead to improved crop yield predictions. 
For example, several studies have combined statistical techniques (i.e. 
both linear and nonlinear approaches) with remote sensing to make 
yield predictions in the Midwest USA (Bolton and Friedl, 2013; Peng 
et al., 2018; Li et al., 2019), West Africa (Leroux et al., 2019; Gibon 
et al., 2018) and East Africa (Burke and Lobell, 2017) at field to re-
gional scales. However, the cost for acquiring each data layer, as well 
as its spatial and temporal resolution and latency can be highly vari-
able (McCabe et al., 2017a,b), so determining the relative cost-to-ben-
efit ratio of these data for improving crop management is a key deter-
minant in their utility.  

While the range of sensing possibilities have expanded, the sensors 
that measure these geophysical, biophysical and biochemical proper-
ties utilize a range of wavelengths of the electromagnetic spectrum, 
making interpretation to useful agronomic information challenging 
(Maestrini and Basso, 2018; Haghverdi et al., 2015; Finkenbiner et al., 
2019). For example, multispectral sensors onboard airborne and sat-
ellite platforms collect data in the visible and near infrared spectrum 
that can be used to describe various aspects of vegetation condition 
typically through the calculation of spectral-based vegetation indices 
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(e.g. normalized vegetation difference index, soil adjusted vegetation 
index, green chlorophyll content, pigment based indices, see Vina et 
al., 2011). However, there remains limited guidance on which specific 
index may work best for any particular case. Recent machine learn-
ing-related research have sought to explore this topic, indicating that 
unique combinations of many vegetation indices enhance prediction of 
key biophysical indicators (Shah et al., 2019) relative to using a single 
index. Ground based sensors are able to capture a wider range of the 
electromagnetic spectrum (O∼103 m for broadband radio to O∼10−12 m 
for gamma rays) that can go beyond just sensing the vegetation can-
opy and penetrate deeper into the soil. These sensors can provide in-
formation about soil texture and soil water content (SWC) (see Robin-
son et al., 2008; Binley et al., 2015; Desilets et al., 2010; Finkenbiner 
et al., 2019) throughout the root zone and at spatial scales (tens of 
meters) that are more pragmatic for agricultural applications. How-
ever, the conversion and interpretation of the geophysical observa-
tion (e.g. bulk electrical conductivity towards predicting soil texture 
and neutron and gamma ray intensity towards predicting SWC) re-
mains challenging and somewhat disconnected from agronomic de-
cision making. In general, the scale difference between observations 
of state variables from remote and proximal sensing and the physi-
cally-based modeling parameters (e.g. prediction of saturated hydrau-
lic conductivity, Binley et al., 1989) that control fluxes remains a chal-
lenge (Peters-Lidard et al., 2017). 

For all these data sources (and available modeling approaches dis-
cussed above), several important unanswered questions remain. First, 
will these data actually aid in better fine-resolution yield prediction to 
help optimize crop management and farm economics? Second, what 
level of priority should the producer, farm manager, private consul-
tant and/or state and federal agencies commit to in order to obtain 
these data (i.e., the value proposition)? As the answer to these ques-
tions requires information on economic costs (i.e. price of data, ca-
pacity to process data, cost to transform them into a decision mak-
ing platform for producers, etc.), here, as a first step, we aim instead 
to quantify the benefits of the data on understanding and predicting 
subfield crop yield. To do this, we have compiled a unique fine-reso-
lution (10 m) crop yield dataset from eight 64 ha study sites that span 
a climatic gradient across the state of Nebraska. At each site we have 
assembled data layers related to topography (freely available fine-
resolution Light Detection and Ranging (LiDAR) system), soil texture 



Franz  et  al .  in  Field  Crops  Research 252  (2020)      5

and soil water content (ground based hydrogeophysical mapping), 
and vegetation condition (freely-available Landsat satellite image ar-
chive). In order to separate the spatial and temporal components of 
crop yield we use the approach of Empirical Orthogonal Functions 
(EOF), which has been used in other scientific disciplines (e.g. Perry 
and Niemann, 2007) but limited use in agricultural research to our 
knowledge. The separation of space and time is a key advance of this 
work in better understanding crop yield patterns. Next we are able to 
explore the contribution of each covariate to understanding yield pat-
terns by using common statistical approaches like Multivariate Linear 
Regression and Machine Learning (i.e. Random Forest). Importantly, 
we seek to develop a statistical framework that balances generality 
and parsimony for making fine-resolution predictions of crop yield. 

2. Materials and methods 

2.1. Study sites 

A total of eight approximately 64 ha study sites were selected across 
a climatic and irrigation gradient within the state of Nebraska (Fig. 
1 and Table 1). Sites were identified based on the availability of his-
toric crop yield maps and corresponding hydrogeophysical surveys 
that were compiled to generate a 10m resolution product that detailed 
soil, topographic, and vegetation condition. Seven of the study sites 
were irrigated by overhead sprinklers from center-pivots, with the re-
maining site being rainfed (S8). All sites primarily grow maize (Zea 
mays L.), with most of the eastern sites rotating in soybeans (Glycine 
max) in alternating years. Planting typically occurs in late April to 
early May depending on field and weather conditions. Irrigation gen-
erally starts in mid-June and continues through early September, de-
pending on crop development and weather. 

2.2. Data sources and processing 

2.2.1. Climate 

The general climate and monthly crop water use of Nebraska are de-
tailed in Sharma and Irmak (2012a,b). Here, weather data for each 
study site was obtained from the nearest (< 20 km) Nebraska Mesonet 
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station, formerly referred to as the Automated Data Weather Network 
(see https://mesonet.unl.edu/fordataaccessandQA/QCprocedures). 
Table 1 provides the station name, years of record used for the analy-
sis, and average growing season (May to September) precipitation (P) 
and reference evapotranspiration (ETo) using a modified Penman ap-
proach (see https://hprcc.unl.edu/awdn.php#fordetails). With respect 
to quantifying year to year climate conditions we will use the grow-
ing season aridity index = P/ET0. The aridity index (Budyko, 1974) is a 
simple yet powerful ratio that is capable of representing biogeographi-
cal distributions of vegetation across the globe (Kerkhoff et al., 2004). 

Fig. 1. a) Location of eight-64 ha study sites in the state of Nebraska, USA, in clus-
ters in the b) west, c) central, and d) eastern part of the state. See Table 1 for a de-
scription of each site, Table 2 for a list of available datasets, and Supplementary Ta-
ble S1 for 10m resolution QA/QC data. 

https://mesonet.unl.edu/fordataaccessandQA/QCprocedures
https://hprcc.unl.edu/awdn.php#fordetails
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In addition, long-term forecasts (months instead of weeks) of aridity 
index are more pragmatic than daily weather given the current state 
of weather forecasting skill. For each year where crop yield informa-
tion was available (see Supplementary Table S1 for each site year), 
the daily Mesonet data were downloaded and cumulated to seasonal 
totals for use in this research. The western sites (S1−3) are hot and 
dry, with a growing season P of approximately 300 mm, ETo of around 
1100 mm, daily temperature of 19 °C, and relative humidity of 50 %. 
The central sites (S4−5) are also hot and dry, with a growing season P 
of 325 mm, ETo of 1000 mm, daily temperature of 19 °C, and relative 
humidity of 60 %. The eastern sites (S6−8) are hot and humid, with 
a growing season P of 450 mm, ETo of 850 mm, daily temperature of 
19 °C, and relative humidity of 70 %. The net irrigation requirement 
for maize and soybean generally follows the growing season P and 
ETo, with net irrigation values in the east more than double those re-
quired in the west (i.e. reflecting the variability in rainfall along that 
gradient; see Table 1 for more details). 

2.2.2. Topography 

The topographic data were collected for each site using a fine-res-
olution 1m Digital Elevation Model (DEM) available for the state of 
Nebraska from LiDAR surveys provided by the United States Depart-
ment of Agriculture Natural Resource Conservation Service (data pro-
cessed on 9 July 2019). For each of the eight study sites, the DEM was 
clipped as a GeoTIFF file format to the field boundary and aggregated 
to the same 10m resolution grid as the other datasets using MATLAB 
R2018b (MathWorks, Natick, Massachusetts, USA) and a linear inter-
polation. Supplementary Table S1 provides the 10m dataset for each 
site and Fig. 2 illustrates the distribution of relative elevation. The 
box and whisker plots illustrate the sites where large topographic re-
lief exists (S2, 4, 5). 

2.2.3. Soils 

The soil texture and near surface soil water content (SWC) data 
were collected with a series of hydrogeophysical surveys (see Supple-
mentary Table S1 for survey dates and all QA/QC data). Soil texture 
information is inferred from electromagnetic induction (EMI) surveys 
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measuring bulk electrical conductivity, ECa (see for example Samoue-
lian et al., 2005; Abdu et al., 2008), while near surface SWC is inferred 
from low energy neutron intensity surveys (Desilets et al., 2010; Zreda 
et al., 2012). The hydrogeophysical surveys were collected at each of 
the study sites using an all-terrain vehicle (ATV). Surveys were car-
ried out between the spring of 2015 through 2018 when field access 
was available (see Finkenbiner et al., 2019 and Gibson and Franz, 2018 
for additional site information of surveys). ECa maps were collected 

Fig. 2. Box and whisker plot of each study site’s 10m resolution a) relative elevation, 
an b) Bulk electrical conductivity (ECa) shallow survey, and an c) ECa deep survey 
dataset to illustrate relative in-field variation between study sites. The red line is 
the median, the top and bottom of the boxes are the 25 and 75 % quantile, the top 
and bottom whiskers are the minimum and maximum.  



Franz  et  al .  in  Field  Crops  Research 252  (2020)       10

using a Dualem-21S EMI sensor (DUALEM, Milton, Canada). Four si-
multaneous depths of ECa can be measured with the sensor given the 
dual-geometry receivers at separations of 1 and 2.1m from the trans-
mitter. For this analysis, only one shallow (approx. 0–1 m) and one 
deep (approx. 0–3.2 m) survey sensor data were used. Measurements 
of ECa were taken every second while being towed behind an ATV (on 
a plastic sled) traveling at speeds of around 8–15 km/h, with spacing 
every approx. 8 m, and surveys taking between 75–90 min. A Hemi-
sphere GPS XF101 DGPS (Juniper Systems, Inc., Logan, UT) unit re-
corded the location of each measurement. Following basic QA/QC of 
the ECa data (Franz et al., 2011), a spatial map of ECa with 10m reso-
lution was created from the more than 5000 observations using lin-
ear interpolation. We note that temporal differences in ECa maps stem 
from changes in soil temperature, SWC, and soil solute concentration 
(Robinson et al., 2008). SWC has been shown to account for approxi-
mately 50 % of this variability (Brevik et al., 2006) between surveys. 
Removal of this confounding factor for isolating soil texture will be 
addressed in further detail in Sections 2.3.1 and 3.1. With respect to 
soil texture, low ECa values generally indicate sandier soils, whereas 
higher ECa values indicate higher silt and clay material. Fig. 2 illus-
trates the spatial distribution of a single bulk electrical conductiv-
ity survey collected from each site (presented here as ECa Shallow 
in mS/m), illustrating the degree of soil texture variation that exists 
within and between the study locations. 

Near surface SWC data was collected using the same ATV setup for 
bulk conductivity, but deploying a mobile Cosmic-Ray Neutron Sensor 
(CRNS; Hydroinnova LLC, Albuquerque, NM; see Franz et al., 2015; 
Finkenbiner et al., 2019 for details of the instrument setup). The mo-
bile CRNS used here records epithermal neutron intensity (from 0.25 
to 1000 eV; Andreasen et al., 2017) integrated over one minute count-
ing intervals. The change in epithermal neutron intensity is inversely 
correlated to the mass of hydrogen in the measurement volume (Zreda 
et al., 2012). The authors note that SWC changes are by far the largest 
driver of change in hydrogen mass (McJannet et al., 2014). Numerous 
validation studies across the globe (Bogena et al., 2013; Franz et al., 
2012, 2016, Hawdon et al., 2014; Schron et al., 2018) have shown the 
CRNS to have area-average measurement accuracies of less than 0.03 
cm3/cm−3 root mean square errors (RMSE), when compared against a 
range of industry standard SWC point scale probes. The measurement 
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volume of the instrument is roughly a disk, with a 130−250m radius 
and a penetration depth of 0.15–0.40m (Kohli et al., 2015; Schron et 
al., 2017), depending on local conditions (e.g. elevation, water vapor, 
SWC etc.). For simplicity, a constant penetration depth of 0.3m was as-
sumed for all surveys. In order to produce a 10m resolution SWC map 
(approx. 75–90 observations) we followed the same image sharpening 
procedure described in Gibson and Franz (2018). The image sharp-
ening technique (i.e. drop-in-the-bucket inverse distance weighting) 
uses the series of overlapping coarse images to construct a finer res-
olution product and is routinely used in remote sensing applications 
with this type of data (see Chan et al., 2014 for details). 

2.2.4. Vegetation condition 

Vegetation condition information was inferred using a peak growing 
season, Green Chlorophyll Vegetation Index [GCVI = (NIR/Green) – 1]  
(Gitelson et al., 2003), calculated from multispectral, 30m Landsat im-
agery for the years 2000 to 2017 (see Supplementary Table S1 for site 
data by year). Given the approximately 16 day overpass repeat cycle 
of Landsat, and the obfuscating impacts of cloud cover and other non-
ideal atmospheric conditions on obtaining clear-sky retrievals, the spe-
cific dates of the derived Landsat-based GCVI data may vary from mid-
July to mid-August. Since the green and near-infrared spectral bands 
of Landsat image data used to calculate the GCVI were only available 
at 30m resolution, each 10m resolution pixel that forms the explana-
tory variables is assigned to a GCVI value using a nearest neighbor fil-
ter. We note that GCVI has been shown to outperform more commonly 
used indices like Normalized Difference Vegetation Index (NDVI, Rouse 
et al., 1973) for predicting maize yield and was thus selected here (see 
Burke and Lobell, 2017). 

2.2.5. Crop yield 

Dry crop yield information was provided by analyzing the com-
bine harvester data. Typically, around 60,000 records were available 
for each 64 ha study site per year. With respect to yield data QA/QC, 
the yield monitoring equipment was calibrated at the beginning of 
the year for each grain type by weighing the grain collected from a 
known area using a certified scale and comparing it to the pressure 
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plate estimated grain total (personal communication with university 
farm managers and private producers, December 2019). Moisture con-
tent of the grain was tested at the elevator directly following harvest 
of the calibration area as well as on-site using a portable moisture 
meter at selected sites. These direct moisture content readings were 
compared with the combine moisture content readings. The calibra-
tions were conducted across large representative areas to ensure that 
sufficient yield was collected for each calibration. Furthermore, cal-
ibrations were verified at the end of each field using the total scale 
ticket weights collected at the elevator. In order to aggregate these 
data points to a gridded 10m resolution, we removed those records 
(less than 0.1 %) outside of an expected range for these sites (0−24 
Mg/ha for maize and 0−12 Mg/ ha for soybean) for the reported mois-
ture-standardized, dry grain yield data. Next, given the inherently 
noisy data at the approximate 1m resolution, a smoothing filter tech-
nique was applied (i.e. an inverse distance weighted procedure with 
a search radius of 50 m) to produce a 10m product. Supplementary 
Table S1 contains the yearly yield data available for each field. Addi-
tional information about identification of yearly crop yield outliers 
will be discussed in Section 3.4. 

2.3. Methodological framework 

With the advance and widespread use of yield monitoring in com-
mercial agricultural and fine-resolution remote sensing data (Burke 
and Lobell, 2017), it is now possible to obtain fine-resolution crop 
yield maps across the globe and for numerous crop types. However, 
connecting the mechanistic causes for yield variation with a capac-
ity to make optimal input decisions remains challenging. One prob-
lem is the complex nature of spatiotemporal yield variation. In order 
to simplify this problem, we propose a set of statistical techniques to 
separate the spatial and temporal components of yield variation and 
investigate the environmental controls on each component. We note 
that the separation of variables is a common and powerful technique 
in solving partial differential equations (Haberman, 1998) and we take 
analogous steps here using the statistical technique of Empirical Or-
thogonal Function (EOF). In order to help guide the reader through 
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the various analysis used here, Fig. 3 summarizes the methodological 
framework including the statistical techniques and data sources. The 
following sections will discuss each step in more detail. 

Fig. 3. Methodological framework that summarizes the EOF analysis that separates 
yield into spatial and temporal components. Subsequent steps illustrate different 
statistical analyses used to quantify the relative importance of spatial and tempo-
ral covariates as well as yield prediction. We note the left hand side has been used 
in previous work and the right hand side is the proposed approach here. Full docu-
mentation of R code steps and results are provided in Supplemental Table 4. 
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2.3.1. Overview of empirical orthogonal function (EOF) analysis 

With respect to the spatiotemporal variation of crop yield we are 
able to use the EOF technique to separate the spatial and temporal 
components as well as to reduce the dimensionality of the data (see 
Perry and Niemann, 2007; Korres et al., 2010). The crop yield data 
Y(x, t), where x is spatial location and t is time, can be decomposed 
in the following way: 

(1)

where k is the dimensionality of the input data (here the number of 
annual yield maps), EOF(x) is the set of time-invariant orthogonal 
spatial patterns, EC(t) is a set of time series expansion coefficients, 
and Y (t) is the field average yield. We note that EOF is nearly iden-
tical to Principal Component Analysis (PCA), save for the splitting of 
axes of variation into spatial and temporal coefficients instead of ar-
bitrary linear combinations. Based on the calculated EOF, the origi-
nal coordinate system is rotated into a new system aligned along per-
pendicular axes (similar to PCA). By retaining only significant EOF/EC 
pairs (based on a threshold of explained variance), EOF analysis can 
effectively reduce the dimensionality of the dataset (denoted by keff) 
while preserving most of the variability present in the data. 

Following Franz et al. (2017), for any time repeating dataset like 
crop yield, we have n locations (here a 10m resolution of approx. 7000 
grid cells) and k observations (number of annual crop yield maps 
available), where the spatial anomalies of the crop yield observations 
can be computed as: 

(2)

where ai(t) and si(t) are the crop yield observation spatial anomaly 
and yield observation at location i and time t, respectively. A matrix 
of crop yield observation spatial anomalies, A (capital letters in bold 
denote matrices), can be constructed as: 

(3)
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Then, an empirical covariance matrix V can be calculated as: 

(4)

where the superscript T indicates the matrix transpose. To perform 
EOF analysis, we find eigenvectors and eigenvalues for V, which sat-
isfy the following equation: 

(5)

where E contains eigenvectors (i.e. ECs) in columns: 

(6)

and L contains eigenvalues along the diagonal: 

(7)

The above procedure rotates the original coordinate axes, with each 
axis indicating a sampling time, into a new set of orthogonal coordi-
nate axes with each eigenvector representing a new axis. The eigen-
values explain the variance in the data along the direction of each cor-
responding new axis, and the portion of the explained variance (EVk) 
by the ith new axis in the total variance can be computed as: 

(8)

The eigenvectors are then arranged according to eigenvalues: the 
first axis explains the largest variance in the data, while each follow-
ing axis explains the largest remaining variance and is orthogonal to 
other axes. The EOFs are then found by projecting A onto E 

(9)

where F contains each EOFs in columns. Based on the explained vari-
ance, only significant EOF/EC pairs are retained for the remaining 
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analysis (here defined as a threshold of greater than 10 % explained 
variance and denoted by keff; see Peres-Neto et al. (2005) for a more 
complete discussion). 

We note that the EOF analysis can be used on any time repeat spa-
tial data, which will be explored in this work in order to analyze soil 
characteristics, vegetation condition, in addition to crop yield. Specif-
ically we will perform EOF analysis on the ECa, SWC, GCVI, and crop 
yield datasets for each available year for the eight study sites. Sup-
plementary Table S1 contains the first axis EOF spatial coefficients 
(EOF1) for each dataset and 10m grid, as well as the explained vari-
ance in the first axis (Table 2). Finkenbiner et al. (2019) and Gibson 
and Franz (2018) found that using EOF analysis on the ECa dataset 
effectively isolated the soil hydraulic component of the signal, thus 
eliminating other confounding factors influencing ECa values (such as 
temperature and SWC). 

2.3.2. Relative importance of covariates in spatial and temporal 
patterns of crop yield 

In order to understand the relative importance of the included 
covariates (topography, soil texture variation, SWC, vegetation con-
dition) we utilized both linear and nonlinear statistical models. For 
all analyses we used the software R (R-3.6.1; R Core Team; www.r-
project. org) and have included the results of each study site in the 
supplemental material. The supplemental tables include the input 
dataset, function used, and results of the analysis for full reproduc-
ibility and transparency of the work. We note that all input covari-
ates were scaled by subtracting the mean and dividing by the stan-
dard deviation before running analyses. For the linear statistical 
model we used best subset Multivariate Linear Regression (MLR) to 
identify statistically-significant covariates using the lowest Bayes-
ian Information Criterion to select the model. We also used the Vari-
ance Inflation Factor to check for and remove any mutlicollinearity 
(Chatterjee and Price, 1977). In order to calculate the model param-
eter relative importance for the selected model, we used the Linde-
man, Merenda and Gold method (Gromping, 2006 and Soofi et al., 
2000). For statistical evaluation, we split the data in half for train-
ing and testing. Using the test data, we computed various prediction 
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metrics including: coefficient of determination (R2), bias, RMSE, and 
unbiased RMSE (ubRMSE): 

(10)

(11)

(12)

(13)

where n is the total number of crop yield data points in the test data-
set, i, Oi, and Pi, are the observed and predicted crop yield of the ith 
data point, and the overbar denotes the average respectively. 

For the nonlinear statistical model we used a Random Forest (RF) 
approach (Breiman, 2001). The RF is a non-parametric machine learn-
ing approach that uses many decision trees as base level classifiers, 
with each decision tree trained on a different sub-set of the input data, 
referred to as bootstrap sample. For each tree, the observations that 
are randomly included in the bootstrap sample are referred to as “in-
bag” samples, the observations excluded are referred to as “out-of-
bag” samples. The RF approach averages these multiple decision trees 
to provide a more robust prediction than would be available from any 
single decision tree. Machine learning approaches have proliferated in 
the literature in recent years (Belgiu and Dragut, 2016), with the ap-
plication of many techniques for enhanced data analysis. One of the 
reasons for exploring the RF approach here is the history of technique 
in similar applications (Shah et al., 2019), where it has been shown to 
provide good accuracy, while avoiding the issues associated with over-
fitting. Here we used the software package R, with 1000 regression 
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trees, and a minimum leaf size of 5 (i.e. number of observations in 
the end node of a decision tree) on the training data (see Supplemen-
tal material for full functions and results). The out-of-bag samples are 
used to calculate the percentage increase in MSE when we remove a 
particular covariate from the model, this gives us information regard-
ing the relative importance of each covariate. The test data set is used 
to calculate the prediction RMSE and prediction R2. 

3. Results 

3.1. EOF analyses 

EOF analyses (see Section 2.3.1) were performed on all site data 
for SWC, ECa shallow, ECa deep, ECa shallow to deep ratio, GCVI for 
maize and soybean, and crop yield for maize and soybean, where at 
least three datasets for each variable were available. Table 2 summa-
rizes the explained variance of the first axis for each dataset (Supple-
mentary Table S1 contains the EOF1 spatial coefficients). Importantly 
we found that the first axis of variation for both maize and soybean 
yield dominates the explained variance (60–85 %) reducing the effec-
tive dimensionality of the problem to 1 (keff = 1). This indicated that 
the spatial pattern of crop yield manifests repeatedly when the mean 
year-to-year changes are removed. The consequence of excluding sec-
ond and higher order axes of variation will be discussed in Section 4 
but note that Eq. (1) can handle higher order terms if necessary. In 
addition, we found that for the same field with different crops (only 
S7 and 8 had enough yield datasets) EOF1 coefficients of crop yield did 
slightly change (Pearson correlation coefficients of ∼0.8). This indi-
cates that the crop type and plant physiology interact differently with 
the same input covariates in terms of crop yield patterns. 

With respect to the other datasets, the vast majority of the ex-
plained variance (> 60 %) were also largely in the first axis of vari-
ation, allowing us to also reduce the dimensionality of the covari-
ate data. This is beneficial as SWC, ECa, and GCVI can vary greatly 
over time during and in-between growing seasons. As a result, only 
EOF1 spatial covariates were used in subsequent statistical analyses, 
thus removing any confounding effects due to temporal changes (see 
Finkenbiner et al., 2019 for an example using SWC and Franz et al., 
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2017 for using higher order EOFs). Fig. 4 presents the 10m combine-
harvest derived crop yield maps and Fig. 5 the individual dataset and 
EOF1 coefficients for each variable for S2 (irrigated maize in hot and 
dry climate, see Table S1 for all site data). Figs. 4 and 5 illustrate the 
predictor variables and response variables that will be used in the 
MLR and RF approaches in the next section. The purpose of the fig-
ures is to highlight the degree of spatial variability that exists within 
each dataset and the challenge of connecting any one covariate with 
the response variable of crop yield. Lastly, we selected at random 500 
subsamples of each dataset ranging from 2 to k-1. We then computed 
the EOF1 coefficients for the subsampled datasets averaged them and 
then compared them to the full dataset. We found that 3–5 samples for 
each dataset were sufficient to describe the scaled EOF1 coefficients 
(i.e. scaling by min and max) within 5 % of the full dataset’s EOF1. 
This finding is consistent with Finkenbiner et al., 2019 who investi-
gated only SWC data, where SWC is bounded by soil physical prop-
erties. We note that since crop yield range may change from year to 
year that the scaled EOF1 coefficients show the consistent spatial pat-
tern against the full dataset. 

3.2. Relative importance of spatial covariates on crop yield 
pattern 

In order to investigate the contribution of each input covariate to 
predicting crop yield EOF1, we used the MLR and RF approaches de-
scribed in Section 2.3.2. For the analysis, the response variable was 
EOF1 coefficients for maize (or soybeans) crop yield, and the input co-
variates were grid cell location (polar coordinates of radius and angle 
relative to field center), relative elevation (set minimum grid cell field 
elevation to 0) and EOF1 for SWC, ECaS, ECaD, ECaSDR, and GCVI. The 
full results for each site are documented with R code and available in 
the Supplemental material. Fig. 6a summarizes the prediction RMSE 
for both MLR and RF for each study site and maize crop yield pattern 
(Supplementary Table S2 contains the MLR and RF results for both 
crops). The analysis illustrated a large prediction RMSE reduction (be-
tween 50–75 %) between the MLR and RF approaches for each field, 
thus indicating a nonlinear model is justified between input covari-
ates and the response variables considered here. With respect to rel-
ative importance of variables Fig. 6b illustrates the results for the RF 
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Fig. 4. 10m resolution QA/QC maize crop yield maps (Mg/ha) of S2 from 2010 to 
2016. 



Franz  et  al .  in  Field  Crops  Research 252  (2020)       22

Fig. 5. 10m resolution maps of input covariates from S2 and EOF1 of maize crop 
yield. 
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analysis (MLR results are in Table S2). The results indicate that grid 
cell location (radius and angle) are overwhelming the primary con-
tributors to explaining crop yield EOF1. This is not overly surprising as 
grid cell location is correlated with many physical factors such as field 
boundaries, local depressions/high points, planting/irrigation/fertil-
ization application pattern, wheel traffic, hydrologic barriers around 
the field boundary (i.e. roads, berms, fence lines) or internal hydro-
logic drainage patterns or structures (i.e. tile drains). The second-
ary factors that are important after location (combined effects of ra-
dius and angle) varied with relative field heterogeneity (see Fig. 3 for 

Fig. 6. a) Comparison of MLR versus RF analysis for predicting maize crop EOF1 
using same input covariates. RF shows a marked decrease (50–75 %) in prediction 
RMSE. b) Relative importance of input covariates for RF analysis. Spatial location 
(radius, angle) tends to have largest relative importance followed by GCVI, SWC, 
and elevation depending on local site conditions (see Fig. 3 for distributions of el-
evation and soil texture). 
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topography and soil texture variation). For most field sites, the GCVI, 
SWC, and elevation had greater importance than the ECa data. In gen-
eral, the interquartile range in Fig. 3 compares well with the relative 
importance magnitude in Fig. 6b, thus indicating a priori what may 
be the best secondary controlling factor(s) affecting crop yield pat-
tern (topography vs. soils). However, the multiple contributing fac-
tors and collinearity between covariates makes it challenging to gain 
insight on how to best use the covariate data for decision making on 
crop yields. This will be discussed more in Section 4. 

3.3. Relative importance of spatial covariates on temporal crop 
yield 

Table 3 contains a summary of all statistical model results by year. 
In addition, the average field yield is reported, as well as a leave-one-
out, cross validation RMSE for comparison of relative error. The leave-
one-out, cross validation RMSE will serve as our benchmark (or null 
model) for comparison against the more complex statistical models 
presented. Using the same MLR and RF approach, we investigated the 
relative importance of each covariate on crop yield by year for each 
site. Fig. 7a illustrates for S2 the prediction RMSE by year using the 
MLR and RF approaches (Supplementary Table S3 contains results for 
all sites and all years and Table 3 contains a summary of results). The 
two sets of input covariates were selected to investigate the impor-
tance of in-season remote sensing GCVI data as well as using histor-
ical yield pattern (EOF1 of crop yield) as an input covariate. For the 
first MLR and RF input covariate models (MLR1 and RF1), the response 
variable was crop yield by year, with the covariates as: grid cell loca-
tion (radius and angle from field centers), relative elevation, the EOF1 
of SWC, ECaS, ECaD, ECaSDR, and GCVI for the same season as crop 
yield. For the second MLR and RF input covariate model (MLR2 and 
RF2), crop yield EOF1 was added to the covariate set 1. With respect 
to relative importance 

Fig. 7b and c illustrate again that location in the field had the larg-
est importance in covariate set 1, followed by GCVI, SWC, and eleva-
tion. For set 2, crop yield EOF1 had the largest importance followed by 
location, GCVI, SWC, and elevation. ECa continues to have the lowest 
relative importance. These results were consistent across all sites (see 
Supplementary Table S3 for data). Fig. 7a illustrates a large decrease 
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Table 3 Summary statistics of avg. field yield, leave one out cross validation, prediction RMSE for MLR and RF input covariate 
datasets 1 and 2, and bias, RMSE, and ubRMSE for EOF reconstruction, by study site and years included in the analysis. We note 
that three outlier years were identified and excluded from the statistical analyses (S6-2008, S6-2010, S7-2010). 

Site Crop  Year  Avg.  RMSE Leave one out Pred. RMSE Pred. RMSE Pred. RMSE Pred. RMSE EOF EOF EOF  
Number   Yield cross validation MLR set 1 RF set 1 MLR set 2 RF set 2 Bias RMSE ubRMSE  
   (Mg/ha) (Mg/ ha) (Mg/ha) (Mg/ha) (Mg/ha) (Mg/ ha) (Mg/ha) (Mg/ha) (Mg/ha) 

2  Maize 2010  9.79 0.838  0.733  0.315 0.400  0.184  0.391  0.698  0.578 
2  Maize  2011 9.97 1.054 0.725  0.296  0.462  0.194  0.565  0.951  0.765 
2  Maize  2012  9.34  1.528 1.787 0.703  0.404  0.247  −0.001 0.626  0.626 
2  Maize  2013  8.77  1.025  0.752  0.298  0.353  0.161  −0.622  0.843  0.569 
2  Maize  2014  9.42  1.137 0.954  0.357  0.594 0.210 0.000  0.964 0.964 
2 Maize  2015 9.34  0.802 0.837  0.342  0.342  0.173  −0.007 0.716  0.716 
2  Maize  2016  9.30  0.696 0.816 0.348  0.437  0.166  −0.069  0.592 0.588 
4  Maize  2011  11.14 1.386  0.744  0.237  0.425  0.149  NaN  NaN  NaN 
4  Maize  2012 12.58  1.401  1.185 0.384  0.365  0.172  NaN  NaN  NaN 
4  Maize  2013  11.75 1.042  1.094  0.293 0.469  0.184  NaN NaN  NaN 
5  Maize  2011  10.59 3.437 0.854 0.225  0.677  0.198  NaN  NaN  NaN 
5  Maize  2012  11.64 2.255  1.182  0.473  0.363  0.194  NaN  NaN  NaN 
5  Maize  2015  16.09  5.093  0.607  0.211  0.492  0.165  NaN NaN  NaN 
6  Maize  2001  13.57  2.339  0.204  0.147  0.662  0.328  1.751  1.979  0.922 
6  Maize  2002  12.48 1.506 0.824  0.305  0.673  0.275  0.441 1.182  1.097 
6  Maize  2003 11.66  0.910  0.938  0.429  0.669  0.254  −0.170 0.846  0.828 
6  Maize  2004  11.92  0.782  0.670  0.208  0.362  0.169  0.164  0.574  0.550 
6  Maize 2005  11.16  0.877  0.654  0.278  0.428  0.188  −0.948  1.110  0.576 
6  Maize  2006  10.63  1.451  0.403 0.227  0.378  0.168  −1.081  1.394  0.881 
6  Maize  2007  11.59 0.701  0.859  0.306  0.497  0.213  0.285  0.805 0.753 
6  Maize  2011 11.07  1.004  1.025  0.393  0.650  0.272  0.068 0.940 0.938 
6  Maize  2012  12.31  1.242  0.726 0.273 0.516 0.191  0.106  0.843 0.836 
6  Maize  2013 11.50  1.346  1.531  0.612  0.833  0.380  −0.128 1.303  1.297 
6  Maize  2014  10.17  1.763  1.205  0.486 0.599  0.299  −0.694  0.983  0.696 
6  Maize  2015  10.75  1.327 1.461  0.498  0.525  0.271  0.254 0.706  0.659 
6  Maize  2016  11.24  1.318  1.561  0.562  0.728  0.273  0.127  0.991  0.982 
6  Maize  2017  11.68  1.285 1.428  0.528  0.708  0.354  0.385 1.117  1.049 
7  Maize  2001  13.28  1.110  0.666 0.226  0.442  0.163  0.494  0.910  0.764 
7  Maize 2003  13.31 1.241 0.377 0.133  0.299  0.119  0.522  0.779 0.578 
7  Maize  2005  12.38  0.752 0.528  0.187  0.321  0.155  −0.308  0.642  0.563 
7  Maize  2007  12.53  0.860  0.644  0.206  0.402  0.169  −0.098  0.680  0.673 
7  Maize  2011  11.65 1.429  0.805 0.255  0.503  0.200  −0.744  1.145  0.871 
7  Maize  2012 12.55  1.247 0.946  0.246  0.635  0.189 0.027 1.154 1.153 
7  Maize  2013  12.65  1.205  1.102  0.345 0.682  0.307  −0.102  1.427  1.424 
7  Maize  2015 12.18 1.339  1.145  0.417  0.471  0.276 0.387 0.860 0.768 
7  Maize  2017  13.04  1.644 1.248  0.414  0.504 0.252  0.409 1.775  1.728 
7  Soybeans  2002  3.84 0.517  0.141  0.057 0.112 0.044  −0.074 0.246  0.235 
7  Soybeans  2004  3.54 0.806  0.114  0.047  0.093  0.041  −0.375  0.421  0.192 
7  Soybeans  2006  4.11  0.407  0.173 0.063  0.102  0.051 0.208  0.268  0.169 
7  Soybeans  2008  4.17 0.412 0.288 0.100  0.213  0.079  0.252 0.492  0.423 
7  Soybeans  2014  3.74 0.595  0.388  0.116  0.098  0.059  −0.147 0.230  0.176 
8  Soybeans  2016  4.09 0.573  0.375  0.121 0.114  0.067  0.202  0.376  0.318 
8  Maize  2001  8.57 1.589  0.732  0.257 0.636  0.209  −0.546  0.873  0.682 
8  Maize  2003  7.44  2.769  0.625  0.236 0.527  0.179  −1.666 1.759  0.565 
8  Maize  2005  8.96  1.081 0.426  0.139  0.382  0.114  0.405  0.624 0.475 
8  Maize  2007  9.93  0.442  0.528  0.170  0.354  0.139  −0.160 0.411 0.379 
8  Maize  2011 9.48  0.634  0.512  0.190  0.378  0.146  −1.128  1.227  0.484 
8  Maize  2013  10.51  0.932 0.499  0.170  0.310 0.119  1.272  1.323  0.365 
8  Maize  2015  11.49  2.035  0.693 0.228 0.407  0.171  0.082  0.519  0.512 
8  Maize  2017  11.92  2.600  0.986  0.327 0.581 0.185  1.858  1.997 0.731 
8  Soybeans  2002  3.14 0.619 0.732  0.257  0.636  0.209  0.077  0.315 0.306 
8  Soybeans  2004  3.26  0.448  0.625 0.236  0.527  0.179  −0.481  0.507  0.159 
8  Soybeans  2006  4.20  0.731  0.426 0.139  0.382  0.114  0.395  0.443  0.200 
8  Soybeans  2008  4.03  0.618  0.528  0.170 0.354  0.139  −0.147  0.224  0.169 
8  Soybeans  2010  4.07 0.675  0.512  0.190  0.378  0.146 0.028  0.122 0.118 
8  Soybeans  2012  2.13 1.719  0.499  0.170  0.310  0.119  −0.004  0.295 0.295 
8  Soybeans  2014 3.60  0.252 0.693  0.228  0.407  0.171  −0.372  0.661  0.546 
8  Soybeans  2016 4.38  0.924  0.986  0.327  0.581  0.185  0.157  0.295  0.250 
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in prediction RMSE when using an RF vs MLR approach. However, 
MLR with data set 2 did perform considerably better compared against 
the leave-one-out cross validation benchmark (Table 3). Thus, a MLR 
approach using historic crop yield information appears to be satisfac-
tory model. We do note that in covariate set 2, using the EOF1 of crop 
yield as a covariate is somewhat circular. However, from cross vali-
dation we found that EOF1 of crop yield requires only 3–5 years to es-
timate coefficients within 5 % of their values using the full dataset. 
Thus, operationally we argue that EOF1 of crop yield could be estab-
lished with historical data or remote sensing and used as an input co-
variate for prediction in future years. This prediction strategy will be 
discussed further in Section 4. 

Fig. 7. a) Prediction RMSE of yearly crop yield using MLR and RF for two different 
sets of input covariates for S2. Covariate set 2 includes crop yield EOF1 as a input 
covariate. b and c) Relative importance results for RF analysis with covariate sets 1 
and 2 (Supplementary Table S3 contains all sites and all years). 
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3.4. Spatiotemporal reconstruction and prediction of crop yield 
using EOF analysis 

The benefit of the EOF-framework is that we can use this together 
with Eq. (1) to reconstruct and predict the yearly crop yield patterns. 
Table 2 illustrates that EOF1 of crop yield contains 60–85 % of the ex-
plained variance, thus greatly reducing the problem to a single axis, 
keff = 1 and Y (x, t) ∼ EOF1 (x)* EC1 (t) + Y(t). In order to perform the 
reconstruction and prediction, we need to first estimate functions 
that describe how the first expansion coefficient, EC1 (t), and average 
field crop yield, Y ¯(t), change with time. For this research, we explore 
whether growing season aridity index is a good candidate to parame-
terize these relationships through time. Additional crop management 
information (e.g., planting density and applied nitrogen) and growing 
season weather conditions (e.g., min. and max temperature and in-
coming solar radiation) would certainly add further predictive value, 
particularly for better describing Y ¯(t). 

Fig. 8 illustrates the relationship between growing season aridity 
index with EC1 and Y ¯(t) for S2 (Table 4 contains all available sites 
and fitting selection results for a zero to second order polynomial). It 
is evident from Fig. 8 and Table 4 that a second order polynomial fits 
the relationship between EC1 and aridity index (R2

adj = 0.99). How-
ever, no satisfactory relationship existed between Y¯(t) and aridity in-
dex, so a zero order polynomial was selected (i.e. a constant value of 
—
Y = 9.974 Mg/ha). Here, additional management information may be 
needed to capture the small year-to-year variations in Y ¯(t) and thus 
eliminate any systematic bias in the EOF reconstructed/predicted crop 
yield. Table 4 summarizes the selected models for EC1 and Y ¯(t) for 
each site. Given the small sample sizes (6–14), only second order poly-
nomial models were considered and R2

adj was used for model selection. 
In addition, when plotting the relationships, three outlier years were 
evident visually (S6-2008, S6-2010, S7-2010) and were subsequently 
removed from the fitting and model selection process. It was not im-
mediately clear if the outliers were due to machinery breakdowns, 
pest pressure, hail damage or other factors. As in all such studies, lo-
cal qualitative information from the producer is extremely valuable 
in identifying and eliminating outliers. The selected models in Table 
4 varied between zero and second order polynomials depending on 
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Fig. 8. EOF reconstruction for S2. The a) temporal anomaly (EC1) is fitted with a 
second order polynomial using growing season aridity index. b) The mean field yield 
is not a function of aridity index so a constant is assumed. See Table 4 for model 
selection and fit for all sites where enough crop yield data is available (> 5 years). 

Table 4 Summary of fitting analysis between temporal anomaly (EC1) versus aridity index and average field yield (Y) vs. aridity index for EOF 
reconstruction of site data with a sufficient number of years. See Table 3 for specific years included for each site. 

    Temporal Anomaly, EC1 (Aridity Index)   Field Average Yield, Y (Aridity Index) 

Site  Site Crop Number Functional a b c adjR2 Functional a  b  c  adjR2  
Name  Number   of Years  form        form  

BWL2  2 Maize  7 y=a*x^2+b*x+c  −1.01  5.45  −9.98  0.99  y=a  9.97    NA 
CSP1  6  Maize  14  y=a*x+b  0.31  0.08   0.34  y=a*x+b  −2.45  12.90   0.29 
CSP2  7  Maize  9  y=a*x+b  0.31  0.14   0.10  y=a*x+b  13.28  −1.13  0.11 
CSP2  7  Soybeans  6  y=a*x+b  0.95  −0.19   0.52 y=a  3.92    NA 
CSP3  8  Maize  7  y=a*x+b  −0.10  −0.28   0.09 y=a*x+b  4.63  7.18   0.29 
CSP3  8  Soybeans  7  y=a*x^2+b*x+c  4.70  −4.10  0.99  0.67  y=a*x^2+b*x+c  −11.58  15.11  −0.69  0.83 
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each field. Further improvements to model selection will be discussed 
in Section 4. Returning to S2, we used the derived functions for EC1 
and Y (from Fig. 8 and Table 4) and used Eq. (1) with keff =1 to recon-
struct the 10m resolution crop yield patterns for 2010–2016 (see Fig. 
9 and Table 3). The reconstructed RMSE ranged from 0.6 to 1 Mg/ha, 
which is comparable to the MLR models presented in Fig. 7a. However, 
and most notably, only three derived parameters and aridity index 
are needed to describe EC1 and Y to estimate the reconstruction and 
subsequent future predictions of crop yield. Table 3 and Fig. 10 pres-
ent a statistical summary for all sites and years using the EOF recon-
struction and fitted relationships from Table 4. We found that in most 
years and most sites, RMSE is between 0.5–1.7 Mg/ha for maize, and 
0.2−0.6 Mg/ha for soybean, indicating a relative error of less than 10 
% of the mean and a RMSE reduction of 10–40 % compared against 
the leave-one-out cross validation prediction. However, approximately 
10 % of site years contained a significant bias and reduced ubRMSE 
vs RMSE. Here an improved statistical or crop model describing Y ¯(t) 
is needed, which will be discussed further in Section 4. 

4. Discussion 

Perhaps the key result from the EOF analysis is that the crop yield 
pattern manifests itself year after year following the removal of the 
mean for the eight sites across NE. Moreover, the first axis of variation 
was able to capture 60–85 % of the explained variance, thus greatly 
reducing the complexity and dimensionality of the problem. That is 
when keff =1, Eq. (1) reduces to Y(x, t) ∼ EOF1(x)* EC1(t) + Y¯(t) , ef-
fectively allowing us to separate the spatial and temporal components 
of yield and form a better understanding of the underlying physical 
mechanisms and associated data. We do note that certain fields may 
require consideration of additional axes of variation (particularly with 
explained variances>10 %). The EOF framework is able to handle ad-
ditional axes in the reconstruction, but fitting ECi (t) may be more 
problematic (see Franz et al., 2017 for an example). Here we found 
the MLR and RF analysis, undertaken using a range of covariates de-
scribing topography, SWC, soil texture and vegetation condition over 
the growing season, were also challenging to interpret (Maestrini and 
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Basso, 2018). First, it is clearly demonstrated by the reduction in pre-
diction RMSE between the MLR and RF approaches, that the relation-
ship between crop yield and the selected covariates is nonlinear. More-
over, the relative importance analysis revealed that location within the 
field was the largest primary factor for all eight fields. As mentioned 

Fig. 9. One to one comparison of 10m resolution observed crop yield and modeled 
yield using EOF technique (Eq. 1 with keff=1) including the EOF1 spatial anoma-
lies and functions found between aridity index and summarized in Fig. 8 and Ta-
ble 4 for S2. 
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before, location within the field is correlated with several known and 
unknown factors including: field boundaries, planting/irrigation/ fer-
tilization application pattern, wheel traffic, hydrologic barriers around 
the field boundary, and/or internal hydrologic drainage patterns or 
structures. This spatial autocorrelation also manifests in a geostatis-
tical variogram analysis and needs to be considered in any spatial re-
gression analysis (see Supplemental Table 4 for results). Secondary 
factors varied between site GCVI, SWC, and elevation, roughly fol-
lowing the interquartile range of those covariates illustrated in Fig. 
2, whereas soil texture (ECa) seemed to have a tertiary influence. We 

Fig. 10. Evaluation of various statistical model performance vs. a benchmark for 
maize at S2, 6, 7, and 8 where sufficient annual crop yield data exists. Here the 
benchmark is set as the leave-one-out cross validation for each location and year. 
Negative values indicate an inferior model compared to the benchmark. See Table 
3 for complete results of all sites. 
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note that GCVI was derived from Landsat data at 30m and reprocessed 
to 10 m. Given that GCVI was a strong secondary factor we expect it to 
have an even greater importance as the data resolution becomes finer 
(Burke and Lobell, 2017) from newer satellites, aircraft or unmanned 
aerial vehicles (UAVs) (Houborg and McCabe, 2018a). 

A key question that was posed at the outset of this analysis was: 
what level of investment should the producer invest in order to obtain 
these datasets? Some datasets are freely available (i.e. topography, 
Landsat archive), whereas others cost a few USD per ha (i.e. imagery 
from aircraft or private satellites). In contrast, some spatial data sets 
require an investment of a few to several tens of USD per ha (i.e. hy-
drogeophysical). With respect to the benefit of predicting crop yield, 
we found that incorporating historic crop yield maps are superior to 
any other covariate, as illustrated by the difference in the two differ-
ent MLR and RF input covariate sets in Fig. 7. In addition, fine-resolu-
tion elevation data (freely available) and GCVI seem to be a good sec-
ondary covariate to include in a statistical model of crop yield. A key 
benchmark for any statistical or crop model prediction will be to out-
perform the leave-one-out cross validation using crop yield data (Fig. 
10). This benchmark and test can be used as an estimate of economic 
return for any new dataset (crop yield price multiplied by prediction 
RMSE reduction vs. the benchmark) and can be used as guidance for 
determining price point. 

Of course, near real-time imagery from aircraft and satellites can 
be used to diagnose other useful problems, like clogged sprinklers 
and disease onset and outbreak. Two potentially important aspects 
that have not been explored here are the spatial and temporal res-
olution of available remotely sensed data, and how these might im-
pact predictions. For instance, the Landsat data employed here pro-
vide only a single peak value of GCVI during the season, whereas there 
might be information content in more frequent observations or dur-
ing critical growth periods related to crop yield (i.e., flowering stage 
for soybeans and silking stage for maize). The availability of visible 
and near-infrared data from Sentinel-2 satellites offer a 5-day re-
peat time, while recently developed CubeSats such as PlanetScope 
(Houborg and McCabe, 2018a) offer the capacity for daily retrieval, 
with variables such as NDVI and LAI being routinely retrieved (Mc-
Cabe et al., 2017a,b). Perhaps equally important is the spatial res-
olution of the available products, with these new satellite systems 
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offering native spatial resolutions of high as 3 m, providing two or-
ders of magnitude more spatial detail than a comparable 30m Land-
sat pixel (Houborg and McCabe, 2018a,b). It is also worth noting that 
only a single metric of crop condition (i.e. the Green Chlorophyll Veg-
etation Index) was explored here, whereas there are numerous vege-
tation indices available from satellite and airborne platforms that may 
provide much greater insight into crop yield (see for example Shah et 
al., 2019 and Burke and Lobell, 2017). 

With respect to hydrogeophysical mapping, Finkenbiner et al. 
(2019) and Gibson and Franz (2018), clearly showed hidden soil tex-
ture boundaries beyond the freely-available soil datasets such as 
SSURGO (Soil Survey Staff, 2016). In addition, irrigation depths and 
watering patterns may be updated based on the information related 
to soil hydraulic properties (i.e. wilting point and field capacity). In-
terestingly, the relative contribution of the remote sensing and hy-
drogeophysical data layers seemed to have less impact in predicting 
crop yield when compared to historical crop yield benchmark quan-
tified by the leave one- cross validation analysis. We note from per-
sonal experience that this benchmark is often used implicitly by pro-
ducers and crop consultants for agronomic decisions and represents 
the historic “local knowledge”. Supplanting and augmenting this in-
formation from remote and proximal sensing datasets will be chal-
lenging and is likely a large contributing factor for the slower adop-
tion of alternative yield metrics. However, with increasing farm size 
and distance of producers/managers to those farms, effective use of 
emerging datasets and techniques will be crucial for maximizing on-
farm profitability. 

The ability of the EOF framework to make predictions about crop 
yield using growing season weather information (aridity index) was 
also explored. It was found that the aridity index provided satisfac-
tory models of EC1 (t) and Y¯(t) in order to perform EOF reconstruc-
tion for crop yield with RMSE between 0.5–1.7 Mg/ha for maize, and 
0.2−0.6 Mg/ha for soybean (comparable to MLR approach). Another 
important aspect for prediction using EOF vs other statistical mod-
els is our inability to make accurate long-term daily weather fore-
casts (months vs. weeks). We argue that aridity index is a more prag-
matic prediction for long-term forecasts compared to daily weather 
given the current state of forecasting. With only 2–6 calibrated pa-
rameters needed to produce a 10m resolution crop yield prediction 
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(from approx. 7000 total cells) this approach represents a balance 
of model specificity and parsimony. Moreover, the EOF framework 
spatial representation can be used at multiple scales and or differ-
ent geometries that are advantageous for matching constraints im-
posed by farming operations. However, given the inherent noise in 
crop yield data, we would suggest a certain minimum spatial res-
olution (here 10 m) and smoothing filter of the dataset in addition 
to the standard QA/QC discussed in Section 2.2.5. A key remaining 
challenge (particularly outside of countries with large commercial 
production) will be gaining access to historical yield maps. In re-
gions with many small holder farms, remote sensing estimates of 
crop yield will likely need to be used as a surrogate (Burke and Lo-
bell, 2017). A final challenge with this framework is better describ-
ing the EC1 (t) and Y¯(t) relationships in order to reduce systematic 
bias in the crop yield predictions. From our EOF analysis we found 
about 10 % (6 of the 52 field years in Table 3) had large bias and 
three other field years (S6-2008, S6-2010, S7-2010) were clear out-
liers. Here, additional crop management information (i.e. planting 
density, applied nitrogen, pump failure, hail damage, replanting etc.) 
and/or growing season weather conditions (i.e. min. and max tem-
perature, incoming solar radiation etc.) should be incorporated with 
a more robust statistical (Lobell et al., 2013, 2014) or crop model 
(e.g. Allen et al., 1998; Foster et al., 2017; Yang et al., 2013; Jones et 
al., 2003). Since the model needs only to describe EC1 (t) and Y ¯(t) 
at the field scale a variety of simplified to more complex models (i.e. 
FAO56, AquaCrop, Hybrid-Maize, DSSAT, APSIM) may be selected. 
For example van Bussel et al. (2015) and Grassini et al. (2015) ex-
plore the minimum data needed to assess crop yield potential and 
gaps, and found that 3–5 years of crop yield data was needed to ade-
quately describe connections with weather in an irrigated setting, or 
5–8 years for a rainfed setting. However, since input values used in 
crop growth models will inevitably contain uncertainty (i.e., due to 
random and systematic measurement errors and spatial and tempo-
ral variation observed in many of these inputs), calibration of these 
models is critical to lead to better simulation of environmental re-
sponse and further reduce bias and identify outliers. 
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5. Conclusions 

In this work, we presented a statistical methodology to separate 
the spatial and temporal components of crop yield variation. Using a 
unique dataset of soils, topography and crop condition, we were able 
to quantify the relative importance of those datasets on understand-
ing and predicting subfield crop yield, thus better quantifying the data 
utility. With respect to crop yield prediction, we found that histori-
cal yield maps are by far the best predictor, followed by crop condi-
tion (GCVI), SWC, and elevation data, depending on site. Soil texture 
(ECa) generally had the lowest importance but is useful in other agro-
nomic decisions, such as determining irrigation depth. While the re-
quired crop yield datasets are available from harvest machinery, chal-
lenges of data access, format and privacy remain significant hurdles 
for use in the public sector, which may have to rely on remote sens-
ing estimates of crop yield. We note that the presented methodology 
could be used by private companies and crop advisers with non-dis-
closure agreements given access to the yield data. In order to conduct 
a full economic analysis of the datasets, future work should quantify 
both the benefits and costs of acquiring, processing, and delivering 
the results to a producer. A key benchmark for evaluating the bene-
fits of any new dataset, statistical approach, or crop model prediction, 
would be to outperform the leave-one-out cross validation using his-
torical crop yield data. This benchmark can be used to quantify eco-
nomic benefit and help determine the appropriate price point for ac-
quiring new datasets. 
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