55 research outputs found

    Superconducting Phases in Lithium Decorated Graphene LiC6.

    Get PDF
    A study of possible superconducting phases of graphene has been constructed in detail. A realistic tight binding model, fit to ab initio calculations, accounts for the Li-decoration of graphene with broken lattice symmetry, and includes s and d symmetry Bloch character that influences the gap symmetries that can arise. The resulting seven hybridized Li-C orbitals that support nine possible bond pairing amplitudes. The gap equation is solved for all possible gap symmetries. One band is weakly dispersive near the Fermi energy along Γ → M where its Bloch wave function has linear combination of [Formula: see text] and dxy character, and is responsible for [Formula: see text] and dxy pairing with lowest pairing energy in our model. These symmetries almost preserve properties from a two band model of pristine graphene. Another part of this band, along K → Γ, is nearly degenerate with upper s band that favors extended s wave pairing which is not found in two band model. Upon electron doping to a critical chemical potential μ1 = 0.22 eV the pairing potential decreases, then increases until a second critical value μ2 = 1.3 eV at which a phase transition to a distorted s-wave occurs. The distortion of d- or s-wave phases are a consequence of decoration which is not appear in two band pristine model. In the pristine graphene these phases convert to usual d-wave or extended s-wave pairing

    Prevention of liver cancer by standardized extract of Melissa officinalis L. in a rat model of hepatocellular carcinoma: Its potential role as a chemopreventive agent

    Get PDF
    Introduction: Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and the third most common cause of cancer-related death worldwide. Melissa officinalis L. (M. officinalis L.), known as lemon balm is a medicinal plant, which has a wide range of pharmacological properties. This study was aimed to assess the chemopreventive effect of aqueous extract of M. officinalis (AMO) against diethyl nitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Methods and Results: The model of hepatocellular carcinoma was induced by a single intraperitoneal injection of DEN (200 mg/kg) as an initiator and after two weeks was followed by daily oral administration of 2-acetylaminofluorene (30 mg/kg) as a promoter for two weeks. Lemon balm-treated rats were pretreated with AMO intragastrically at three different doses two weeks prior to DEN injection. At the end of the experiment, the marked reduction of serum biomarkers of liver damage and cancer, including alfa-fetoprotein (AFP), gamma glutamyl transpeptidase (GGT), alanine transaminase (ALT), and aspartate transaminase (AST) were observed in AMO complemented rats compared to DEN-treated animals. Furthermore, the extract exhibited in vivo antioxidant activity by elevating GSH concentration and preventing lipid peroxidation in the liver tissues of HCC rats. The relative weight of liver was also reduced in lemon balm-treated rats as a prognostic marker in HCC. Conclusion: Our findings demonstrated that M. officinalis has a chemopreventive effect against HCC in rats and can be suggested as a potential agent for the prevention of primary liver cancer. &nbsp

    ALKYL IMIDAZOLINES AND THEIR ETHOXYLATED DERIVATIVES AS ANTIOXIDANTS FOR HYDROCARBON PRODUCTS

    Get PDF
    Alkyl imidazolines have been reportedly used in a wide range of industrial formulations with different applications. Ethoxylated alkyl imidazolines with appropriate ethoxylation degrees can be used as antioxidants and retarders in the formation of peroxides resulting from oxidation in hydrocarbon media. In this work, ethoxylated imidazolines were shown to be more effective in hydrocarbon media in comparison with reference antioxidants. According to the experimental results, ethoxylated alkyl imidazolines (12 moles EO), as an antioxidant, were twice as efficient as zinc dialkyldithiophosphoric acid (ZDDP)

    Cancer chemoprevention by oleaster (Elaeagnus angustifoli L.) fruit extract in a model of hepatocellular carcinoma induced by diethylnitrosamine in rats

    Get PDF
    Hepatocellular carcinoma (HCC) is a frequent and fatal human cancer with poor diagnosis that accounts for over half a million deaths each year worldwide. Elaeagnus angustifolia L. known as oleaster has a wide range of pharmacological activities. This study aimed to investigate the chemopreventive effect of aqueous extract of E. angustifolia fruit (AEA) against diethylnitrosamine (DEN)-induced HCC in rats. HCC was induced in rats by a single injection of DEN (200 mg/kg) as an initiator. After two weeks, rats were orally administered 2-acetylaminofluorene or 2-AAF (30 mg/kg) as a promoter for two weeks. Oleaster-treated rats were orally pretreated with the increasing doses of AEA two weeks prior to DEN injection that continued until the end of the experiment. In the current study, a significant decrease in serum biomarkers of liver damage and cancer, including alfa-fetoprotein (AFP), gamma glutamyl transpeptidase (GGT), alanine transaminase (ALT), and aspartate transaminase (AST) was observed in AEA-treated rats when compared to HCC rats. Furthermore, the oleaster extract exhibited in vivo antioxidant activity by elevating reduced glutathione (GSH) contents as well as preventing lipid peroxidation in the liver tissues of DEN-treated rats. The relative weight of liver, a prognostic marker of HCC, was also reduced in oleaster-treated rats. To conclude, our results clearly demonstrated that oleaster fruit possesses a significant chemopreventive effect against primary liver cancer induced by DEN in rats. It can be suggested that the preventive activity of oleaster against hepatocarcinogenesis may be mediated through the antioxidant, anti-inflammation, and antimutagenic effects of the fruit

    Cancer chemoprevention by oleaster (Elaeagnus angustifoli L.) fruit extract in a model of hepatocellular carcinoma induced by diethylnitrosamine in rats

    Get PDF
    Hepatocellular carcinoma (HCC) is a frequent and fatal human cancer with poor diagnosis that accounts for over half a million deaths each year worldwide. Elaeagnus angustifolia L. known as oleaster has a wide range of pharmacological activities. This study aimed to investigate the chemopreventive effect of aqueous extract of E. angustifolia fruit (AEA) against diethylnitrosamine (DEN)-induced HCC in rats. HCC was induced in rats by a single injection of DEN (200 mg/kg) as an initiator. After two weeks, rats were orally administered 2-acetylaminofluorene or 2-AAF (30 mg/kg) as a promoter for two weeks. Oleaster-treated rats were orally pretreated with the increasing doses of AEA two weeks prior to DEN injection that continued until the end of the experiment. In the current study, a significant decrease in serum biomarkers of liver damage and cancer, including alfa-fetoprotein (AFP), gamma glutamyl transpeptidase (GGT), alanine transaminase (ALT), and aspartate transaminase (AST) was observed in AEA-treated rats when compared to HCC rats. Furthermore, the oleaster extract exhibited in vivo antioxidant activity by elevating reduced glutathione (GSH) contents as well as preventing lipid peroxidation in the liver tissues of DEN-treated rats. The relative weight of liver, a prognostic marker of HCC, was also reduced in oleaster-treated rats. To conclude, our results clearly demonstrated that oleaster fruit possesses a significant chemopreventive effect against primary liver cancer induced by DEN in rats. It can be suggested that the preventive activity of oleaster against hepatocarcinogenesis may be mediated through the antioxidant, anti-inflammation, and antimutagenic effects of the fruit

    Antioxidant and chemopreventive effects of Asperugo procumbens in a rat model of hepatocellular carcinoma

    Get PDF
    Introduction: Hepatocellular carcinoma (HCC) cancer is the fifth most common malignancy, with 0.25–1 million new cases diagnosed annually worldwide. The objective of the present study was to evaluate the antioxidant and chemopreventive effects of aqueous extract of Asperugo procumbens L. (AAP) against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. Methods and Results: The model of hepatocellular carcinoma was induced by a single intraperitoneal injection of DEN (200 mg/kg) as an initiator that after two weeks followed by daily oral administration of 2-acetylaminofluorene (30 mg/kg) as a promoter for two weeks. AAP-treated rats were pretreated with the extract intragastrically at three different doses two weeks prior to DEN injection. At the end of the experiment, the marked reduction of serum biomarkers of liver damage and cancer, including alfa-fetoprotein (AFP), gamma glutamyl transpeptidase (GGT), alanine transaminase (ALT), and aspartate transaminase (AST) were observed in AAP complemented rats as compared to DEN-treated animals. Besides, the extract exhibited in vivo antioxidant activity that evident by increasing GSH concentration along with lipid peroxidation prevention in the liver tissues of HCC animals. In addition, A. procumbens showed in vitro free radical scavenging activity that determined by 1, 1-Diphenyl-2-picryl hydroxyl (DPPH) antioxidant assay. The relative weight of liver was also reduced in AAP-treaded rats as a prognostic marker in HCC. Conclusions: Our results obviously confirmed that A. procumbens possesses a chemopreventive effect against primary liver cancer induced by DEN in rats as well as  in vitro and in vivo antioxidant activities

    Mortality and disability-adjusted life years in North Africa and Middle East attributed to kidney dysfunction : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    The authors would like to thank the hard work of the staff of the Institute for Health Metrics and Evaluation (IHME) for providing the best possible epidemiologic estimation of diseases in almost all regions and countries of the world, trying to reduce and eliminate poverty of knowledge and information about the diseases globally. Also, the core team authors sincerely thank all the collaborators of the GBD 2019 study who contributed to this study by providing data or a precise review of the manuscript. Publisher Copyright: © The Author(s) 2023. Published by Oxford University Press on behalf of the ERA. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Peer reviewe
    corecore