11 research outputs found

    National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation

    Get PDF
    Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation

    Base de datos de abejas ibéricas

    Get PDF
    Las abejas son un grupo extremadamente diverso con más de 1000 especies descritas en la península ibérica. Además, son excelentes polinizadores y aportan numerosos servicios ecosistémicos fundamentales para la mayoría de ecosistemas terrestres. Debido a los diversos cambios ambientales inducidos por el ser humano, existen evidencias del declive de algunas de sus poblaciones para ciertas especies. Sin embargo, conocemos muy poco del estado de conservación de la mayoría de especies y de muchas de ellas ignoramos cuál es su distribución en la península ibérica. En este trabajo presentamos un esfuerzo colaborativo para crear una base de datos de ocurrencias de abejas que abarca la península ibérica e islas Baleares que permitirá resolver cuestiones como la distribución de las diferentes especies, preferencia de hábitat, fenología o tendencias históricas. En su versión actual, esta base de datos contiene un total de 87 684 registros de 923 especies recolectados entre 1830 y 2022, de los cuales un 87% presentan información georreferenciada. Para cada registro se incluye información relativa a la localidad de muestreo (89%), identificador y colector de la especie (64%), fecha de captura (54%) y planta donde se recolectó (20%). Creemos que esta base de datos es el punto de partida para conocer y conservar mejor la biodiversidad de abejas en la península ibérica e Islas Baleares. Se puede acceder a estos datos a través del siguiente enlace permanente: https://doi.org/10.5281/zenodo.6354502ABSTRACT: Bees are a diverse group with more than 1000 species known from the Iberian Peninsula. They have increasingly received special attention due to their important role as pollinators and providers of ecosystem services. In addition, various rapid human-induced environmental changes are leading to the decline of some of its populations. However, we know very little about the conservation status of most species and for many species, we hardly know their true distributions across the Iberian Peninsula. Here, we present a collaborative effort to collate and curate a database of Iberian bee occurrences to answer questions about their distribution, habitat preference, phenology, or historical trends. In total we have accumulated 87 684 records from the Iberian Peninsula and the Balearic Islands of 923 different species with 87% of georeferenced records collected between 1830 and 2022. In addition, each record has associated information such as the sampling location (89%), collector and person who identified the species (64%), date of the capture (54%) and plant species where the bees were captured (20%). We believe that this database is the starting point to better understand and conserve bee biodiversity in the Iberian Peninsula. It can be accessed at: https://doi.org/10.5281/zenodo.6354502Esta base de datos se ha realizado con la ayuda de los proyectos EUCLIPO (Fundação para a Ciência e a Tecnologia, LISBOA-01-0145-FEDER-028360/EUCLIPO) y SAFEGUARD (ref. 101003476 H2020 -SFS-2019-2).info:eu-repo/semantics/publishedVersio

    Morphometric analysis of fossil bumble bees (Hymenoptera, Apidae, Bombini) reveals their taxonomic affinities.

    No full text
    Bumble bees (Bombus spp.) are a widespread corbiculate lineage (Apinae: Corbiculata: Bombini), mostly found among temperate and alpine ecosystems. Approximately 260 species have been recognized and grouped recently into a simplified system of 15 subgenera. Most of the species are nest-building and primitively eusocial. Species of Bombus have been more intensely studied than any other lineages of bees with the exception of the honey bees. However, most bumble bee fossils are poorly described and documented, making their placement relative to other Bombus uncertain. A large portion of the known and presumed bumble bee fossils were re-examined in an attempt to better understand their affinities with extant Bombini. The taxonomic affinities of fossil specimens were re-assessed based on morphological features and previous descriptions, and for 13 specimens based on geometric morphometrics of forewing shape. None of the specimens coming from Eocene and Oligocene deposits were assigned within the contemporary shape space of any subgenus of Bombus. It is shown that Calyptapis florissantensis Cockerell, 1906 (Eocene-Oligocene boundary, Florissant shale, Colorado, USA) and Oligobombus cuspidatus Antropov, 2014 (Late Eocene, Bembridge Marls) likely belong to stem-group Bombini. Bombus anacolus Zhang, 1994, B. dilectus Zhang, 1994, B. luianus Zhang, 1990 (Middle Miocene, Shanwang Formation), as well as B. vetustus Rasnitsyn & Michener, 1991 (Miocene, Botchi Formation) are considered as species inquirenda. In the Miocene, affinities of fossils with derived subgenera of Bombus s. l. increased, and some are included in the shape space of contemporary subgenera: Cullumanobombus (i.e., B. pristinus Unger, 1867, B. randeckensis Wappler & Engel, 2012, and B. trophonius Prokop, Dehon, Michez & Engel, 2017), Melanobombus (i.e., B. cerdanyensis Dehon, De Meulemeester & Engel, 2014), and Mendacibombus (i.e., B. beskonakensis (Nel & Petrulevičius, 2003), new combination), agreeing with previous estimates of diversification

    A comparative analysis of crop pollinator survey methods along a large-scale climatic gradient

    No full text
    Safeguarding crop pollination services requires the identification of the pollinator species involved and the provision of their ecological requirements at multiple spatial scales. However, the potential for agroecological intensification of pollinator-dependent crops by harnessing pollinator diversity is limited by our capacity to characterise the community of pollinator species for each crop, and to determine how it is influenced by the different survey methods used, as well as by climatic variables at larger geographic scales. Here, we surveyed wild bees using a standardised protocol at an unprecedented scale including 62 commercial apple orchards in Western and Central Europe (i) to validate recent findings on pollinator community divergence as measured by common survey methods (netting and pan trapping) using conventional and alternative biodiversity metrics (phylogenetic and functional diversity), and (ii) to investigate the impact of climatic variation on the patterns observed. Our results confirm the significant divergence in pollinator communities measured using the two common methods at the larger, sub-continental scale, and we provide evidence for a significant influence of climate on the magnitude of pollinator community divergence (beta diversity and its turnover component) between survey methods, particularly when comparing colder to warmer sites and regions. We also found that warmer sites are more dissimilar than colder sites in terms of species composition, functional traits, or phylogenetic affinities. This result probably stems from the comparatively larger species pool in Southern Europe and because apple flowers are accessible to a wide spectrum of pollinator species; hence, two distant survey localities in Southern Europe are more likely to differ significantly in their pollinator community. Collectively, our results demonstrate the spatially-varying patterns of pollinator communities associated with common survey methods along a climate gradient and at the sub-continental scale in Europe

    The new annotated checklist of the wild bees of Europe (Hymenoptera: Anthophila)

    No full text
    At a time when nature conservation has become essential to ensure the long-term sustainability of our environment, it is widely acknowledged that conservation actions must be implemented within a solid taxonomic framework. In preparation for the upcoming update of the IUCN Red List, we here update the European checklist of the wild bees (sensu the IUCN geographical framework). The original checklist, published in 2014, was revised for the first time in 2017. In the present revision, we add one genus, four subgenera and 67 species recently described, 40 species newly recorded since the latest revision (including two species that are not native to Europe), 26 species overlooked in the previous European checklists and 63 published synonymies. We provide original records for eight species previously unknown to the continent and, as original taxonomic acts, we provide three new synonyms, we consider two names as nomina nuda, ten names as nomina dubia, three as species inquirenda, synonymize three species and exclude 40 species from the previous checklist. Around a hundred other taxonomic changes and clarifications are also included and discussed. The present work revises the total number of genera for IUCN Europe to 77 and the total number of species to 2,138. In addition to specifying the taxonomic changes necessary to update the forthcoming Red List of European bees, we discuss the sampling and taxonomic biases that characterise research on the European bee fauna and highlight the growing importance of range expansions and species invasions

    A comparative analysis of crop pollinator survey methods along a large-scale climatic gradient

    No full text
    Safeguarding crop pollination services requires the identification of the pollinator species involved and the provision of their ecological requirements at multiple spatial scales. However, the potential for agroecological intensification of pollinator-dependent crops by harnessing pollinator diversity is limited by our capacity to characterise the community of pollinator species for each crop, and to determine how it is influenced by the different survey methods used, as well as by climatic variables at larger geographic scales. Here, we surveyed wild bees using a standardised protocol at an unprecedented scale including 62 commercial apple orchards in Western and Central Europe (i) to validate recent findings on pollinator community divergence as measured by common survey methods (netting and pan trapping) using conventional and alternative biodiversity metrics (phylogenetic and functional diversity), and (ii) to investigate the impact of climatic variation on the patterns observed. Our results confirm the significant divergence in pollinator communities measured using the two common methods at the larger, sub-continental scale, and we provide evidence for a significant influence of climate on the magnitude of pollinator community divergence (beta diversity and its turnover component) between survey methods, particularly when comparing colder to warmer sites and regions. We also found that warmer sites are more dissimilar than colder sites in terms of species composition, functional traits, or phylogenetic affinities. This result probably stems from the comparatively larger species pool in Southern Europe and because apple flowers are accessible to a wide spectrum of pollinator species; hence, two distant survey localities in Southern Europe are more likely to differ significantly in their pollinator community. Collectively, our results demonstrate the spatially-varying patterns of pollinator communities associated with common survey methods along a climate gradient and at the sub-continental scale in Europe.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    European agro-ecosystems using wing morphology and fat bodies

    No full text
    Current global change substantially threatens pollinators, which directly impacts the pollination services underpinning the stability, structure and functioning of ecosystems. Amongst these threats, many synergistic drivers, such as habitat destruction and fragmentation, increasing use of agrochemicals, decreasing resource diversity, as well as climate change, are known to affect wild and managed bees. Therefore, reliable indicators for pollinator sensitivity to such threats are needed. Biological traits, such as phenotype (e.g. shape, size and asymmetry) and storage reserves (e.g. fat body size), are important pollinator traits linked to reproductive success, immunity, resilience and foraging efficiency and, therefore, could serve as valuable markers of bee health and pollination service potential. This data paper contains an extensive dataset of wing morphology and fat body content for the European honeybee (Apis mellifera) and the buff-tailed bumblebee (Bombus terrestris) sampled at 128 sites across eight European countries in landscape gradients dominated by two major bee-pollinated crops (apple and oilseed rape), before and after focal crop bloom and potential pesticide exposure. The dataset also includes environmental metrics of each sampling site, namely landscape structure and pesticide use. The data offer the opportunity to test whether variation in the phenotype and fat bodies of bees is structured by environmental factors and drivers of global change. Overall, the dataset provides valuable information to identify which environmental threats predominantly contribute to the modification of these traits
    corecore