282 research outputs found

    Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    Get PDF
    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored

    Metabolite essentiality elucidates robustness of Escherichia coli metabolism

    Full text link
    Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.Comment: Supplements available at http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd

    A phospholipase D2 inhibitor, CAY10594, ameliorates acetaminophen-induced acute liver injury by regulating the phosphorylated-GSK-3 beta/JNK axis

    Get PDF
    We examined the role of phospholipase D2 (PLD2) on acetaminophen (APAP)-induced acute liver injury using a PLD2 inhibitor (CAY10594). 500 mg/kg of APAP challenge caused acute liver damage. CAY10594 administration markedly blocked the acute liver injury in a dose-dependent manner, showing almost complete inhibition with 8 mg/kg of CAY10594. During the pathological progress of acute liver injury, GSH levels are decreased, and this is significantly recovered upon the administration of CAY10594 at 6 hours post APAP challenge. GSK-3 beta (Serine 9)/JNK phosphorylation is mainly involved in APAPinduced liver injury. CAY10594 administration strongly blocked GSK-3 beta (Serine 9)/JNK phosphorylation in the APAP-induced acute liver injury model. Consistently, sustained JNK activation in the cytosol and mitochondria from hepatocytes were also decreased in CAY10594-treated mice. Many types of immune cells are also implicated in APAP-induced liver injury. However, neutrophil and monocyte populations were not different between vehicle- and CAY10594-administered mice which are challenged with APAP. Therapeutic administration of CAY10594 also significantly attenuated liver damage caused by the APAP challenge, eliciting an enhanced survival rate. Taken together, these results indicate that PLD2 is involved in the intrinsic response pathway of hepatocytes driving the pathogenesis of APAP-induced acute liver injury, and PLD2 may therefore represent an important therapeutic target for patients with drug-induced liver injury.11Ysciescopu

    An investigation into seasonal and regional aerosol characteristics in East Asia using model-predicted and remotely-sensed aerosol properties

    Get PDF
    International audienceIn this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (? MODIS:?M-BAER and ?NASA) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD (?CMAQ) that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonable well. Since ?MODIS cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by ?MODIS itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to ?M-BAER, ?NASA, and ?CMAQ showed strong spatial, temporal and seasonal variations. For example, during the summer episode, ?M-BAER, ?NASA, and ?CMAQ were mainly raised due to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the winter episode, ?M-BAER, ?NASA, and ?CMAQ were higher due largely to high levels of NH3NO3 formed over the urban and industrial centers, as well as in areas with high NH3 emissions. In addition, the accuracy of ?M-BAER and ?NASA was evaluated by a comparison with the AOD (?AERONET) from the AERONET sites in East Asia. Both ?M-BAER and ?NASA showed a strong correlation with ?AERONETR around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia

    Measurement and physical interpretation of the mean motion of turbulent density patterns detected by the BES system on MAST

    Full text link
    The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.Comment: 28 pages, 15 figures, submitted to PPC
    corecore