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Abstract

The flow shear associated with the differential toroidal rotation of tokamak plasmas
breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down
symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy
(BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale
turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function
and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical
expression of the “shearing” of the turbulent structures by the mean flow. The skewness
of the distribution is related to the emergence of long-lived density structures in sheared,
near-marginal plasma turbulence. The extent to which these effects are pronounced is
argued (with the aid of the simulations) to depend on the distance from the nonlinear
stability threshold. Away from the threshold, the symmetry is effectively restored.

Keywords : Flow shear, tokamak turbulence, Beam Emission Spectroscopy, gyrokinetic simula-
tions

1 Introduction

Mean flow shear associated with toroidal differential rotation is believed to play an important
role in the suppression of turbulence and of the resulting transport in tokamak plasmas [1, 2, 3],
most notably in the enhanced confinement regimes of the H-mode [4, 5] and Internal Transport
Barriers (ITBs) [6, 7, 8]. A previous study of MAST plasmas [9] found that there was a
significant correlation between higher flow shear and higher temperature gradients, suggesting
reduced transport; the same trend has been reported in numerical simulations [10]. However,
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pinning down experimentally a precise manifestation of the effect of flow shear on the local
properties of the turbulence, which, presumably, causes the transport, proved to be difficult
[11] and remains so. In this paper, we show, both experimentally and numerically, that the flow
shear does significantly alter the properties of plasma turbulence. Besides being an essential
step towards learning why and how it does so and, therefore, how turbulent transport could be
manipulated in practice, it is also of fundamental physical interest to quantify and understand
how the statistical properties of a turbulent plasma respond to flow shear.

Let us start by observing that, in the absence of flow shear, the local dynamics of perturba-
tions to an underlying Maxwellian equilibrium is constrained by a type of reflection symmetry,
which follows from the up-down symmetry of the magnetic configuration [12, 13]. In the pres-
ence of flow shear, this symmetry will be broken and we shall see that the signature effects
of the shear can be understood in terms of this symmetry breaking. Let us explain this more
quantitatively.

Tokamak plasmas’ local departures from equilibrium are described by the gyrokinetic theory
(for a recent review, see [14]). The gyrokinetic equation determines the evolution in time, t, of
the perturbed distribution function of the gyrating particles, h(x, y, z, v⊥, v‖, t), where x is the
(“radial”) coordinate perpendicular to a flux surface, z is the coordinate along a field line, y
is the “binormal” (or “poloidal”) coordinate, and (v⊥, v‖) are the velocity components perpen-
dicular and parallel to the magnetic field; the third velocity-space coordinate, the gyrophase
angle, is averaged over in gyrokinetics. In an up-down symmetric equilibrium, with no toroidal
rotation, the gyrokinetic equation is invariant with respect to the transformations [12, 13]:

(x, y, z)→ (−x, y,−z) v‖ → −v‖, h→ −h, ϕ→ −ϕ, A‖ → A‖, δB‖ → −δB‖, (1)

where ϕ is the fluctuating part of the electrostatic potential, A‖ is the perturbed parallel
magnetic potential, and δB‖ is the perturbed parallel magnetic field.

1.1 Symmetry of field distribution

If a stochastic (turbulent) local state of a tokamak plasma is subject to the symmetry (1),
an immediate consequence is that positive and negative amplitudes of h, ϕ and, therefore,
of the density perturbation δn (which is the most experimentally accessible fluctuating field),
must occur with the same probability, i.e., the distribution of δn/n must be symmetric (even
with respect to positive and negative δn/n). A finite flow shear breaks the symmetry of the
gyrokinetic equation under the radial reflection x → −x, allowing this distribution to become
skewed towards either over- or underdensities.

In what follows, we will show both experimentally (Section 2.4) and numerically (Section 3.2)
that this is indeed what happens, although how pronounced the skew is depends very strongly
on the distance from the nonlinear stability threshold, with symmetry essentially restored far
from it (Section 3.3). Our experimental proxy for the density field is the fluctuating intensity
field measured using the Beam Emission Spectroscopy (BES) diagnostic [15] on the Mega-Amp
Spherical Tokamak (MAST) [16, 17], while numerically the density field is computed using
gyrokinetic simulations of a MAST plasma [18] that employ the local flux-tube code GS2.

1.2 Symmetry of correlation function

Another consequence of the symmetry (1), this time relating to the spatial properties of the
turbulent fluctuations, is that the two-point spatial correlation function of (for example) the
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fluctating density field in the (x, y) plane must be symmetric (even) with respect to reflection
in the radial coordinate x→ −x. This symmetry too is broken when flow shear is present: the
correlation function develops a finite tilt.

Indeed, consider the convective time derivative of the distribution function, which incor-
porates toroidal rotation (in the gyrokinetic equation, this derivative is equal to the evolution
operator incorporating various drifts, nonlinearities and drive terms [14]):

∂h

∂t
+ u · ∇h =

∂h

∂t
+ xγE

∂h

∂y
, (2)

where the toroidal rotation is locally approximated by u(x) = u0 + xγEŷ, we assume that we
are in a frame rotating with the x = 0 flux surface (u0 = 0), and γE is the flow shear (see
the Appendix of [18] for a concise description of this term in the local flux-tube gyrokinetic
equation). Under the transformations (1), the two terms in (2) have opposite signs, hence the
breaking of the reflection symmetry.

The effect of the shear term in (2) on the properties of turbulence is best elicited by making
the coordinate transformation into the “shearing frame” (e.g., [19, 20, 21])

x′ = x, y′ = y − xγEt, z′ = z, t′ = t, (3)

under which the convective derivative (2) becomes simply ∂/∂t′. It is then legitimate1 to
represent the perturbed distribution (and all other fluctuating fields) as a Fourier sum

h =
∑
k′

hk′(t
′)eik

′·r′ =
∑
k′

hk′(t
′)eik(k′,t′)·r, (4)

whence, by comparing the exponents, the “Eulerian” wave number k can be expressed as a
function of the “Lagrangian” wave number k′ and time as

kx = k′x − k′yγEt′, ky = k′y. (5)

Thus, in the presence of flow shear, the radial wave number grows secularly in time. If a typical
perturbation has a life time τlife, then, using (5), we can estimate the typical value of the radial
wave number of turbulent fluctuations to be

kx ∼ kyγEτlife. (6)

This tendency for perturbations with a given ky to have a certain non-zero kx (whose relative
sign to kx is set by the sign of the shear γE) manifests itself as a tilt in the two-point correlation
function, with an angle

Θ = − arctan

(
kx
ky

)
. (7)

The presence of a non-zero tilt Θ 6= 0 is a spatial manifestation of the symmetry breaking due
to flow shear.

Tilting of the spatial correlation function by flow shear has been observed before, mainly in
the edge of tokamak plasmas, with reports of the elongation [22] and the breaking apart [23] of
turbulent perturbations. Similar observations have also been made in linear devices [24]. In the

1Ignoring for simplicity the effect of the magnetic shear [19, 21]. Note that in all measurements and simula-
tions reported below we focus on turbulence at the mid-plane of the tokamak.
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core region of a plasma, on the conventional-aspect-ratio tokamak DIII-D, a small tilt (∼ 10◦)
of the spatial correlation function has been reported and attributed to flow shear [25]. Below,
we will show, again both experimentally (Section 2.3) and numerically (Section 3.1), that flow
shear on MAST can tilt the correlation function to large angles > 45◦, making the symmetry
breaking very clearly manifest and identifying the tilt as a clear signature of the presence of
flow shear.

If γEτlife � 1, the life time τlife will presumably be independent of γE and so

Θ ∼ γEτlife (8)

will be proportional to the flow shear. Generally, at flow shears that are dynamically significant,
τlife will have a nontrivial dependence on γE. Various theories can be, and have been [26, 27, 20],
constructed that provide predictions for the dependence of the life time on the flow shear. Test-
ing such models experimentally and numerically can in principle be done by measuring the tilt
Θ and then, by inverting (6), estimating the life time of the turbulence. We will give an example
of such an analysis in Sections 2.3.4, 3.1.1, and 3.3.1, although it will fall short of validating any
specific theory due to a certain deficit of currently available experimental data. Numerically,
we will discover that, like skewness, the life time of the perturbations and, therefore, the tilt
angle are strong functions of the distance to the threshold, with the life time becoming shorter
and the tilt gentler as this distance is increased (Section 3.3).

The structure of the rest of this article is as follows. In Section 2, we consider three
experimental cases that illustrate the effect of flow shear. In Section 3, the same analysis as has
been performed on the experimental data in Section 2 is repeated on the turbulent density field
from gyrokinetic simulations, the results of which are used to gain a more detailed (and more
physical) understanding, through studies varying both the flow shear and the ion-temperature
gradient systematically, how these two parameters affect the skewness of the distribution of
δn and the tilt of its correlation function. Finally, in Section 4, we conclude with a summary
of our findings, a discussion of their implications and of possible directions for future work.
Supplementary technical information can be found in Appendix A, where we discuss spurious
sources of skewness in the experimentally measured distributions of the fluctuating intensity
field, as well as the effect of the MAST BES instrument functions on this distribution. A
similar, very extensive analysis regarding the tilt and other parameters of the spatial correlation
function, can be found in [28].

2 Symmetry breaking in experimentally measured plasma

turbulence in MAST

2.1 The MAST BES system

The BES system on MAST [15] consists of a radial-poloidal (R,Z) array of 8 × 4 avalanche-
photodiode (APD) detector channels [29], which image the South-South (SS) heating beam;2

the separation between the detectors is approximately 2 cm in either direction. The detectors
register Doppler-shifted Dα emission, digitised at a frequency of 2 MHz, from collisionally ex-
cited neutral-beam atoms. The fluctuating part of the intensity of this emission is proportional

2In both shots that we analyse below, the maximum SS beam power was ' 2 MW and the maximum beam
energy was 67 keV.
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to the local fluctuating number density of the plasma (at fixed mean density) [30], thus enabling
measurement of a turbulent field.

The spatial localisation of the BES measurements within the beam line allows us to construct
the spatial correlation function of the fluctuating density field. When this spatial correlation
function is calculated (see Section 2.3.2), we assume that the turbulence is homogeneous. Since
there is considerable variation of some of the equilibrium quantities across the full 16 cm radial
extent of the BES array (see Figure 1), we do not use the full array, but, for the entirety of
this analysis, only consider a subarray of 5× 4 radial-poloidal channels, which is centred at the
major radii given in Table 1.

The BES diagnostic is sensitive both to the local turbulent density field and to global MHD
activity [11]. Since we are only interested in the former, we always select for analysis time
intervals during which the magnetic signal, measured using a Mirnov coil at the outboard mid-
plane of MAST [31], is below a certain threshold. The time windows that we analysed for
the three representative cases described in Section 2.2 are: for the BLM case, t ∈ 140.9210 +
[0, 0.8340] ms; for the DLM case, t ∈ 368.16+[0, 2] ms; for the IFS case, t ∈ 125.6855+[0, 0.5995],
[1.9670, 2.7110], [2.7215, 2.8095], [3.7975, 4.1255] ms. These time windows are long (& 100×)
compared to the correlation time τc of the turbulence in all of these cases (see Table 2). As
there are also 20 detector channels in a subarray, this means that a statistically large number
of values of the turbulent density field is sampled.

2.2 Experimental example cases

Because the detector separation of the BES system on MAST is quite close to the typical
radial correlation length of the turbulence, it is quite hard to find long intervals of BES data
that would be sufficiently resolved spatially in order for reliable two-dimensional correlation
functions to be obtainable (how this is done and how it is determined whether resolution limits
are crossed is explained in [28]). There is, therefore, relatively little data available and so it is
not currently feasible to have an extensive, fully resolved parameter scan of MAST turbulence
in a broad range of values of flow shear.3 Thus, with what we have, a practical strategy for
studying the effect of flow shear on turbulence is to identify a few representative cases and
compare them. Namely, we would like to examine cases where there manifestly is or is not
flow shear present and ask whether they are different in a clearly measurable and qualitatively
understandable way.

The answer is that they are and to demonstrate this, we compare measurements made using
the BES system on MAST from two times in the shot #28155. This shot is particularly useful
for distilling the effect of flow shear because at t = 0.36 s a locked mode occurs, braking the
rotation of the plasma [36]. The two times that we consider are before the locked mode (BLM)
at t = 0.141 s and during the locked mode (DLM) at t = 0.369 s. Measurements of the toroidal
velocity using the charge-exchange recombination spectroscopy (CXRS) diagnostic are plotted
in Figure 1(d) for these two times. Before the locked mode, an ITB is present at the major
radius R ' 1.1 m, resulting in a steep gradient in the toroidal velocity, however, the BES
measurement location in that experiment is outside of the ITB at R = 1.27 m, where the flow
shear is less strong. During the locked mode, the ITB no longer exists and the toroidal rotation

3This is also because the range of values of shear that actually occurs in MAST is not huge anyway and,
furthermore, as we will see in Section 3.3, the relevant parameter is likely not just γE , but the distance to the
nonlinear stability threshold in a multidimensional local-equilibrium-parameter space, involving at a minimum
also the ion-temperature gradient.
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Figure 1: Cubic-spline-fitted equilibrium profiles for the BLM, DLM and IFS cases (described in
Section 2.2): (a) electron density, measured using Thomson scattering (TS) [32, 33], (b) ion
temperature, measured using Charge-Exchange Recombination Spectroscopy (CXRS) [34], (c)
electron temperature (from TS), (d) toroidal velocity (from CXRS), and (e) q-profile, reconstructed
by EFIT constrained by the motional-Stark-effect (MSE) [35] measurements. The vertical solid lines
indicate, for each of the three cases, the centre of the BES viewing location for the subarray being
used (the width of the subarray is 10 cm). The vertical dashed lines indicate the position of the
magnetic axis in each case. The black curve in the inset to (d) is the cubic-spline fit used for the
calculation of (9).
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Quantity Symbol BLM DLM IFS EGK
Shot number Shot 28155 28155 27278 27268
Time into shot/s 0.141 0.369 0.127 0.250
Major radius at centre of BES view/m R 1.27 1.33 1.23 1.32
Normalised flow shear (9) γ̂E 0.054 0.022 0.034 0.160
Electron-temperature gradient a/LTe 4.8 5.3 4.3 5.8
Ion-temperature gradient a/LTi 3.1 3.3 1.9 5.1
Electron-density gradient a/Lne 1.7 1.9 2.1 2.6
Electron-ion temperature ratio Te/Ti 1.0 0.56 1.4 1.1
β = 8πniTi/B

2 β 0.010 0.008 0.010 0.005
Minor radius/minor radius of LCFS r/a 0.63 0.71 0.55 0.80
Safety factor q 3.0 3.0 2.5 2.3
Magnetic shear ŝ 2.2 5.2 1.7 4.0
Ion-ion collisionality νii∗ 0.014 0.006 0.020 0.020
Electron-ion collisionality νei∗ 0.79 0.85 0.74 0.59
Elongation κ 1.6 1.4 1.4 1.5
Derivative of elongation κ′ 0.55 0.73 0.24 0.45
Triangularity δ 0.22 0.19 0.21 0.21
Derivative of triangularity δ′ 0.081 0.86 0.49 0.46
Shafranov shift ∆′ −0.33 −0.48 −0.27 −0.31
Mach number M 0.12 0.074 0.19 0.43
Ion gyroradius/cm ρi 0.88 1.1 0.78 0.66
Time normalisation /µs a/vthi 3.8 3.2 4.4 4.0
Pitch angle of magnetic field/deg α 23 30 21 34
Ion temperature/eV Ti 230 350 190 220
Electron temperature/eV Te 250 200 270 240
Electron density/1019 m−3 ne 1.3 1.2 1.2 1.2
Toroidal velocity (from CXRS)/km/s vζ 18 14 26 62
Toroidal velocity (from BES)/km/s vBES

ζ 13± 9 8± 4 19± 4 −

Table 1: Local equilibrium parameters for each of the experimental cases analysed (Section 2.2). The
BLM and DLM cases are the main comparison cases discussed in Sections 2.3 and 2.4; the IFS case
is first introduced in Section 2.3.5. The EGK case gives the parameters for the gyrokinetic
simulations analysed in Section 3 and is also discussed there. Profiles of ne, Ti, Te, vζ , and q are
plotted in Figure 1 for the BLM, DLM and IFS cases. The numerical values for these three cases are
average quantities over the width of the BES subarray, whilst the values for the EGK case are taken
at the centre of the BES array (those were the values used in simulations).
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profile flattens. The BES view is centred at R = 1.33 m for this latter analysis. In the centre
of the BES viewing location, a magnetic island forms, within which there is no gradient in the
toroidal rotation: see the inset of Figure 1(d). Therefore, by studying this shot, we have access
to two clearly different regimes: one with (BLM) and one without (DLM) the flow shear.

The BLM case is quite typical of the sheared cases that can be found in the BES mea-
surements data base—and most of this data base consists of sheared cases. Indeed, the BES
diagnostic requires the SS neutral beam in order to measure the turbulence in MAST and the
tangentially directed beam provides a torque to the plasma, causing it to rotate. Therefore,
there is almost always some level of flow shear acting on the turbulent fluctuations measured
by the BES. The DLM case is, thus, rather special, but that is the point: turbulence in MAST
is rarely without a flow shear and so any such situation provides a very useful opportunity for
a clean comparison. A third experimental example, which will be introduced in Section 2.3.5,
is an intermediate-flow-shear (IFS) case, taken from shot #27278 at t = 0.128 s, with the BES
measurement taken at R = 1.23 m. It represents a less clear-cut situation, which we include
to highlight the range of behaviour that one encounters in MAST. While we do not claim to
have identified all of the interesting cases, we did analyse a large number of intervals and the
examples we have chosen do appear to us to be a worthwhile selection.

The profiles of the electron number density ne, ion (Ti) and electron (Te) temperatures and
the safety factor q, in addition to the toroidal velocity vζ already discussed above, are plotted
in Figure 1 for all three cases. In Table 1, a full set of equilibrium parameters is provided:
the values quoted there are averages over the width of the BES subarray that we use for
measurements (see Section 2.1). All three cases are plasmas with double-null-divertor (DND)
geometries, and, therefore, the equilibria must be up-down symmetric, making the symmetry
considerations of Section 1 relevant.

Together, the three cases described above provide examples across a typical (for MAST)
range of values of the normalised flow shear

γ̂E =
γE

vthi/a
= −r

q

dω

dr

a

vthi

, (9)

where q is the safety factor, r is the distance from the magnetic axis to the BES viewing
location, vthi =

√
2Ti/mi is the ion thermal speed, Ti the ion temperature, mi the Deuteron

mass, a the minor radius of the last-closed flux surface (LCFS), ω = vζ/R the toroidal rotation
frequency, vζ the toroidal velocity and R the major radius at the BES viewing location (these
quantities can be found in Table 1). The definition (9) is the same as that used as an input
parameter for the gyrokinetic simulations using GS2, however, it is different from the physical
flow shear by a factor of qRBp/rB, where B is the total magnitude of the magnetic field, and
Bp its poloidal component. In the large-aspect-ratio limit, this factor is close to unity, but,
for a spherical tokamak such as MAST, there is a significant difference. For consistency with
the standard definition of γE used in simulations [18] (Section 3), we will always use (9) as our
flow-shear parameter.

Note that, from inspecting the raw velocity profile in Figure 3(d), we know that the flow
shear in the DLM case is approximately zero across half of the BES subarray, however, the
value for the DLM flow shear given in Table 1 is nearly two thirds of the flow shear for the
IFS case. This apparent discrepancy occurs because a cubic-spline fit (see inset of Figure 1(d))
is performed in order to calculate the radial derivative of the toroidal velocity, and the spline
fit underestimates the flatness (or, equivalently, the width) of the region due to the magnetic
island. The resulting value of the flow shear, calculated as the average over the BES subarray,
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Figure 2: Snapshots of the raw (but 2D-spline-interpolated) BES fluctuating-intensity signal δIi/〈Ii〉
from shot #28155 at: (a) t = 0.1409345 s, (b) t = 0.1410565 s, (c) t = 0.3696070 s, (d)
t = 0.3692290 s. Times (a) and (b) occur during the BLM time period (significant flow shear) and
times (c) and (d) occur during the DLM time period (no flow shear). The correlation functions of
these two cases are given in Figure 3, which include these snapshots in the temporal average.

depends sensitively on the point at which the spline fit determines the minimum to occur, as the
sign of the flow shear changes at this point, resulting in significant uncertainty in the calculated
value of the flow shear in this case.

2.3 Two-dimensional spatial structure of the turbulence

2.3.1 Instantaneous turbulent density field

Before discussing statistical properties of turbulence, let us inspect the instantaneous spatial
structure of the fluctuating density field during the time windows being studied. In Figure 2,
example snapshots are plotted of the BES-measured intensity amplitude at certain chosen times.
Each channel has been normalised by its own mean, so these are essentially snapshots of the
relative density perturbation δn/n.

While we know (and it will also become very obvious in Section 2.3.2) that the BLM case
[Figures 2(a) and (b)] has flow shear and the DLM case [Figures 2(c) and (d)] does not, it is
not easy (indeed, well-nigh impossible) to deduce that by inspection of such snapshots or by
watching the full time-evolution sequences for these two cases. Indeed, comparing Figures 2(a)
and (c), we see that similar untilted (and so seemingly unsheared) structures occur in both
the BLM and the DLM cases; conversely, comparing Figures 2(b) and (d), we also see that
similar tilted structures also occur in both cases.4 Therefore, the morphology of particular
realisations of the turbulence does not reveal in any especially glaring way that turbulence is

4In the case with no flow shear, instantaneous tilted structures could be due to (and indeed be a signature
of) a fluctuating zonal flow shearing the density field; this also happens in numerical simulations with γE = 0,
as discussed in Section 3.1.2.
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different between the two cases. Statistically, however, it is very different, as we are about to
discover.

2.3.2 Spatial correlation function

We now characterise the average spatial structure of turbulence using the spatial correlation
function of the BES-measured intensity signal. Denoting by Ii(t) the time-dependent intensity
measured by the BES detector channel i, we split this signal into mean (averaged over time)
and fluctuating parts,

Ii(t) = 〈Ii〉+ δIi(t). (10)

The two-point correlation matrix of the fluctuating intensity field is then

Cij =
〈δIi(ri, Zi)δIj(rj, Zj)〉√
〈δI2

i (ri, Zi)〉〈δI2
j (rj, Zj)〉

, (11)

where ri, and Zi are the radial and poloidal (vertical) locations of the detector channel i,
respectively, and the angle brackets again denote time averages (the auto-correlation functions
for each detector, calculated for i = j, are corrected for photon-noise effects as described in [11]
and at the beginning of Section 2.4). Assuming the turbulence is (approximately) spatially
homogeneous across the BES subarray used for our analysis (see Section 2.1), its two-point
correlation function depends only on the relative distances between channels ∆r = ri − rj and
∆Z = Zi − Zj. We reconstruct this correlation function from the correlation matrix (11) by
considering the relevant ranges of values of ∆r and ∆Z and using the following fitting function

C(∆r,∆Z) = p+ (1− p) exp

[
−
(

∆r2

`2
r

+
∆Z2

`2
Z

)]
cos [kr∆r + kZ∆Z] . (12)

The parameter p is used to account for global modes [11], as well as for fluctuations in the neutral
beam [37]. As we have selected times during which there is no MHD activity (see Section 2.1),
the value of p should be small. Indeed, in all measured cases it is at most a few percent,
therefore also indicating that neutral-beam fluctuations do not affect the measurements.

The fit (12) allows us to extract the spatial correlation parameters of the turbulence: the
radial, `r, and poloidal, `Z , correlation lengths and the radial, kr, and poloidal, kZ , wave
numbers. Operationally, in order to constrain the fit (12), we fix the product kZ`Z , which is
determined from the two-time, single-point correlation function of the intensity field (see Section
2.4 and Appendix A of [28]). To obtain correct values of the spatial correlation parameters of
the true density field, one must take account of the finite spatial resolution of the BES system,
which is quantified in terms of the point-spread functions (PSFs) of its detector channels. How
to do this systematically is worked out in [28]; here `r, `Z , kr, and kZ are all corrected for PSF
effects using this technique.

Physically, we would like to work with the correlation function in terms of point separa-
tions in the plane (x, y) perpendicular to the mean magnetic field, where x is the coordinate
perpendicular to the flux surface (so, in the outboard midplane of the tokamak, the same as
the radial coordinate) and y is the “binormal” coordinate, perpendicular both to the field and
to the x direction. Assuming that the correlation length of the fluctuating density field along
the magnetic field is long compared to `Z , we then convert the correlation function (12) to

C(∆x,∆y) = exp

[
−
(

∆x2

`2
x

+
∆y2

`2
y

)]
cos [kx∆x+ ky∆y] , (13)
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Figure 3: Spatial two-point correlation function (13) of the fluctuating density field for (a) the case
before the locked mode (BLM, with flow shear) and (b) the case during the locked mode (DLM, no
flow shear), both described in Section 2.2. Table 2 shows the parameters of these correlation
functions calculated by fitting (12) to the spatial correlation function (11), correcting for PSF effects,
and transforming into the (x, y) coordinates perpendicular to the magnetic field. These correlation
functions should be compared to the correlation functions of the numerically simulated turbulence in
Figure 8.

where `x = `r, `y = `Z cosα, kx = kr, ky = kZ/ cosα, and α = arcsin(Bp/B). These correlation
lengths and wave numbers are given in Table 2. The spatial correlation function (13) is plotted
in Figures 3(a) and (b) for the BLM and DLM cases, respectively.

2.3.3 Symmetry breaking

The difference between the BLM case (with flow shear) and the DLM case (without flow shear)
is manifest: the BLM correlation function is highly tilted whereas the DLM one is very nearly
even in ∆x. The tilt can be defined in terms of the tilt angle (7), where we now use the kx
and ky parameters of the fitting function (13). The values of Θ are given in Table 2. Thus,
in line with the theoretical discussion in Section 1.2, the statistical symmetry of the plasma
turbulence under radial reflection is broken in the presence of flow shear.

2.3.4 Correlation times and flow shear

As promised in Section 1, we may calculate the effective “life time” of a sheared structure,
defined, in view of (6), by

τlife ≡
∣∣∣∣ kxγEky

∣∣∣∣ =

∣∣∣∣tan Θ

γE

∣∣∣∣ . (14)

The values of this quantity for our experimental cases are given in Table 2. We also give there the
correlation time τc of the fluctuating density field determined from its time-correlation function
using the cross-correlation time delay (CCTD) method [38, 39]. We see that the values of τlife

and τc, while not wildly disparate, cannot really be declared to agree. We are going to be
relaxed about this problem: first, because both the CXRS value of γE and the CCTD value
of τc are subject to large errors (regarding the reliability of the CCTD method in the presence
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Name BLM DLM IFS
γ̂E 0.054± 0.006 0.02± 0.04 0.034± 0.012

δn/n 0.011± 0.002 0.03± 0.01 0.020± 0.003
Skewness 0.21± 0.03 0.01± 0.03 −0.17± 0.02

`x/ρi 3.9± 1.5 2.4± 0.6 3.3± 0.2
`y/ρi 9.7± 0.8 6.2± 0.7 10.7± 1.2
kxρi −0.51± 0.14 0.03± 0.20 −0.21± 0.08
kyρi 0.43± 0.03 0.82± 0.03 0.43± 0.05

Tilt: Θ/deg 50± 8 −2± 15 26± 9

τlife/(a/vthi) 22± 7 − 14± 8
τc/(a/vthi) 3± 2 6± 2 3± 1

τc/µs 12± 9 20± 6 19± 4
Table 2: Correlation parameters for BLM, DLM, and IFS cases, all described in Section 2.2. The
correlation functions (13) with these parameters are shown in Figures 3 and 4. All lengths are
normalised by the ion gyroradius ρi = vthi/Ωi (vthi is the ion thermal speed, Ωi the ion cyclotron
frequency), all times to a/vthi; the values of both of these can be found in Table 1. The rms
amplitude δn/n of the fluctuating density field is calculated from the rms amplitude δI/I of the
fluctuating intensity field, as defined by (16), using the method described in Section 7.1 of [28]. The
skewness is calculated using (17) for the distribution of δI. The life time τlife is defined in (14); the
correlation time τc was calculated using the CCTD method [38, 39].

of non-negligible PSFs, see Section 9 of [28]), and secondly, because (6) is obviously a relation
allowing an arbitrary constant of order unity. However, if the measurement of γE is viewed as
reliable, the life time defined by (14) can be meaningfully used as an effective measure of the
(Lagrangian5) correlation time for comparative studies of turbulence at different equilibrium-
parameter values, as it will be in Sections 3.1.1 and 3.3.1.

Correlation functions of MAST turbulence generically exhibit a tilt when flow shear is
present, with a range of values of Θ—we have checked this in a number of experimental cases,
not shown here. This is a reliable feature, to the extent that it could be thought of as a
way to find out whether a flow shear is present.6 Given that the values of γE might not be
computed very precisely from CXRS measurements of the rotation profiles, one might wonder
whether in fact a more reliable (and dynamically relevant) measure of the local flow shear
would be obtained from the tilt angle of the spatial correlation function and the correlation
time τc computed from the time-correlation function, viz., γ

(eff)
E = tan Θ/τc (ignoring here the

difference between Lagrangian and Eulerian correlation times; note that γ
(eff)
E could also be the

local shear associated with zonal flows, as will be discussed in Section 3.1.2).

5The correlation time appearing in (6) is probably best interpreted as a Lagrangian correlation time (life
time of a moving and sheared “eddy”, which is reflected in our notation for τlife), whereas the correlation time τc
determined from the BES-measured time correlation function is obviously the Eulerian correlation time (albeit
in the frame moving with the overall mean toroidal rotation velocity [39]). While in conventional (Kolmogorov-
like) strong turbulence, one expects τlife ∼ τc, the relationship between the two times may be more subtle in a
turbulent state where long-lived coherent structures play a prominent role—it was argued in [18] that MAST
turbulence is in just such a state close to the (nonlinear) stability threshold (this will be further discussed in
Section 3.2.1).

6Note that the flow shear need not be dynamically significant in order for the correlation function to be
tilted. At low shear, the tilt (small in this limit) would be a “passive” feature, proportional to γE , as per (8);
see further discussion in Section 3.3.1.
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Figure 4: Same as Figure 3, but for the IFS case, whose normalised flow shear (9) is ∼ 40% smaller
than in the BLM case—the tilt of the correlation function is also smaller (see Table 2).

2.3.5 Case of intermediate flow shear

The measurement uncertainties discussed above and a relatively limited range of values of γE
for which well-resolved BES data is available7 preclude us from being able to provide here a
straightforward Θ vs. γE parameter study. Generally speaking, larger γE will give larger Θ,
but the spread is large (in Section 3.3, we will argue that this is because Θ is a function not
just of γE but also of how far from the stability threshold the system is). The case of relatively
low, but measurable, values of shear is perhaps an interesting benchmark as in this case we
expect the tilt to be small. We have found such a case, case IFS, described in Section 2.2 and
documented in Tables 1 and 2. This has normalised flow shear (9) that is ∼ 40% smaller than
that in the BLM case (with its other equilibrium parameters not differing in any particularly
remarkable way from the BLM ones).

The correlation function for the IFS case is shown in Figure 4. Its tilt is in between that
of the BLM and DLM cases and its τlife is shorter than for the stronger-sheared BLM case (see
Table 2). Clearly, two points a parameter scan do not make, but this is the best one can do
with current data. The salient message is that the transition from stronger flow shear (BLM)
to no flow shear (DLM) is gradual in parameter space, with the tilt angle passing through a
range of values—and a more comprehensive parameter study ought to be on experimentalists’
agenda. The most interesting outcome from such a study would be the dependence of τlife on
γE, telling us how the dynamical properties of turbulence change with shear (cf. Section 3.3.1).

2.4 Distribution of fluctuation field

In Section 1.1, we argued that the breaking of the radial-reflection symmetry by the flow shear
can lead to the breaking of the symmetry (evenness) of the distribution of the fluctuating
density and, therefore, BES-measured intensity field. Here we show that this is indeed the
case.

7I.e., in the context of this study, the data for which the tilt angle Θ can be reliably calculated—the limiting
factor is, in most cases, the radial resolution, with values of `x never very far from the distance between the
BES detector channels and from the effective size of the PSFs (see discussion of resolution limits in [28]).
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We consider the fluctuating part δIi(t) of the intensity field (10) and, for each detector
channel i, normalise it by its own standard deviation

δIstd
i =

[
〈δI2

i (t)〉 − 〈δI2
noise,i〉

]1/2
, (15)

where we have subtracted the mean square amplitude 〈δI2
noise,i〉 of the fluctuating part of the

photon noise signal (determined from the signal at each channel during the calibration of the
instrument [11]). The angle brackets signify averages over time. The normalisation to δIstd

i is
required in order to account for a degree of variation of this quantity across the BES subarray
used for our analysis. The total standard deviation (total rms fluctuation amplitude) over all
N = 20 channels in the subarray is

δI/I =

[
1

N

∑
i

(
δIstd
i

〈Ii〉

)2
]1/2

. (16)

This quantity is proportional to the total rms fluctuating density field δn/n, whose value can
be reconstructed from it by correcting for PSF effects (see Section 7.1 of [28]) and is given in
Table 2. The distribution of the normalised fluctuating intensities δIi/δI

std
i can be affected

by several different known experimental effects, including MHD activity, radiation spikes, and
PSF effects. A discussion of these effects and how they have been accounted for in our present
analysis is given in Appendix A.

2.4.1 Symmetry breaking

In Figure 5, we show the probability distribution of the normalised fluctuating intensities
δIi/δI

std
i for the BLM and DLM cases. In the case without flow shear (DLM), the distri-

bution is even with respect to positive and negative δI (and very nearly normal). In contrast,
the case with shear (BLM) exhibits a relatively small, but measurable preponderance of positive
δI, i.e., overdensities are statistically somewhat more common than underdensities. This can
be quantified as a positive value of the skewness of the distribution8

S =
1

N

∑
i

〈δI3
i (t)〉

(δIstd
i )3

. (17)

For the BLM case, S = 0.21; for the DLM case, S = 0.01, but this is similar to the skewness
in the background emission signal, as well as to the size of the error in the determination
of the skewness that occurs due to PSF effects (see Appendix A.2), so cannot be considered
significant.

In Figure 6, we show the fluctuating-intensity distribution for the IFS case, with flow shear
lower than BLM, already discussed in the context of its lower tilt in Section 2.3.5. We see
that the distribution is again skewed, with its skewness lower than for the BLM case (but still
measurable), just as its tilt was (to identify a quantitative dependence between the skewness
and flow shear, we will need to resort to simulations, in Section 3.2, as we do not have a sufficient
range of data for a proper parameter scan). What is more interesting is that the sign of the skew
is negative, i.e., here, underdensities are privileged compared to overdensities. This emphasises
the fact that, while the presence of a flow shear allows such asymmetric distributions, theory

8The fluctuating part of the photon noise is Gaussian distributed [29, 39] and so does not affect the third
moment of δI.
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Figure 5: Distribution of the fluctuating intensity field for (a) the case before the locked mode
(BLM, with flow shear) and (b) the case during the locked mode (DLM, no flow shear), both
described in Section 2.2. For each detector channel, δIi is normalised by its own root-mean-square
(standard deviation) value (15). The black-dashed line in each case gives the unit normal
distribution. The distribution function and its skewness for the DLM case (b) were calculated from 2
(rather than 5, as in all other cases) sets of 4 poloidal BES channels, located at R = 1.33 m and
R = 1.35 m, where the toroidal rotation profile is completely flat, as seen in Figure 1(d).
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Figure 7: Same correlation function as in Figure 3(a), for the BLM case, but this time conditioned
on (a) lower intensities (core of the distribution, |δIi/δIstd

i | < 2.75) and (b) higher intensities (tail of
the distribution, max δIi/δI

std
i > 3), in the way described in Section 2.4.2. The parameters of the

fitting function (13) in each case are given in Table 3. The tail is manifestly less tilted than the core
and also has a larger radial correlation length. These correlation functions should be compared to
the ones for numerically simulated turbulence in Figure 13.

(at least in its current state) does not predict the sign of the asymmetry—we do not know how
the sign of the skew depends on local equilibrium parameters.

Finally, we must stress a very strong caveat. The fact that the symmetry (1) is formally
broken by flow shear does not necessarily imply that a skewed distribution should result, it
merely allows it (in contrast to the case of zero flow shear, when a skewed distribution would
clash with theory [12, 13]). Here we have demonstrated, as a proof of principle, that skewed
distributions can indeed be found experimentally when flow shear is present. However, skewness
is not as robust and inevitable effect of flow shear as tilted correlation functions appear to be
and we have found many experimental cases in which flow shear is present according to CXRS
measurements but the skewness of the fluctuating-intensity distribution is so small that, in
view of measurement uncertainties, it cannot be declared present beyond reasonable doubt. In
Section 3.3, we will see, by analysing numerical simulations, that how skewed the distribution
is depends quite strongly on how far from the nonlinear stability threshold the system finds
itself, with only near-marginal cases showing significant skewness. Thus, while a tilt (possibly
small) in the correlation function might be viewed as a signature of the presence of flow shear
(as argued in Section 2.3.4), a noticeable skewness of the fluctuating-density distribution should
perhaps be viewed as a signature of a sheared turbulent state being close to threshold. The
physical reason for this is probably that, close to the threshold, the turbulent state in MAST
is dominated (as shown in [18] and discussed in Section 3.2.1) by a finite number of long-
lived, finite-amplitude coherent structures, whereas farther from the threshold, a more (evenly)
distributed sea of fluctuations emerges.

2.4.2 Skewness vs. tilt: two-component turbulence?

The above discussion and the greater robustness of the tilted correlation functions than of the
skewed distributions as signatures of flow shear suggest that these features describe the response
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to the flow shear of different types of turbulent fluctuations. Indeed, intuitively, as perturbations
are sheared by the flow, their radial wave number increases according to (5) and so then does
k⊥ρi = (k2

x+k2
y)

1/2ρi. This will push them into a damped region of wave-number space (see, e.g.,
[20]), quickening their demise. It is these perturbations, which are on their way out, that would
statistically contribute to the tilt in the correlation function. In contrast, one might imagine
that rare but particularly strong perturbations whose presence skews the distribution of the
fluctuating field, might be less vulnerable to (or simply not yet affected by) such destruction
by shear and so would turn out to be less tilted. This view is perhaps reinforced by the
observation, which we will be in a position to make when we consider the numerically simulated
turbulence in Section 3.2, that the rms fluctuation level δn/n is significantly lower in the
turbulence with flow shear than without it and so the tail of the distribution represents not some
additional population appearing alongside the “core turbulence” but rather the “survivors”—
sufficiently large structures that can create sufficiently large local velocity gradients to overcome
the suppressing effect of the shear; these large structures would diffuse and disappear rapidly
in the strong unsheared turbulence.

These speculations can be experimentally tested, if in a rather tentative manner, by con-
structing a correlation function conditional on the fluctuation amplitude. Indeed, the turbulent
density field is continuously (and quickly) advected by the flow past our, relatively small, BES
subarray, which can thus be thought of as sampling different types of turbulent structures at
different times, rather than capturing a fully statistically representative spatial domain con-
taining all types of structures at all times. Thus, we collect all snapshots of the turbulent field
(such as those discussed in Section 2.3.1) in which the fluctuating intensities at all detector
channels are below a certain threshold, specifically, |δIi/δIstd

i | < 2.75, and calculate the spatial
correlation function of this collection, representing the “core” of the distribution, in the way
described in Section 2.3.2. We repeat the same procedure for a complementary set of snapshots,
in which at least one detector channel sees δIi/δI

std
i > 3, to extract the correlation parame-

ters of the “tail” of the distribution. This analysis is necessarily crude, because the reduced
number of snapshots (especially for the tail) reduces the quality of the statistics and the size
of the BES window may have an effect that we cannot study systematically. Proceeding with
it nevertheless, we find that the tilt angle for the core of the distribution in the BLM case is
noticeably larger than in the tail (and also that the radial correlation length `x in the tail is
much larger than in the core; see Table 3). For the DLM case, there is no significant difference
between the tail and the core, the tilt angle is essentially zero for both. This result appears to
support the line of reasoning proposed above, although obviously a much more extensive study
of a large number of well-resolved cases with good statistics is called for.

The need for such a study to make our argument fully convincing (or otherwise) is accentu-
ated by the disconcerting failure of the IFS case to agree with the core vs. tail distinction seen
in the BLM case: in fact, we find that the tilt angle in the tail is larger than in the core (see
Table 3). We do not know why the IFS case has this behaviour: whether, for example, it might
be related to the lower (dynamically unimportant?) flow shear, or to the preponderance of
under-, rather than overdensities in the distribution of the fluctuating field, or to the presence
of zonal flows.9 In Section 3.2.2, we will see that the trend in numerical simulations appears to

9As discussed in Section 3.1.2, turbulence in MAST is expected (based on numerical simulations) to develop
both zonal flows and zonal density perturbations. Locally, zonal shears will cause correlation functions to
become tilted in the same way as mean flow shear does. Depending on the life time of the zonal fields and on
the high-pass frequency filter (i.e., effectively, on the definition of time average in (10)) applied to the intensity
signal (see Appendix A.1), we have found numerically that the presence of a residual zonal density perturbation
in the signal can bias conditional correlation functions calculated for stronger or weaker intensities towards
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Case BLM core BLM tail IFS core IFS tail
Condition |δIi/δIstd

i | < 2.75 δIi/δI
std
i > 3 |δIi/δIstd

i | < 2.75 δIi/δI
std
i < −3

No. of snapshots 1434 123 3065 206

`x/ρi 1.9± 0.2 8.4± 0.3 2.9± 0.1 4.8± 0.3
`y/ρi 9.2± 0.1 9.2± 0.3 10.4± 0.1 11.0± 0.2
kxρi −1.00± 0.14 −0.36± 0.01 −0.18± 0.02 −0.35± 0.02
kyρi 0.44± 0.01 0.43± 0.01 0.46± 0.1 0.43± 0.01

Tilt: Θ/deg 67± 3 40± 1 22± 3 39± 2
Table 3: Correlation parameters of the fitting function (13) for the BLM and IFS core and tail
conditional correlation functions (for the BLM case, they are shown in Figure 7). The errors given
here are for the fitting procedure only. The parameters for the overall correlation functions can be
found in Table 2. Note that the number of snapshots does not represent the number of statistically
independent instances: neighbouring snapshots are separated by 0.5 µs, so it takes approximately 20
snapshots for a given structure to pass through the BES subarray (due to the apparent poloidal
motion caused by toroidal rotation [39]).

be broadly consistent with the BLM case.
Cognizant of all the uncertainties and of the clearly insufficient amount of experimental

evidence on offer, we conclude this section with a cautious conjecture that turbulence un-
der the action of flow shear consists of a tilted, sheared, statistically more ubiquitous, but
smaller-amplitude component and less tilted, rarer, but stronger perturbations, which skew the
distribution function of the fluctuating field. We shall test this idea further in the next section.

3 Symmetry breaking in numerically simulated gyroki-

netic turbulence

Having established experimentally, at least as a proof of principle, that the presence of the flow
shear breaks both the spatial symmetry of the turbulence and the symmetry of the distribution
of the fluctuating density perturbations, we now turn to gyrokinetic simulations, both to check
that modelling can reproduce what theory predicts and the experiment has revealed and to
seek clearer guidance on the parameter dependence of these effects. These numerical results
give us a degree of confidence in the validity of our interpretation of the experimental data,
which, especially in what concerns the skewed distributions (Section 2.4), was perhaps not on
its own sufficient to build a rock-solid case.

In this section, we use a set of local, flux-tube, electrostatic, two-species, ion-scale numeri-
cal simulations using the gyrokinetic code GS210 that were originally performed for a different,
independent study of the transition to turbulence in MAST [18]. The experimental case whose
equilibrium parameters served as input for these simulations has previously been used for vali-
dation and verification exercises involving both NEMORB [40] and GS2 [41]. This experimental
case is labelled EGK and its parameters are given in Table 1. While the BES data from this
case has been studied extensively using 1D reconstruction of various correlation parameters [40],

regions of positive or negative zonal densities, which are also regions of stronger zonal shear. One can imagine
that, when the mean flow shear is weak, this could matter and lead to greater tilt angles in the tail of the
distribution, as found here for the IFS case.

10http://ter.ps/gs2
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it unfortunately turns out not to be suitable for a full-scale 2D analysis as developed in [28],
because calculation of kx and, therefore, the tilt, suffers from insufficient resolution. However,
it is not wildly different from our BLM case11 and, in any event, our aim here is to determine
qualitative trends rather than to claim precise agreement between simulations and experiment
(although a more limited 1D analysis of the BES data for the EGK case does show respectable
agreement with GS2 results [41]).

The obvious advantage accorded by (local flux-tube) simulations is that one can change
individual equilibrium parameters at will, while keeping other parameters constant, and thus
look for trends. We will take this route by analysing a sequence of simulations in which the
flow shear γ̂E is varied compared to the nominal EGK case—and confirm that the gyrokinetic
simulations are able to recover, qualitatively, both the tilted correlation functions (Section 3.1)
and the skewed distributions (Section 3.2) observed in the experiment.

However, it must be clear that this does not, in fact, constitute a parameter scan that
one might expect to achieve experimentally in a real plasma. Indeed, the suppression of the
turbulence caused by increasing the flow shear will cause the plasma equilibrium to respond:
as the turbulent transport is reduced, assuming constant ion heat flux, the ion-temperature
gradient (ITG) must increase [10, 9]. Generally speaking, experimentally one expects to find
turbulent plasma states near the stability threshold (which, in the instances of ion-scale MAST
turbulence that we are considering is a nonlinear stability threshold, the turbulence being
subcritical [18]). As a crude simplification, we can think of this threshold (or “zero-turbulence
manifold” [10]) as a boundary in a two-dimensional parameter space consisting of γ̂E and ITG,
although obviously other equilibrium parameters are in fact also involved [19, 10, 9, 42]. From
the point of view of interpreting experimental results, the key questions are (i) near which
part of the zero-turbulence manifold the experimental case under consideration is located and
(ii) how close to the threshold it is. The second question is very crucial indeed, because we
know from simulations [18] (and will further confirm in what follows) that the properties of
our turbulence depend on the distance from threshold very sensitively. To investigate these
matters, in Section 3.3, we will consider a set of numerical simulations in a range of values of
both flow shear and ITG and argue that both the tilt and the skewness are strong functions of
the distance from threshold, i.e., that the symmetry-breaking effects associated with the flow
shear fade away and the symmetry is restored if one probes deep into the strongly turbulent
regime far from the stability boundary.

3.1 Tilt vs. flow shear

We start by considering a parameter scan in flow shear, with 6 different values of γ̂E (see Table 4)
and all other equilibrium parameters the same as those of the EGK experimental case, listed
in Table 1 (except, in these runs, a/LTi = 4.8, which is within the experimental uncertainty of
the measurement [18]). The largest value of the flow shear in this scan, γ̂E = 0.16, corresponds
to the EGK case itself—and at even larger values, there is no turbulence (all perturbations
decay), so we will refer to the simulated EGK case as Marginal.

For the purposes of this analysis, we adopt the definition of the fluctuating density field
δni(t) analogous to the definition (10) of the fluctuating intensity δIi(t) in the experimental
measurements reported in Section 2: at each grid point i, it is the density perturbation at

11It does have a substantially larger flow shear, which was the reason for all the numerical interest in it in the
first place, but, in view of the arguments advanced below, the important parameter is not the absolute value of
γ̂E by itself but the distance to the stability threshold (see Section 3.3).
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Run name GKa5 GKa4 GKa3 GKa2 GKa1 Marginal
γ̂E 0.00 0.08 0.10 0.12 0.14 0.16

Qi/QgB 35.1 24.6 18.0 13.0 13.0 1.4
δn/n 0.073 0.056 0.044 0.040 0.034 0.011

Skewness −0.055 0.0057 0.097 0.053 0.22 2.3

`x/ρi 4.6 3.8 3.9 3.5 3.8 3.5
`y/ρi 10 8.9 8.7 8.8 8.8 10
kxρi −0.0057 −0.16 −0.23 −0.22 −0.37 −0.51
kyρi 0.26 0.29 0.29 0.28 0.27 0.24

Tilt Θ/deg 1.5 35 44 44 59 69

τlife − 8.6 9.6 7.9 12 16

CORE
`x/ρi 3.7 3.3 3.0 3.0 3.3 2.7
`y/ρi 8.9 7.8 7.7 7.8 7.7 9.3
kxρi 0.012 −0.19 −0.25 −0.28 −0.41 −0.56
kyρi 0.27 0.25 0.29 0.29 0.27 0.18

Tilt Θ/deg −3.2 39 46 50 62 75

TAIL
`x/ρi 5.1 4.4 4.0 4.1 4.5 3.6
`y/ρi 12 9.8 10 10 9.5 10
kxρi −0.020 −0.14 −0.14 −0.17 −0.35 −0.50
kyρi 0.28 0.30 0.30 0.29 0.28 0.26

Tilt Θ/deg 5.1 29 30 35 56 67
Table 4: Various statistical characteristics of turbulence in a series of simulations corresponding to
the equilibrium parameters of the EGK case (Table 1, except a/LTi = 4.8 in these runs) and a
sequence of values of flow shear γ̂E . The Marginal case is the EGK case itself. The rms fluctuation
amplitude δn/n is calculated using (16), but replacing δIi(t) with δni(t); the summation is over all
grid points i. Similarly, the skewness is calculated for the fluctuating density field using (17). The
spatial correlation functions for the GKa5, GKa3, GKa1, and Marginal cases are plotted in Figure 8.
The fluctuating-density distributions for the GKa5, GKa1, and Marginal runs (the latter two
skewed) are shown in Figure 12. The conditional correlation functions (CORE and TAIL) are
discussed in Section 3.2.2 and plotted in Figures 13 (run GKa1) and 14 (Marginal run).
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(a) γ̂E = 0.16 (Marginal)
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(b) γ̂E = 0.14 (GKa1)
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(c) γ̂E = 0.10 (GKa3)
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Figure 8: Directly calculated spatial correlation functions of the fluctuating density field for 4 of the
runs documented in Table 4, with, from (a) to (d), value of the flow shear decreasing from the
experimental (EGK) value to γ̂E = 0. The spatial domain of the simulation is regularly gridded,
therefore multiple values of the correlation function (11) (with δni instead of δIi, i being the grid
point) occur for each (∆r,∆Z) pair; these values are then averaged to produce the spatial correlation
function that is plotted (it is also averaged over time, typically several hundred µs, i.e., tens of
correlation times). These correlation functions are to be compared with experimental correlation
functions with and without flow shear in Figure 3. The correlation parameters for the fitting
function (13), approximating the true correlation functions plotted here, are given in Table 4. The
red contours in these plots correspond to the fitting function (13) with these parameters, showing the
quality of the fit (and thus supporting its use for experimental data; see [28] for further discussion).
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(a) τlife vs. γ̂E (b) τlife vs. Qi/QgB

Figure 9: (a) Life time of perturbations, defined by (14), τlife = | tan Θ/γE |, and normalised by
a/vthi, vs. flow shear γ̂E for a number of values of the ion-temperature gradient a/LTi (distinguished
by different shapes of the data points); the data points are coloured according to the value of the
gyro-Bohm-normalised heat flux Qi/QgB (see discussion in Section 3.3). (b) Same, but here τlife is
plotted vs. Qi/QgB with data points coloured according to the value of a/LTi (this plot includes data
from the full set of simulations carried out in [18] and so covers a larger number of values of ITG
than (a)); the vertical dashed line indicates the experimental value of Qi/QgB for the EGK case
(Table 1).

this point (extracted directly from the simulations—it is the velocity integral of the perturbed
particle distribution function, which is being solved for by GS2), with a running time average,
calculated over a moving 50 µs interval, subtracted, so the time average of the fluctuating field
is zero by definition. Note that this corresponds to using a 20 kHz high-pass frequency filter
(which experimentally was needed anyway; see Appendix A.1) and that this procedure will
remove any long-lived zonal density component (see Section 3.1.2).

The spatial correlation functions of the fluctuating density fields calculated in this fashion
are shown in Figure 8 and the correlation parameters (lengths and wave numbers) defined by
the fitting function (13)12 are documented in Table 4. It is manifest that, as the flow shear
increases, the radial-reflection symmetry is broken and the correlation function develops a tilt,
which becomes quite large as the Marginal case is approached. Qualitatively, the difference
between the zero-flow-shear, untilted correlation function for run GKa5 and the sheared, tilted
ones for runs GKa3 or GKa1 is very similar to the difference between the DLM and BLM cases
shown in Figure 3.

3.1.1 Tilt and life time

Quantitatively, we find that the tilt tan Θ = kx/ky increases approximately linearly with γ̂E,
except near the stability threshold. Recalling the discussion at the end of Section 1.2 and
in Section 2.3.4, we conclude that, except near the stability threshold, the life time (14) of
the turbulent perturbations is independent of the flow shear—presumably because dynamically

12The simulations obviously have a much higher spatial resolution than the BES diagnostic, with many more
grid points than BES has channels. Therefore, unlike in Section 2.3.2, we do not need to constrain the product
kZ`Z with the aid of the time-correlation function.
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Figure 10: Perturbed density field from run GKa5 (γ̂E = 0) integrated over y shown vs. x and time
(a) without subtracting moving time average and (b) with moving time average subtracted (as for all
fluctuating density fields used in Section 3). The presence of a zonal density component is manifest.
The red boxes show regions for which conditional correlation functions shown in Figure 11 and
discussed in Section 3.1.2 were calculated.

the flow shear is not very important away from the threshold. This point is illustrated by
Figure 9(a). The data for other values of the ion temperature gradient also shown in this figure
supports this conclusion and will be further discussed in Section 3.3.1.

3.1.2 Tilts at zero flow shear as signature of zonal flows

As we saw in Figure 8(d), when the mean flow shear is zero, the correlation function of the
fluctuating density field is untilted, in agreement with the symmetry (1). We stress, however,
that this is only true if the correlation function is calculated over a sufficiently large spatial
domain. Because drift-wave turbulence is prone to developing zonal flows [43, 44], locally a
flow shear can be present—and indeed is, in the simulations that we are analysing. As these
simulations have kinetic electrons, they can, and do, develop a zonal density perturbation on
ion scales, so the presence of a zonal field is detectable directly from the measured density field,
in the form of a y-independent, long-lived component. Because zonal fields have a long life time,
compared to the life time of the turbulence, they can only be seen if we remove the high-pass
frequency filter effectively imposed on our fluctuating density field by subtracting the running
time average (as stated at the beginning of Section 3.1). This is illustrated in Figure 10, where
we show the y-integrated perturbed density field for the zero-flow-shear run GKa5 with and
without this filter.

Experimentally, the high-pass frequency filter may be difficult to abandon (see Appendix A.1),
however, the zonal shear can be detected indirectly via correlation functions of the fluctuating
density field:13 if those are calculated over a spatial domain that is smaller (radially) than the
wave length of the zonal flow, they will be tilted by the same mechanism as in the case of a
mean flow shear. This is illustrated in Figure 11, which shows correlations functions for the
zero-flow-shear run GKa5 restricted to regions of positive and negative zonal density, as marked
in Figure 10,—as is obvious from the tilts of the correlation functions, these regions turn out
also to be regions of positive and negative zonal shear (in this context, we should perhaps

13Since zonal flows advect the fluctuating density field, it is also possible to detect them by tracking the
movement of density contours in time [45].
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Figure 11: Same correlation function as Figure 8(d), for run GKa5 (γ̂E = 0), but calculated for two
spatial subdomains: (a) with positive zonal density and (b) with negative zonal density, as discussed
in Section 3.1.2.

recall the presence of tilted instantaneous structures in the zero-flow-shear DLM case, noted in
Section 2.3.1). The overall correlation function in Figure 8(d) is an average over several such
regions—the opposite tilts average out and the overall radial-reflection symmetry is preserved.

Since turbulence with mean flow shear will also develop zonal flows, a similar analysis
applied to it will show a certain spread in the tilt angle of the correlation function depending
on whether the zonal shear locally subtracts from or adds to the mean flow shear. This can
matter if the mean flow shear is sufficiently weak.

3.2 Skewness vs. flow shear

The numerical scan in flow shear also reveals that the symmetry of the distribution of the
fluctuating density field is broken by the flow shear: the skewness of the distribution increases
with the flow shear, as documented in Table 4; the distributions for a run with no flow shear
(for which in accordance with the theoretical expectations outlined in Section 1, there is no
skew) and runs with two values of the flow shear, one at the nonlinear stability threshold and
one just off it, are shown in in Figure 12. The skew in the distribution for the Marginal case
in Figure 12(c) is extremely pronounced, much more so than anything that we have observed
experimentally, but the distribution for the case that is only slightly offset from the stability
threshold, shown in Figure 12(b), is very similar qualitatively to the experimental BLM case in
Figure 5(a).14 Generally speaking, in many runs with various values of γ̂E and a/LTi , we only
find distributions with a pronounced tail on the overdensity side in cases that are very close to

14In Section 2.4, we considered the distribution of the fluctuating intensity field measured by the BES, whilst
here we are considering the distribution of the fluctuating density field generated by the gyrokinetic simulations.
There is a certain difference between the two, due to the finite-size PSFs of the BES diagnostic [46]. For a closer
comparison with experiment, synthetic BES data can be generated from the gyrokinetic simulations by applying
the PSFs of the real diagnostic [28]. We will not do this here as we are, in any event, not in a position to make
a detailed comparison between simulated and BES-measured turbulent density fields in the same experimental
configurations, but are rather looking for qualitative trends. The PSF effects on the distribution functions are
considered in Appendix A, where we generate synthetic BES data and show that PSFs do not significantly alter
the skewness of the distribution.
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Figure 12: Distribution of the fluctuating density field δn, normalised by its own standard deviation,
for (a) GKa5 (no flow shear), (b) GKa1 (with flow shear, close but not at the nonlinear stability
threshold), (c) Marginal (at the threshold) runs (see Table 4). The black-dashed line in each case
gives the unit normal distribution. These distributions should be compared with experimental ones
with and without flow shear in Figure 5.

the threshold (and in all cases that were simulated, we do find asymmetry in favour of over-,
rather than underdensities), while the majority of the skewed distributions are similar to that
in Figure 12(b). This gives us a degree of confidence that the skewness that we have found in
the experimentally measured distributions in Section 2.4 is indeed due to flow shear. It is likely
that the fact that this skewness is not very large (and indeed not always measurable) is due
to the rather sensitive dependence of it on the distance to the threshold: note the precipitous
decline in skewness from the Marginal run to run GKa1, even though the difference in the values
of γ̂E for these two cases (γ̂E = 0.16 and 0.14, respectively) is small and experimentally would
be within measurement errors on the velocity profile (see further discussion in Section 3.3).

3.2.1 Physics of skewed distributions

Besides encouraging the physical interpretation of the experimental evidence in terms of sym-
metry breaking associated with flow shear, numerical simulations give us a crucial insight as
to how, dynamically, this symmetry breaking occurs. In [18], for which these simulations were
originally carried out, it was shown that the transition to turbulence in these flow-sheared
MAST configurations occurs via emergence and accumulation (as equilibrium parameters move
deeper into the unstable regime) of long-lived, intense coherent structures, which occupy a
small fraction of the volume. This is because turbulence in these equilibria is subcritical—
while the system is formally linearly stable, perturbations do grow transiently and, for finite
perturbations, this can lead to non-zero nonlinearly saturated turbulent fluctuation levels and
heat fluxes. Since finite amplitudes are required for such a state to persist, the only way for the
system to have small overall heat fluxes as the threshold is approached is by restricting finite
amplitudes to a small fraction of the volume, hence the spatially sparse, but intense structures.
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Figure 13: Same correlation function as Figure 8(b), for run GKa1, but this time conditioned on (a)
lower densities (core of the distribution, |δn| < 2.75 standard deviations) and (b) higher densities
(tail of the distribution, max δn > 3 standard deviations) in the way described in Section 3.2.2. The
correlation parameters for each case are given in Table 4. These correlation functions can be
compared to Figure 7 for the experimental BLM case.

Clearly, in terms of the probability distribution of the amplitudes, the presence of such struc-
tures and the fact that they give rise to a non-zero overall heat flux, implies skewed distributions.
Away from the threshold, the structures become more numerous, overlap, interact, break up
and dissolve into a more volume-filling turbulent sea of “eddies,” characteristic of standard,
unsheared drift-wave turbulence—resulting in approximately symmetric distributions.

Another important observation afforded us by the numerical simulations but unavailable
experimentally (because equilibrium parameters in experiments cannot in general be changed
independently) is that, other things being equal, increasing flow shear does have a suppressing
effect on the rms amplitude of the turbulent density field: this is documented by the δn/n
values in Table 4 (it is not evident in Figure 12, because these are distributions of δn nor-
malised to its own standard deviation). Thus, as we anticipated in Section 2.4.2, the tail
of the skewed distributions found for the near-threshold, sheared turbulence is, in a sense, a
remnant of a wider unsheared/far-from-threshold distribution, containing large-amplitude per-
turbations that might have existed in a more unstable local equilibrium configuration (although,
as argued above, these perturbations have a rather distinct character once only a dwindling
number of them are left with a sole responsibility of maintaining turbulent transport; see also
Section 3.2.2).

3.2.2 Skewness vs. tilt: two-component turbulence in simulations

In Section 2.4.2, we conjectured that turbulence in the presence of flow shear is a two-component
mix of strong but rare perturbations giving rise to the skew in the distribution and a wider
sea of weaker ones, which constitute the core of the distribution and are tilted, more or less
passively, by the flow shear. In other words, the tilt and the skew represent symmetry breaking
by flow shear occurring in different types of perturbations.

To test this picture, we introduced conditional correlation functions, designed to measure the
spatial correlation parameters associated with the core and the tail of the distribution. Here we
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Figure 14: Same as Figure 13, but for the Marginal run (see Table 4 and Figure 8(a)). The bottom
row has correlation functions calculated in the standard way from the high-pass-filtered fluctuating
density field (as explained at the beginning of Section 3.1); the top row has correlation functions of
an unfiltered field, i.e., including the zonal density perturbation. The latter manifestly dominates the
core population but not the tail.
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perform the same analysis on the numerically simulated fluctuating density fields, with the same
condition that frames containing at least one instance of δn larger than 3 standard deviations
are declared to belong to the tail (for the purposes of this selection, the full artificially large 40×
80 cm GS2 computational domain is split into 7.48×9.19 cm subdomains—this is comparable to
the 10×8 cm BES subarray that we used in Section 2.4.2 and necessary in order for conditioning
on the maximum value of δn within a subdomain to pick out statistically different patches of
turbulence). The results are documented in Table 4 and conditional correlation functions for
the core and tail of two of the runs with flow shear are shown in Figures 13 (run GKa1) and 14
(Marginal run). We see that fluctuations in the tail of the distribution are always less tilted
than those in the core. This is similar to the behaviour exhibited by the experimental BLM
case in Section 2.4.2.

Another qualitative similarity between simulated and real sheared turbulence is that the
perturbations in the tail of the distribution, in both cases, have longer radial correlation lengths
`x, not just lower tilt (i.e., smaller kx). Table 3 shows this for both BLM and IFS cases (even
despite the failure of the latter to follow the trend as far as its tilt angle is concerned) and
Table 4 confirms the same trend for our numerical runs with varying flow shear; it is also quite
obvious from the plots of the conditional correlation functions in Figures 13 and 14.

Comparing these two figures, we note also a sizeable increase of the poloidal correlation
length in the core of the distribution as the threshold is approached (see Table 4). Interestingly,
in the Marginal run, the core fluctuations are so weak, that the zonal density perturbation
(in our definition of the fluctuating density field, it is removed by time averaging/high-pass
frequency filtering; see Section 3.1.2) becomes comparable to them—so much so that, as we see
in Figure 14, it dominates the conditional core correlation function (although not the total one
or the tail) if the high-pass frequency filter is removed (suggesting what is perhaps a promising
experimental direction of enquiry).

3.3 Restoration of symmetry far from threshold

In our discussion of both experimental and numerical results so far, we have repeatedly an-
ticipated the argument that what truly matters for the degree to which the symmetry of the
turbulence is broken is how far from the (nonlinear) stability threshold the system is. Thus,
changing the flow shear in Sections 3.1 and 3.2 led to significant changes in behaviour because
this took the system closer to or farther from the marginal case.

This notion is easily confirmed if we fix the flow shear at what in the previous sections was
the marginal value, γ̂E = 0.16, and change instead the ion-temperature gradient (ITG) a/LTi .
A sequence of runs within such a parameter scan is documented in Table 5. The trend that
emerges is very clear: as the ITG is increased from the marginal value (a/LTi = 4.8), both
the tilt angle of the correlation function and the skewness of the distribution of the fluctuating
densities diminish (the decline in skewness is particularly strong). Thus, the symmetry is broken
less strongly.15 The situation in this sense is rather similar to what happened in the γ̂E scan
(Table 4) with decreasing flow shear. One might argue that, as turbulence becomes stronger
away from the threshold (with the distance from the threshold measured either in γ̂E or in
a/LTi), the flow shear ceases to be an important factor and the symmetry formally broken by
it is effectively restored.

15Technically, the symmetry is either broken or it is not. However, we resort to the colloquial phrasing
referring to the ‘strength’ of the symmetry breaking as a synonym for the size of the characteristics (tilt and
skew) that indicate the symmetry has been broken.
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Run name Marginal GKb1 GKb2 GKb3 GKb4 GKb5 GKb6 GKb7
a/LTi 4.8 4.9 5.0 5.1 5.2 6.0 7.0 8.0

Qi/QgB 1.4 5.2 7.9 9.8 14.8 44.0 92.3 142.2
δn/n 0.011 0.021 0.027 0.030 0.035 0.069 0.11 0.14

Skewness 2.3 0.50 0.40 0.28 0.24 0.075 0.094 0.12

`x/ρi 3.5 3.1 3.2 3.2 3.3 3.7 3.6 3.6
`y/ρi 10 10 9.9 9.4 9.3 8.6 9.3 9.3
kxρi −0.51 −0.44 −0.43 −0.42 −0.41 −0.34 −0.24 −0.24
kyρi 0.24 0.25 0.25 0.26 0.27 0.29 0.27 0.26

Tilt Θ/deg 69 65 64 63 62 54 47 48

τlife 16 13 13 12 12 8.7 6.7 7.0

CORE
`x/ρi 2.7 2.6 2.7 2.7 2.8 3.2 3.1 3.2
`y/ρi 9.3 8.8 8.6 8.2 7.9 7.4 7.5 7.4
kxρi −0.56 −0.49 −0.48 −0.47 −0.46 −0.38 −0.29 −0.31
kyρi 0.18 0.25 0.25 0.26 0.27 0.29 0.27 0.26

Tilt Θ/deg 75 67 66 66 64 53 52 55

TAIL
`x/ρi 3.6 3.7 3.9 4.0 3.9 4.4 4.2 4.1
`y/ρi 10 10 9.8 9.8 9.9 8.9 9.7 9.9
kxρi −0.50 −0.42 −0.40 −0.38 −0.38 −0.30 −0.19 −0.17
kyρi 0.26 0.27 0.26 0.27 0.28 0.30 0.28 0.28

Tilt Θ/deg 67 62 62 60 58 51 40 36
Table 5: Same as Table 4, but for γ̂E = 0.16 and a sequence of values of the ion-temperature
gradient a/LTi .
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3.3.1 Tilt, flow shear and life time

It is worth discussing a little further how the effective restoration of symmetry happens for the
tilt of the correlation functions. We argued at the end of Section 1.2 and again in Section 3.1.1
that the flow shear did not need to be dynamically important in order to induce a tilt in the
correlation function. In such a “passive” tilting scenario, the tilt tan Θ = kx/ky is simply pro-
portional to γE, with the constant of proportionality being the life time τlife of the perturbations,
as per (8) or (14). This life time, defined by (14) and given in Table 5, becomes shorter as the
ITG is increased. This is also manifest in Figures 9(a) and (b)—the latter figure is a scatter
plot of τlife for a large set of values of γ̂E and a/LTi against the gyro-Bohm-normalised ion heat
flux Qi/QgB, which is a good measure of distance to threshold (it is zero at the threshold and
increases steeply away from it [18]). The reason correlation times shorten is that larger ITG
implies stronger drive and so higher turbulent amplitudes: “eddies” turn over faster.16 Shorter
τlife then implies smaller tilt angle (tan Θ ∼ γEτlife) farther from marginality.

In physical terms, the flow shear ceases to be important if it is smaller than the local, fluctu-
ating velocity shear acting on a turbulent perturbation and caused by its fellow perturbations.
This nonlinear fluctuating shear must, in saturation, be comparable to some appropriate linear
rate at which the perturbations are replenished by the ITG drive. In this sense, the competition
between the life time of the turbulence and the flow shear as the threshold is approached is
reminiscent of the so-called Waltz rule [48]: that in order to affect (suppress) the turbulence,
the flow shear must be similar to, or greater than, the linear growth rate (we recall, however,
that the turbulence that we are dealing with here is subcritical [18] and so formally there is no
linear growth rate; what effective quantity from the linear theory should be used instead is a
matter of current research interest [20, 10, 41]).

3.3.2 Tilt and skewness vs. distance from threshold

Figures 15(a) and (b) show the tilt angle of the correlation function and skewness of the
distribution of the fluctuating density field for a range of values of the flow shear γ̂E and ITG
a/LTi around the nonlinear stability threshold and departing from it—this extends the γ̂E and
a/LTi scans documented in Tables 4 and 5. The conclusion remains the same: away from the
threshold, symmetry is effectively restored—particularly quickly for the distribution functions
(as we argued in Section 3.2.1, the restoration of symmetry of the distribution of fluctuating
densities far from the threshold occurs because intense coherent structures that dominate the
transition to turbulence and are responsible for the skewed distributions become too numerous
for individual survival, interact and break each other apart [18]).

As we already did in Section 3.3.1 for the life time of the perturbations, we quantify the
dependence of the measures of asymmetry (tilt and skewness) on the distance to threshold in
terms of their dependence on the gyro-Bohm-normalised heat flux Qi/QgB, which vanishes at
the threshold but increases strongly and monotonically away from it [18] and thus constitutes
a good order parameter. Scatter plots of the tilt and the skewness vs. Qi/QgB are shown in
Figures 15(c) and (d), respectively, for the entire data base of numerical simulations originally
carried out in [18]. We see that, modulo some scatter, both the tilt and the skewness are

16Very far from the threshold, in ITG turbulence without flow shear (which, far from the threshold, presumably
does not matter anyway), the correlation times become independent of the ITG because turbulence is controlled
by the “critical balance” between linear, nonlinear and streaming time scales [47], but here we are discussing
cases that are still relatively close to the threshold (although one might argue that a/LTi

= 7 and 8 in Figure 9(a)
already have fairly similar values of τlife).
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a/LTi Tilt angle: Θ/deg

8.0 -2.1 25 30 42 48 47

7.0 0.86 25 36 45 47 54

6.0 -11 32 43 50 54 64

5.2 1.6 32 39 44 53 62 67

5.1 53 63 72

5.0 -3.1 55 64

4.9 -1.4 33 39 49 60 65

4.8 1.5 35 44 44 59 69

4.7 60

4.6 62

4.5 64

4.4 -5.2 22 46 56 69

4.3 42 48

γ̂E 0.00 0.08 0.10 0.12 0.14 0.16 0.18

a/LTi Skewness

8.0 -0.023 0.053 0.055 0.076 0.12 0.12

7.0 0.014 0.054 0.062 0.069 0.094 0.13

6.0 -0.028 0.073 0.069 0.057 0.075 0.16

5.2 -0.029 0.0100 0.048 0.045 -0.010 0.24 0.46

5.1 -0.033 0.28 3.6

5.0 0.0065 -0.039 0.40

4.9 -0.0075 0.057 0.011 -0.030 0.18 0.50

4.8 -0.055 0.0057 0.097 0.053 0.22 2.3

4.7 0.34

4.6 0.39

4.5 0.65

4.4 0.026 0.011 0.15 0.061 2.0

4.3 0.10 0.23

γ̂E 0.00 0.08 0.10 0.12 0.14 0.16 0.18

(a) Tilt vs. γ̂E and a/LTi (b) Skewness vs. γ̂E and a/LTi
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Figure 15: (a) Tilt angle of the correlation function and (b) skewness of the distribution of the
fluctuating density field vs. flow shear γ̂E and ITG a/LTi in a range of values of these parameters
around the nonlinear stability threshold. The tilt and the skewness are replotted in (c) and (d),
respectively, vs. the gyro-Bohm-normalised ion heat flux, with data points coloured according to the
value of γ̂E . These plots contain data for γ̂E ∈ [0, 0.19] and ITG a/LTi ∈ [4.3, 8], covering the entire
database of the runs carried out in [18]. In (d), inverted triangles mark the cases where skewness is
negative.
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approximately functions of the distance to the threshold (to be precise, Figure 9(b) suggests
that it is the life time τlife = tan Θ/γE, rather than the tilt, that is a nearly single-valued
function of this distance, at least when measured sufficiently far from the threshold). The
case of γ̂E = 0 is the exception to this rule, as expected theoretically, being subject to the
exact symmetry (1): namely, at zero flow shear, both the tilt and the skew are essentially zero
regardless of how marginal, or otherwise, the system is.

4 Discussion

To summarise, we started with a premise that, as the presence of the flow shear appears to be
quite strongly correlated with larger temperature gradients both in MAST [9] and in numerical
simulations [10, 18], the effect of the shear on the local structure of plasma turbulence must be
detectable. Theoretically, we argued (in Section 1) that flow shear would break the reflection
symmetry (1) [12, 13] and that statistically this symmetry breaking would be actualised in
the form of skewed distributions (Section 1.1) and tilted correlation functions (Section 1.2) of
the fluctuating density field. We did then find both of these signatures of symmetry breaking
experimentally (Sections 2.4.1 and 2.3.3, respectively), at least as a proof of principle—in
specific examples of turbulent density fields in MAST with and without flow shear.

For a number of reasons to do with spatial resolution of the MAST BES system and with the
range of equilibrium parameters available, we cannot, at this point, have a broad parameter-
scan study and so we sought reassurance, validation and further physical insight from a set
of numerical simulations of MAST turbulence performed by [18] and covering a range of flow
shears and ion-temperature gradients in a MAST-relevant equilibrium configuration. Again
we found both skewed fluctuating-density distributions (Section 3.2) and tilted correlation
functions (Section 3.1), qualitatively similar to the experimental ones.

With the aid of the simulations, we were able to establish that, generally speaking, the
symmetry breaking was most pronounced in the vicinity of the (nonlinear) stability threshold,
whereas away from it, symmetry was gradually restored (Section 3.3.2)—essentially because
flow shear became dynamically less and less relevant far from the threshold (Section 3.3.1).
The dependence of the symmetry breaking on the distance from threshold—especially of the
skewness of the fluctuating-density distributions—turned out to be quite strong. Experimen-
tally, while we expect to find turbulent states in the general vicinity of the stability boundary
(as indeed confirmed in [18]), it is not reasonable to expect them to be exactly on it. The
degree to which symmetry is found to be broken can then be viewed as an indicator of how
close to the threshold any given measured instance of turbulence is.

We have also argued that tilted correlation functions provide a versatile diagnostic that could
be used to probe the effective life time (correlation time) of turbulent structures (Sections 2.3.4,
3.1.1, and 3.3.1) and the local zonal shear (Section 3.1.2). Furthermore, when conditioned
on the amplitude of the fluctuating density, these correlation functions appeared to reveal,
both experimentally (Section 2.4.2) and numerically (Section 3.2.2), that sheared, skewed,
near-threshold turbulence could be thought of as consisting of two components: longer-lived,
spatially larger, more intense, but statistically rarer structures and a general sea of smaller,
weaker, but statistically volume-filling fluctuations. Indeed, that spatially sparse coherent
structures dominate the transition to turbulence in the physical situation considered here was
shown by [18] (see the summary of their argument in Section 3.2.1)—what we have found here
is that the statistical signature of these structures is the breaking of symmetry (skewness)
of the distribution function of the fluctuating density, or, conversely, that the physical way
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in which the system takes advantage of the breaking of symmetry is the emergence of these
structures. The tilting of the correlation functions is a better understood and, arguably, more
straightforward phenomenon (Section 1.2) affecting both strong and weak perturbations, the
latter more than the former (see Sections 2.4.2 and 3.2.2).

It is quite clear that, experimentally, a much more extensive study is called for. The
trends revealed by the numerical simulations serve as a guideline to the range of questions that
can be asked and of parameter dependences that could be verified or falsified. It would be
interesting to learn in what circumstances fluctuating-density distributions are skewed towards
underdensities, rather than overdensities (exemplified by one of our experimental cases; see
Section 2.4.1). The nature and role of zonal flows generally and in subcritical turbulence with
flow shear in particular (such as the MAST turbulence that we have investigated), remain a
fascinating subject, which perhaps could be tackled experimentally using some of the tools
developed here (see Section 3.1.2) or other methods [45]. More generally, a full experimental
(as well as numerical and theoretical) understanding of the transition to turbulence and of the
resulting turbulent states in subcritically unstable, sheared tokamak turbulence is a worthwhile
goal, important for practical purposes of optimising tokamaks and perhaps learning how to
manipulate stability boundaries, but also appealing to the more curiosity-driven angels of our
nature.
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A Measuring skewed distributions

Experimental measurement of skewed (or otherwise) distributions of the fluctuating intensity
fields is complicated by a number of extraneous effects, which we detail and describe how to
correct for in Appendix A.1. In Appendix A.2, we extend the work of [28] to determine the
effect of PSFs on the skewness of the fluctuating-field distributions.
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Figure 16: Probability distribution of the intensity perturbation δIi (unnormalised) for (a) the DLM
case (see Section 2.2) for 2× 4 BES channels, as in in Figure 5(b); (b) the same as (a) but
spike-filtered; (c) the same as (a) but spike- and then bandpass-filtered in the range 20− 100 kHz;
(d) the detected signal of the BES diagnostic when the shutter is closed, measured during shot
#27367 at t ∈ [250, 252] ms, using the 5× 4 channels inner BES subarray; (e) the same as (d) but
spike-filtered; (f) same as (d) but spike- and then bandpass-filtered in the range 20− 100 kHz. Note
the different x-axis scales in (a-c) and (d-f).
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A.1 Accounting and correcting for spurious skewness

The distribution of fluctuating intensities of the raw BES signal can be skewed for two main
reasons not associated with the symmetry breaking of the turbulent field: the presence of high-
energy radiation and the slow variation of the intensity signal. We discuss these effects by
considering Figure 16(a), where the distribution of (unnormalised) fluctuating intensities from
the raw BES signal for the DLM case (see Section 2.4) is plotted.

First, let us consider the smaller (in this case) of the two effects: the low-probability tail
on the right-hand side of the distribution in Figure 16(a). This tail is caused by high-energy
radiation (neutron, gamma ray, or hard X-ray) impinging on the avalanche-photodiode detector
(APD) of the BES camera and producing spikes in the time series that are isolated to a single
detector channel.

We can observe this effect more clearly by analysing BES data from another MAST shot
(#27367), where the shutter over the optical system of the BES diagnostic was closed, and
so no beam-emission photons were able to reach the APD. The distribution of unnormalised
fluctuating intensities for this “shutter-closed” case is plotted in Figure 16(d). It can be seen
to be made up of two components: the first is a Gaussian distribution of photon (electronic)
noise, the second is a tail of positive δI due to the high-energy radiation, causing large positive
skewness S = 11.77.

The sum of two randomly distributed independent variables (here, beam-emission photons
and high-energy radiation) has a probability distribution that is the convolution of the proba-
bility distributions of the two variables (see, e.g., [49]). Therefore, formally, knowing (having
measured) the probability distribution of the radiation spikes, it is possible to deconvolve this
probability distribution from an experimentally measured probability distribution. However,
this is not possible in practice because the actual number of large-amplitude radiation spikes
is small (typically at most one or two per channel in a 2 ms time window). As a result, we
resort to a cruder method, but an effective one, of removing the radiation spikes from the time
series by identifying large (above a certain threshold) differences between the intensity at one
point in time and the next, and then replacing this large-intensity value with the value of the
neighbouring point17 [15]. The result of this “spike filtering” can be seen in Figure 16(e), where
the large tail of the distribution in Figure 16(d) has been successfully removed by this method.

However, our spike filter is not able to remove all of the radiation spikes, especially ones
with smaller amplitudes. These remaining low-amplitude radiation spikes cause high-frequency
variations in the time series. Therefore, a low-pass filter can be used to remove them. A low-
pass filter is also necessary to remove high-frequency (above 100 kHz) noise from the signal
(see Figure 11 of [15]). In order to account for the slow variation of the intensity signal (which
will be discussed shortly), a high-pass filter is also required. Therefore, we use a bandpass
filter in the range 20 − 100 kHz on the BES-measured time series. The outcome is shown in
Figure 16(f). The skewness of the fluctuating-intensity distribution in this figure is nearly zero,
demonstrating that this process can successfully account for the skewness caused by high-energy
radiation and gives us an estimate of the uncertainty with which we can measure the skewness
of the distribution of the turbulent field (in the absence of other effects; see Appendix A.2).
Returning to the DLM case, in Figure 16(b), we see that the spike filter successfully removes
the low-probability tail.

Now we consider the second spurious source of skewness in the distribution: the slow (∼ ms)

17The radiation spikes can persist over a number of sampling times (each equal to 0.5 µs), so the spike-filtering
algorithm is designed to fill in up to 4 time points with neighbouring values.
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time evolution of the intensity signal due to changes in the equilibrium and slow MHD modes
(> 50 µs). If, during a given time interval, the (running) mean intensity signal varies unevenly
(for example, decreases slightly for the last third of the time interval), then the mean over
the entire time interval 〈Ii(t)〉 will be weighted by this variation. The distribution of the
fluctuating part of the intensity signal, δIi(t) = Ii(t)− 〈Ii(t)〉, will then be skewed. Therefore,
a high-pass filter is used to remove all variations of the intensity signal with frequencies below
20 kHz. We demonstrate the effect of using such a filter (in combination with the low-pass
filter discussed above) on the DLM case, which has, on inspection of the raw time series, a
slow, uneven variation in the intensity signal over a 2 ms time interval. In Figure 16(c), the
20−100 kHz bandpass filter reduces the skewness in the distribution significantly, compared to
that in Figure 16(b). We have now recovered the distribution that was shown in Figure 5(b).

We finish by noting another possible source of spurious skewness in the distribution of
fluctuating intensities, the background emission from the plasma. Intensity distributions for the
cases either when there is no neutral beam heating or when only the SW neutral beam is active
(the BES images the SS beam), are similar to that of the shutter-closed case in Figure 16(d).
Therefore, we do not expect the background plasma emission to produce a skewness larger than
that caused by the high-energy radiation, and that we have been able to account and correct
for.

A.2 PSF effects

We now consider PSF effects on the distribution of the fluctuating field. In the first row of
Figure 17, panels (a-c), we reproduce the three distributions of the numerically simulated fluc-
tuating density field already plotted in Figure 12 (these are the distributions for the GKa5,
GKa1, and Marginal runs). In each of the following rows, we plot the distributions of the fluc-
tuating intensity field calculated from the density field used in panels (a-c) and using the PSFs
of the BES diagnostic calculated for each experimental case that we considered in Section 2.4:
the second row, panels (d-f), is for the BLM case, the third row, panels (g-i), is for the DLM
case, and the fourth row, panels (j-l), is for the IFS case. The relationship between the density
field, the intensity field and the PSFs is given by

δIi =

∫
Pi(r − ri, Z − Zi)βδn(r, Z)drdZ, (18)

where Pi(r − ri, Z − Zi) is the PSF of channel i, calculated according to [46], and β is related
to the atomic physics of the line emission and is a weak function of density [30] (for our three
experimental cases, it is approximately constant: β = 0.7).

For the run with zero flow shear (GKa5), we see from the first column of Figure 17 that the
skewness is changed from −0.05 without PSFs to at most −0.03 when applying the PSFs. In the
second column of Figure 17, we see similar behaviour for the runs with a moderate flow shear
(GKa1), with an increase of skew of 0.06. For the Marginal run, the skewness is again increased
by the PSFs, but by an even lesser amount, in the 10% range (irrelevant compared to the true
skewness for these runs). It is clear that in the runs with non-zero flow shear the change in
skewness due to the PSFs is small compared to the true value of skewness. These results suggest
that the difference in skewness between the three experimental cases considered in Section 2.4
cannot be due solely to PSF effects. In fact, we see that all three of the sets of PSFs taken
from the experimental cases have similar effects on the distribution of the fluctuating field.
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Figure 17: Effect of PSFs on the distribution of amplitudes from the GKa5, GKa1, and Marginal
simulations. The intensity fields (d-l) are calculated from the density fields (a-c) by evaluating (18).
The dashed line in each plot is the normal distribution.
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