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Abstract. In this study, the spatio-temporal and seasonal
distributions of EOS/Terra Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived aerosol optical depth
(AOD) over East Asia were analyzed in conjunction with
US EPA Models-3/CMAQ v4.3 modeling. In this study, two
MODIS AOD products (τMODIS: τM−BAER and τNASA) re-
trieved through a modified Bremen Aerosol Retrieval (M-
BAER) algorithm and NASA collection 5 (C005) algorithm
were compared with the AOD (τCMAQ) that was calculated
from the US EPA Models-3/CMAQ model simulations. In
general, the CMAQ-predicted AOD values captured the spa-
tial and temporal variations of the two MODIS AOD prod-
ucts over East Asia reasonably well. SinceτMODIS cannot
provide information on the aerosol chemical composition
in the atmosphere, different aerosol formation characteris-
tics in different regions and different seasons in East Asia
cannot be described or identified byτMODIS itself. There-
fore, the seasonally and regionally varying aerosol formation
and distribution characteristics were investigated by the US
EPA Models-3/CMAQ v4.3 model simulations. The contri-
bution of each particulate chemical species toτMODIS and
τCMAQ showed strong spatial, temporal and seasonal vari-
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ations. For example, during the summer episode,τMODIS
and τCMAQ were mainly raised due to high concentrations
of (NH4)2SO4 over Chinese urban and industrial centers and
secondary organic aerosols (SOAs) over the southern parts
of China, whereas during the late fall and winter episodes,
τMODIS and τCMAQ were higher due largely to high levels
of NH4NO3 formed over the urban and industrial centers,
as well as in areas with high NH3 emissions. τCMAQ was
in general larger thanτMODIS during the year, except for
spring. The high biases (τCMAQ>τMODIS) may be due to the
excessive formation of both (NH4)2SO4 (summer episode)
and NH4NO3 (fall and winter episodes) over China, possi-
bly from the use of overestimated values for NH3 emissions
in the CMAQ modeling. According to CMAQ modeling,
particulate NH4NO3 made a 14% (summer) to 54% (winter)
contribution toσext andτCMAQ. Therefore, the importance of
NH4NO3 in estimatingτ should not be ignored, particularly
in studies of the East Asian air quality. In addition, the accu-
racy ofτM−BAER andτNASA was evaluated by a comparison
with the AOD (τAERONET) from the AERONET sites in East
Asia. BothτM−BAER and τNASA showed a strong correla-
tion with τAERONET around the 1:1 line (R=0.79), indicating
promising potential for the application of both the M-BAER
and NASA aerosol retrieval algorithms to satellite-based air
quality monitoring studies in East Asia.
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1 Introduction

Tropospheric aerosols are important components in the at-
mospheric system. They affect the global radiation budget
directly by scattering or absorbing solar radiation and indi-
rectly by changing cloud condensation nuclei (CCN) con-
centrations and cloud lifetimes in the atmosphere (Twomey
et al., 1984; Charlson et al., 1992; Kaufman et al., 2002; Ra-
manathan et al., 2007). Furthermore, tropospheric aerosols
provide important surfaces for heterogeneous reactions be-
tween gas-phase air pollutants and atmospheric particles.
Through the heterogeneous reactions, acidic and alkaline
substances such as sulfate, nitrate, ammonium, and sec-
ondary organic aerosols (SOAs) are formed in the tropo-
spheric aerosols, causing urban-, regional-, and global-scale
air pollution (Jacobson, 1999; Ramanathan and Crutzen,
2003; Seinfeld et al., 2004).

The generation, transport, and formation of tropospheric
aerosols and aerosol climatology (radiative effects) have
often been studied by several collaborative research cam-
paigns in East Asia, which integrate ground-based monitor-
ing, aircraft and ship measurements, and 3-dimensional (3-
D) chemistry-transport modeling (CTM) efforts (e.g. PEM-
West A and B, ACE-Asia, TRACE-P). However, such ef-
forts have been limited by the inability of the point (ground-
based) and line (aircraft- and ship-borne) measurements in
the campaign activities to completely capture the spatially
and temporally varying, regional-scale aerosol generation,
formation, and transport characteristics.

For the last couple of decades, satellite-based, remote-
sensing techniques have been greatly developed. Particu-
larly, environment observing satellites have provided 2-D,
column-integrated aerosol “optical” concentrations as im-
portant complimentary and/or alternative data to the current
point- and line-based “chemical” measurements (King et al.,
1999; Singh and Jacob, 2000). The satellite-derived, aerosol
optical properties have been applied to various research areas
in air pollution studies such as: i) identifying the sources of
air pollution (e.g. Herman et al., 1997), ii) estimating ground-
level particulate concentrations (e.g. Wang and Christopher,
2003; van Donkelaar et al., 2006), iii) understanding the
long-range transport of air pollutants across oceans and con-
tinents (e.g. Husar et al., 2001; Colarco et al., 2002; Take-
mura et al., 2002; Lee et al., 2005b), iv) developing an ad-
vanced air quality forecast system (e.g. Al-Saadi et al., 2005),
and v) aerosol climatology studies (e.g. Holben et al., 2001;
Weaver et al., 2002; Kaufman et al., 2002; Hsu et al., 2003).
Currently, many satellite platforms, such as Total Ozone
Mapping Spectrometer (TOMS), Sea-Viewing Wide Field-
of-View Sensor (SeaWIFS), Moderate Resolution Imaging
Spectroradiometer (MODIS), Medium Resolution Imaging
Spectroradiometer (MERIS), Ozone Monitoring Instrument
(OMI), Multi-angle Imaging Spectroradiometer (MISR), and
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vation (CALIPSO), have provided various qualities and lev-

els of aerosol optical properties (King et al., 1999; Singh
and Jacob, 2000; Kokhanovsky et al., 2006). Meanwhile,
remotely sensed, aerosol optical column properties are also
provided by ground-based, sunphotometer network and data
archive, such as the Aerosol Robotics Network (AERONET)
managed by the NASA Goddard Space Center (Holben et al.,
1998). Therefore, it would be desirable and promising to use
these abundant, satellite- and sunphotometer-derived aerosol
optical properties in urban- and regional-scale air pollution
studies, in conjunction with the point- and line-based chemi-
cal measurements and 3-D photochemical modeling. In this
study, we therefore apply the satellite- and sunphotometer-
derived aerosol optical depth (hereafter, denoted as AOD or
τ) to particulate pollution studies over East Asia in the link
with 3-D Eulerian CTM simulations. As the 3-D CTM, we
used the US EPA Models-3/CMAQ v4.3 (Community Multi-
scale Air Quality) model. The AOD products retrieved from
the MODIS instrument on board the NASA EOS/Terra satel-
lite were used for the satellite-derived aerosol optical proper-
ties.

The integrated analysis of MODIS-, AERONET-, and
Models-3/CMAQ-derivedτ has many merits. First, while
MODIS-derived AOD (τMODIS) can provide 2-D domain-
wide, aerosol distributions, it cannot provide information on
the chemical composition of the atmospheric aerosols. This
limitation can be overcome by using the 3-D CTM simula-
tions. By conducting US EPA Models-3/CMAQ modeling
in conjunction with the satellite-derived aerosol data, differ-
ent aerosol formation characteristics in different regions and
different seasons in East Asia can be more clearly described
and identified. In addition, the integrated analysis ofτMODIS
andτCMAQ (CMAQ-predicted AOD) can allow a better un-
derstanding of the atmospheric/bio-geological chemical and
physical processes occurring over East Asia. Secondly, the
satellite-borne datasets typically have “temporal limitations”,
because satellite platforms take measurements over the area
of interest (e.g. East Asia) only for limited times (e.g. 3–4 h).
Such temporal limitations can be overcome using 3-D CTM
simulations, because CTM simulations can provide 3-D re-
sults at all times over the episode period. Thirdly, the use
of bothτMODIS andτCMAQ can overcome the “spatial limita-
tions” that are typical in ground stations, ships, and aircraft
measurements. For example, although sunphotometer mea-
surements can provide “ground true values” of the aerosol
optical properties, they are usually measured only at point
stations. It is often difficult to represent the aerosol opti-
cal properties of surround areas using point measurements,
particularly where the atmospheric concentrations are highly
variable.

In this study, the MODIS platform was selected for four
episodes that span from November 2001 to February 2003,
because other platforms cannot fully cover the four episodes
considered in this study or the MODIS platform provide bet-
ter quality of aerosol products than the other instruments.
Two combinations were tested over East Asia for the four
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episodes: (i) MODIS-MBAER algorithm (modified version
of the Bremen aerosol retrieval algorithm) with the MODIS
Level 1B data and (ii) MODIS-NASA Collection 5 (C005)
algorithm (the MODIS Level 2 product). The former has
largely been applied to European air quality studies (e.g. von
Hoyningen et al., 2003; Kokhanovsky et al., 2006), and has
begun to be applied to East Asian air quality studies only
at a few locations of South Korea (Lee et al., 2005, 2007).
In this study, the MODIS-MBAER combination is applied
to the entire East Asian domain. The latter aerosol prod-
ucts have just recently begun to be released. Previously, the
MODIS-NASA Collection 4 products were applied to East
Asia (Chin et al., 2001, 2004) but the MODIS-NASA C005
has not been used in East Asian air quality studies. Thus, the
use and comparison of both combinations in East Asian air
quality studies is worthwhile.

This study carried out a comprehensive investigation
by closely integrating the remote sensing data with the
3-D CTM products considering the detailed atmospheric
gas/aerosol chemico-physical processes in the 3-D CMAQ
modeling. This is a fundamental study to investigate the sea-
sonally and regionally varying, aerosol formation and dis-
tribution characteristics in East Asia. Based on the results,
we would like to establish a state-of-the-science chemical
weather forecast system in East Asia in the near future, as
in the USA (e.g. Al-Saadi et al., 2005), and to more accu-
rately estimate the seasonally varying direct climate forcing
by primary and secondary anthropogenic aerosols and min-
eral dust in East Asia.

2 Model descriptions

In order to conduct CTM over East Asia, we used a one-way
coupling of PSU/NCAR MM5 (Pennsylvania State Univer-
sity/National Center for Atmospheric Research Mesoscale
Model 5) to the US EPA Models-3/CMAQ model along with
the East Asian emission inventory. The procedures are ex-
plained in detail below.

2.1 US EPA Models-3/CMAQ modeling

We performed 3-D Eulerian modeling over East Asia, us-
ing the US EPA Models-3/CMAQ v4.3 model (Byun and
Ching, 1999; Byun and Schere, 2006). In this model-
ing study, both Carbon Bond Mechanism 4 (CBM4) and
Carnegie-Mellon University (CMU) aqueous-phase chem-
istry were selected for the full consideration of gas-phase
and aqueous-phase chemistries, respectively. For the advec-
tion and dry deposition of the gas and particulate species,
the Piece-wise Parabolic Method (PPM) and latest version of
Wesley scheme were chosen.

With regard to the aerosol chemical, dynamic, and thermo-
dynamic processes, one of the most salient features of the US
EPA Models-3/CMAQ v4.3 model is that the aerosol module

includes the ISORROPIA aerosol equilibrium model and the
mathematically-efficient, modal approach. The performance
of the ISORROPIA model in predicting gas-particle distribu-
tions of ambient acidic (e.g. H2SO4, HNO3, HCl) and alka-
line (e.g. NH3) species is presented in Nenes et al. (1998).
Capaldo et al. (2000) also reported that interactions between
gas-phase species and fine-mode particles are sufficiently fast
for this heterogeneous process to be dealt with in a thermo-
dynamic manner. In contrast, interactions between gas-phase
species and coarse-mode particles are so slow that this pro-
cess must be treated in a kinetic or dynamic manner, in a
method called the “CMU hybrid approach”. The aerosol
modal approach has been applied to 3-D photochemical mod-
els because it can provide mathematically-convenient forms
of formulas describing time-varying particle growth due to
aerosol dynamic processes, such as coagulation and conden-
sation (Binkowski, 1999; Binkowski and Roselle, 2003). Un-
like the other 3-D aerosol modeling studies (e.g. Takemura et
al., 2002; Chin et al., 2004), the species-wise size distribu-
tions were not fixed in this study due to the advantage of the
modal approach.

The study domain covered approximately the region from
100◦ to 150◦ E and from 20◦ to 50◦ N (shown in Fig. 1),
which includes all of Korea, Japan, most of eastern China,
and parts of Mongolia and Russia. The region has dramatic
variations in topography and land type, and features mixtures
of industrial/commercial/urban centers and agricultural/rural
regions. Figure 1 illustrates the Chinese urban-industrial cen-
ters, such as Bohai Bay, Sichuan Basin, and Yangtze Delta
areas, denoted as regions A, B and C, respectively, and the
region with high NH3 emission due to strong agricultural
and livestock farming activities (Hebei, Shandong, Henan,
Jiangsu, and Anhui provinces). In addition, dust storms fre-
quently erupt from the Gobi desert, loess plateau, and Inner
Mongolia, typically in spring.

In the 3-D CMAQ modeling, the horizontal grid spac-
ing was 108 km×108 km with 46 and 33 grids in the x-
and y-directions, respectively, and vertical domain ranged
from 1000 hPa to 180 hPa, with 24 terrains followingσ -
coordinates, giving a total of 36 432 grid points.

The 3-D photochemical modeling was conducted for four
episodes, representing the four seasons, in East Asia. The
periods of the four episodes, each approximately 3 weeks
long, were: i) 9–27 November 2001 (Late Fall); ii) 25
March–13 April 2002 (Spring); iii) 24 August–13 September
2002 (Late Summer); and iv) 11–28 February 2003 (Win-
ter). US EPA Models-3/CMAQ modeling was conducted for
the four episodes using the MET fields generated from the
PSU/NCAR MM5 modeling.

2.2 Meteorological modeling

As a meteorological preprocessor for the US EPA Models-
3/CMAQ CTM, PSU/NCAR MM5 was used in this
study. In the meteorological modeling (MET modeling),
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Fig. 1. Modeling domain in this study.

the 3-D non-hydrostatic primitive equation was selected
as the governing equation. The horizontal spacing was
108 km×108 km, which follows the horizontal spacing of
the US EPA Models-3/CMAQ model. However, the size
of the domain for MM5 modeling was larger by two grids
than that for US EPA Models-3/CMAQ modeling in the 4
compass directions in order to minimize the uncertainties
that could occur when meteorological boundary conditions
were set for US EPA Models-3/CMAQ modeling. For the
same reason, the vertical domain for MET modeling was
also higher, from 1000 to 70 hPa, than that for US EPA
Models-3/CMAQ modeling, with 30 terrain followingσ -
coordinates. For the MET modeling, 2.5◦

×2.5◦ re-analyzed,
National Centers for Environmental Prediction (re-analyzed
NCEP) data were used to drive MM5. The reanalyzed NCEP
data used in this study also contained the sea surface tem-
perature (SST) data. In addition, the data included in the
PSU/NCAR storage were used to give consideration for the
terrain heights within the domain. In order to improve the ac-
curacy of the MET fields, NCEP Automated Data Processing
(ADP) global surface and upper air observation data were uti-
lized by employing Four-D Data Assimilation (FDDA) tech-
niques with nudging coefficients of 2.5×10−4 for temper-
ature and wind and of 1×10−5 for mixing ratios (Stauffer
and Seaman, 1990, 1994). In the MM5 modeling, Black-
adar scheme and five-layer land surface models (LSMs) were
used for the planetary boundary layer (PBL) parameteriza-
tion and associated ground temperature scheme, respectively.

Rapid Radiative Transfer Model (RRTM), Grell scheme, and
Reisner-2 scheme were chosen to give consideration for at-
mospheric radiation, cumulus parameterization, and cloud
microphysics, respectively (Grell et al., 1994; Reisner et al.,
1998). Using these schemes, grided MET fields were gener-
ated with a high temporal resolution of “1-h interval”. Af-
ter the generation of the grided MET fields from the MM5
modeling, the data were then processed and converted by the
meteorological-chemistry interface processor (MCIP) to pro-
duce MET inputs for the US EPA Models-3/CMAQ model.

2.3 Emissions

Resolved emission data at 1◦
×1◦ were obtained from the

ACE-ASIA (Asian Pacific Regional Aerosol Characteriza-
tion) emission estimation web site (http://www.cgrer.uiowa.
edu/EMISSIONDATA new/index16.html). The emission
data for NOx and SO2 were of primary importance, as they
are the precursors of particulate nitrate and sulfate, respec-
tively. The emission inventory for the two primary pollu-
tant species in East Asia has been continuously improved
and evaluated in the literature (van Aardenne et al., 1999;
Streets et al., 2003; Woo et al., 2003). It is generally be-
lieved that the uncertainties in their emissions are relatively
small. Uncertainty levels of±37 and±16% were reported
by Streets et al. (2003) for NOx and SO2 emissions, re-
spectively, in East Asia. In contrast, NH3 emission in East
Asia is more uncertain and poorly-understood, despite being
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an important gas-phase precursor of particulate ammonium.
The NH3 emission used in this study was estimated by tak-
ing four major sources into account: i) fertilizer applica-
tions, ii) livestock-farming (animal excreta and manures),
iii) biomass/bio-fuel burnings, and iv) industrial combustion
(Woo et al., 2003). According to Kim et al. (2006), the use
of the ACE-ASIA NH3 emission inventory in the CTM sim-
ulations over East Asia resulted in over-predictions of the
particulate NH4NO3 concentrations, which strongly suggests
that the NH3 emissions of the official ACE-ASIA inventory
are overestimated. This issue will be further discussed in
Sect. 4.1.4.

Non-Methane Volatile Organic Compound (NMVOC)
emissions are also important, since they are SOA precur-
sors. In this study, we conducted chemical speciation (chem-
ical species splitting) of the total NMVOC emissions in East
Asia, using the SPECIATE database built up by US EPA.
For the considerations of the biogenic isoprene and monoter-
pene emissions, we used the monthly emission data from the
Global Emission Inventory Activity (http://www.geiacenter.
org). Emissions of primary carbonaceous particles (black
carbon and organic carbon: BC and OC) were also included
in the emission inventory. Some of the aforementioned emis-
sions are shown in Fig. 2.

Spring is a typical dust season in East Asia. During
the spring episode studied, high wind speeds over the Gobi
desert resulted in significant dust emissions. In order to esti-
mate the mass flux of dust emissions (EDust), a method that
employs both friction velocity (u∗) and threshold friction ve-
locity (u∗t ) was utilized (Gillette and Passi, 1988; Gillette et
al., 1992):

EDust = C[u4
∗(1 −

u∗,t

u∗

)] (1)

whereC is a combined constant. This parameterization was
successfully tested by several previous studies over the same
East Asian domain (Phadnis and Carmichael, 2000; Song
and Carmichael, 2001a, b). Unfortunately, however, the sea-
salt particle (another important natural aerosol) generation
over the ocean areas of the domain was not considered in
this study, partly because the primary study focus was on the
modeling investigations for anthropogenic-influenced pollu-
tion areas. This consideration should, however, be included
in future study.

3 Remote sensing of aerosol optical properties

In this study, we used two different types of satellite-derived,
aerosol optical properties: Aerosol Index (AI) and AOD.
AI was retrieved from the Earth Probe TOMS platform and
AOD from the NASA/Terra MODIS satellite sensor. The
AOD values at several ground locations inside the domain
were also obtained through a sunphotometer network of
AERONET managed by the NASA Goddard Space Flight

Center (Holben et al., 1998). These aerosol optical proper-
ties were then applied to further analysis in conjunction with
3-D Eulerian MM5-CMAQ modeling.

3.1 TOMS aerosol index

TOMS instruments (McPeters et al., 1996) have been pro-
viding useful global UV radiation, ozone, and UV absorbing
aerosol data for more than two decades. The TOMS AI was
initially computed for the correction of aerosol-induced er-
rors in the retrieval of total ozone (Herman et al. 1997; Torres
and Bhartia, 1999). The TOMS AI is calculated on the basis
of the difference between the measured spectral contrast of
the 360 nm and 331 nm wavelength radiances and the con-
trast calculated from the radiative transfer theory for a pure
molecular atmosphere, which allows for the detection of UV
absorbing aerosols over both land and ocean. In the current
version 8 Nimbus7 TOMS (1979–1993), Earth Probe TOMS
(1996–2007) and version 2 Aura OMI (2004–present) algo-
rithms, it is mathematically defined as:

AI = 100

{
log10

(
I360

I331

)
meas

− log10

(
I360

I331

)
calc

}
(2)

where the indices “meas” and “calc” indicate the radiance
measured by TOMS and the radiance calculated for pure
Rayleigh scattering, respectively. AI is positive for absorb-
ing aerosols (e.g. dust and BC particles) and negative for non-
absorbing aerosols (e.g. sulfates). In this study, the TOMS AI
data were retrieved from the Earth Probe TOMS platform.

3.2 MODIS-derived AOD

The MODIS instrument is mounted on two NASA Earth Ob-
servation System (EOS) platforms: the Terra and Aqua satel-
lites. The former is on a descending orbit flying southward
across the equator around 10:30 local sun time, while the lat-
ter Aqua satellite is on an ascending orbit flying northward
around 13:30 local sun time. MODIS has 36 channels rang-
ing from 0.41µm to 14µm at three different spatial resolu-
tions (250 m, 500 m and 1 km). In this study, we used the
AOD retrieved from the EOS/Terra MODIS platform.

For spatially-resolved aerosol retrieval from MODIS data,
a modified version of the BAER algorithm (Lee et al., 2005,
2006a, 2007) was applied. To avoid inhibition from cloud
and sun-glint effects, the MODIS L1B data were first pro-
cessed to filter out cloud and sun glint pixels (Ackerman et
al., 1998; Martins et al., 2002), after which the following
radiative transfer equation was used to calculate the aerosol
reflectance (ρAERO):

ρAERO(λ) = ρTOA(λ) − ρRay(λ) −
T0 · TS · ρSurf

1 − s · ρSurf
(3)

where ρTOA, ρRay, and ρSurf represent the Top-of-the-
Atmosphere (TOA) reflectance, Rayleigh path radiance, and
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Figure 2Fig. 2. Emissions in East Asia:(a) SO2, (b) NOx, (c) NH3, (d) NMVOCs, (e)BC, and(f) OC.
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Fig. 3. MODIS AOD retrieval through the M-BAER algorithm. DEM, SST, and LUT represent the digital elevation model, sea surface
temperature, and look-up table, respectively.

surface reflectance, respectively,To andTs the total and sur-
face transmittance, respectively, ands the hemispheric re-
flectance. As shown in Fig. 3 and Eq. (3), the M-BAER
algorithm is composed of three parts. First, MODIS TOA
reflectance in a cloud-free pixel is separated from Rayleigh
path radiance. The Rayleigh path radiance can be determined
from the altitude-dependent surface pressurep(z) in each
pixel (Bucholtz, 1995). Second, the surface reflectance ob-
tained from the “linear mixing model” is separated (shown
in Eq. (4) below). Finally, AOD can be determined by the
pre-calculated look-up tables (LUT) approach.

The NASA operational MODIS Level 2 aerosol products
(MOD04 for Terra, MYD04 for Aqua) also provide a daily
estimation of the 10 km-resolved aerosol optical properties
over the globe. The estimated uncertainty of the MODIS
AOD product was reported to be±0.05±0.15τ over land

Table 1. Parameters of the best-fit Eq. (6) relatingf (RH) to relative
humidity (RH) in the four seasons.

b0 b1 b2

Spring −0.01097 0.78095 0.08015
Summer −0.18614 0.99211 –
Fall −0.24812 1.01865 0.01074
Winter 0.34603 0.81984 –
Annual 0.33713 0.58601 0.09164

and 0.03±0.05τ over the ocean (Remer et al., 2005). Re-
cently, the NASA MODIS aerosol retrieval algorithm has
been improved, and is starting to produce new products de-
noted as C005 (Remer et al., 2005; Levy et al., 2007).

www.atmos-chem-phys.net/8/6627/2008/ Atmos. Chem. Phys., 8, 6627–6654, 2008
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Table 2. Comparison of the M-BAER and MODIS C005 aerosol retrieval algorithms.

M-BAER MODIS (C005)

References Von Hoyningen et al. (2003)
Lee et al. (2004, 2007)

Remer et al. (2006)
Levy et al. (2007)

Clear sky flag Cloud mask (Ackerman et al., 1998; Martin et al.,
2002),
Snow/ice mask (Li et al., 2005),
Ocean sediment mask (Li et al., 2002)

Cloud mask(Ackerman et al., 1998; Martin et al.,
2002),
Snow/ice mask (Li et al., 2005),
Ocean sediment mask (Li et al., 2002)

Surface reflectance Ocean: Ocean water BRDF
Land: Spectral mixing of vegetation and bare soil
spectra.

Ocean: Ocean water BRDF
Land: Spectral conversion fromρTOA (2.1µm)

Aerosol model OPAC data base (Hess et al., 1998) Global aerosol climatology model;
Ocean (4 small, 5 large) and
Land (5)

Determination of AOD Spectral smooth (e.g. find the minimumx2),

x2
=

1
n

n∑
i=1

(
ρm

aer−ρLUT
aer

ρm
aer

)2
Mixture of fine and coarse mode (e.g. find the best
η minimizingε)
ρLUT

aer =ηρfine
aer +(1−η)ρcoarse

aer ,

ε=

√
1
n

n∑
i=1

(
ρm

aer−ρLUT
aer

ρm
aer

)2

Wavelengths Land (0.47, 0.55, 0.66, 2.13µm)
Ocean (0.47, 0.55, 0.66, 0.86, 1.24, 1.64,
2.13µm)

Land (0.47, 0.55, 0.66, 2.13µm)
Ocean (0.47, 0.55, 0.66, 0.86, 1.24, 1.64,
2.13µm)

Spatial resolution <1 km 10 km

In the recent NASA C005 algorithm, several assumptions,
including aerosol models, the VIS/SWIR surface reflectance
parameterization and the statistical implications of deriv-
ing below-zero AOD, have been updated. More detailed
discussions can be found in the Algorithm Theoretical Ba-
sis Document (ATBD,http://modis.gsfc.nasa.gov/data/atbd/
atbdmod02.pdf).

The M-BAER and the NASA C005 aerosol retrieval algo-
rithms use similar pre-processes to prepare clear-sky pixels
for aerosol retrieval. Both algorithms use cloud mask (Ack-
erman et al., 1998; Martin et al., 2002), snow/ice mask (Li
et al., 2005), and ocean sediment mask (Li et al., 2002). Al-
though the aerosol retrieval steps with clear-sky pixels are
different, the final objective of the numerical procedures is to
find aerosol properties by comparing the measured and pre-
calculated values. Table 2 lists the major characteristics of
the two algorithms. The most important difference is found
in the correction of surface reflectance. The NASA C005 al-
gorithm uses “spectral conversion”, based on the VIS/SWIR
ratios (ρ0.47,0.66µm/ρ2.13µm), whereas the M-BAER algo-
rithm uses “spectral linear mixing”, which is a reflectance
mixture tuned by the vegetation index between “green vege-
tation”’ and “BAER soil”. The spectral linear mixing is ex-
pressed as:

ρSurf(λ) = CVegρVeg(λ) + (1 − CVeg)ρSoil(λ) (4)

whereρVeg(λ) and ρSoil(λ) are the spectral reflectance of
“green vegetation” and ‘”BAER soil”, respectively, and
CVegis the vegetation fraction, which is the aerosol free veg-
etation index (AFRI) in each pixel (Karnieli et al., 2001).
Although the spectral conversion ratios in the NASA C005
are quite dependent on land surface and cover types, their as-
sessments of accuracy are reported to be reasonable for dark
pixel (Kaufman et al., 1998; Levy et al., 2007). In addi-
tion, each algorithm has its own method for determining the
AOD with a specific aerosol model. The M-BAER algorithm
uses the aerosol optical database from the OPAC (Hess et al.,
1998) for a LUT construction for a 1 km spatial resolution.
This method can determine the most suitable aerosol model
in a given pixel within a regional/local scale. Minimizing the
error term (χ2) describes the agreement between the mea-
sured and calculated aerosol reflection. However, the case of
the NASA C005 is more complicated. The LUTs are created
from 4 fine- and 5 coarse-modes for over-ocean, and 5 modes
for over-land (Remer et al., 2006). For the AOD determina-
tion, the best aerosol model from the bi-lognormal distribu-
tion with a choice of fine- and coarse-modes was selected by
minimizing the error (ε) in Table 2.
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Lee et al. (2006a, b, 2007) have applied the M-BAER
algorithm to the retrieval ofτ from the NASA EOS/Terra
MODIS platform. They then evaluated the performance of
the M-BAER algorithm over “South Korea” by comparing
τM−BAER with τAERONET. They found that the M-BAER al-
gorithm worked very well, showing good agreement between
τM−BAER and τAERONET (e.g. R=0.9 and linear slop=0.89
were reported by Lee et al., 2007). As mentioned earlier,
this study is an extension of their works into “East Asia”
in regard to satellite-derived aerosol optical property mon-
itoring. In addition, this study compared two aerosol prod-
ucts (τM−BAER andτNASA), and evaluate the accuracy of both
the satellite-derived AOD withτCMAQ andτAERONET in East
Asia.

3.3 CMAQ-derived AOD

Section 3.2 presented the method to retrieveτMODIS from the
NASA EOS/Terra MODIS platform via the M-BAER and
NASA C005 algorithms. This section introduces methods
to estimateτCMAQ from the particulate concentrations gener-
ated from the US EPA Models-3/CMAQ model. AOD (τ) is
theoretically calculated by integrating the aerosol extinction
coefficient (σext(z)) with respect to altitudes (z), i.e.:

τ =

∫
σext(z) · dz (5)

The method by whichσext(z) is calculated from the particu-
late composition is therefore important. Actually, there are
two such methods. The first is based on the Mie theory, in
which the extinction coefficient of a certain speciesi (σ ext,i)

is calculated as a function of density of particulate speciesi

(ρi), mass of particulate speciesi at an altitudez (Mi(z)),
extinction efficiency of particulate speciesi(Qext,i), and ef-
fective radius of particulate speciesi (reff,i(z)) (d’Almeida et
al., 1991; Chin et al., 2002):

σext,i(z) =
3Qext,iMi(z)

4ρireff,i(z)
(6)

The total aerosol extinction coefficient (σext) is then calcu-
lated byσext=

∑
i

σext,i , based on the assumption that all the

particulate species, except for particulate water, are exter-
nally mixed. Of the aerosol properties in Eq. (6),reff,i(z) is
a function of the size-distribution of particulate speciesi and
altitudez, andQext,i is a function ofreff,i , refractive index
(mi) of particulate speciesi, and wavelength (λ), i.e. Qext,i
(reff, mi , λ). Also, ρi , Qext,i , and reff,i are strongly vari-
able with ambient relative humidity (RH), since each par-
ticulate species has different hygroscopic capability. Thus,
all the aerosol properties in Eq. (6) are dependent on RH
(d’Almeida et al., 1991; Chin et al., 2002, and more refer-
ences therein). The Mie-theory-based, extinction coefficient
calculations are, therefore, based on several assumptions, as
presented by Chin et al. (2002, 2004). For example, in Chin

et al’s global 3-D modeling studies (2002, 2004), the size-
distribution of each particulate species was assumed (or de-
termined), and then fixed during the 3-D model simulations.
However, for example, the size-distributions of dust particles
have high spatial and temporal variations due to their dif-
ferent emission strength and deposition characteristics, and
sulfate and SOA distributions are also spatially and tempo-
rally variable due to different particle growth rates. In ad-
dition, the changes of the aerosol properties due to hygro-
scopicity are highly uncertain. In East Asia, the consid-
eration of NH4NO3 is of primary importance, but its size-
distribution has not been sufficiently characterized to enable
the use of the Mie-theory-based extinction coefficient calcu-
lations. Therefore, following consideration of these uncer-
tainties we estimatedσext with an empirical correlation, of-
ten called the “reconstructed extinction coefficient method”.
The method was first proposed by Malm et al. (1994) to
investigate the spatial and temporal variability of haze and
visibility impairment in USA, and has been continuously im-
proved by several researchers (e.g. Malm and Kreidenweis,
1997; Malm, 2000). Among the correlations available, we
adopt the latest version of the formula proposed by Malm
(2000) as a part of the Integracy Monitoring of Projected Vi-
sual environment (IMPROVE) program:

σext(Mm−1) = 3.0×f (RH)×{[(NH4)2SO4]+[NH4NO3]}

+4.0 × [SOAs]

+10.0 × [BC] + 1.0 × [fine-dust] + 0.6

×[coarse-dust] (7)

The numbers in the front of each species are the optimized
specific (or dry mass) extinction efficiency (m2 g−1). Es-
timates of the total ambientσext (Mm−1) correspond to
λ=550 nm. The assumption made in using Eq. (7) was
that the aerosol characteristics in East Asia are the same as
those in USA. However, the specific extinction efficiencies
of SOAs and dust particles can be affected by the SOA con-
stituents and the dust mineralogy. The SOA speciation de-
pends strongly on the anthropogenic NMVOC emission char-
acteristics and the activity of biogenic emissions inside the
study domain. In the case of dust particles, the fraction ofα-
Fe2O3, which is a light absorption component in dust parti-
cles, is an important parameter with significant regional vari-
ations. This method is also based on the same assumption as
the Mie-theory-based method, i.e., all the particulate species,
except for particulate water, are externally mixed. As shown
in Eq. (7), σext is conveniently calculated from the partic-
ulate concentrations (inµg m−3) of (NH4)2SO4, NH4NO3,
BC, SOAs, and fine-mode and coarse-mode dust, which are
generated from the US EPA Models-3/CMAQ model. In
Eq. (7), the variability inσext caused by variable RH was con-
sidered by hygroscopic growth factor or extinction enhance-
ment factor,f (RH). In the calculations, only (NH4)2SO4 and
NH4NO3 were considered hygroscopic. The consideration of
f (RH) is of primary importance, sinceσext varies greatly with
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RH, particularly when RH is larger than 80%.f (RH) was cal-
culated assuming a log-normal distribution with a geometric
mean diameter (Dg) of 0.4µm and geometric standard de-
viation (σg) of 2. These values are also consistent with the
size-distributions observed during the ACE-Asia campaign
in East Asia (Conant et al., 2003). In addition,f (RH) ex-
hibits seasonal variation which is accounted for by using the
following equation:

f (RH) = b0 + b1

(
1

1 − RH

)
+ b2

(
1

1 − RH

)2

(8)

The correlation parameters (b0, b1, andb2) in Eq. (8) for the
different seasons are presented in Table 1. Here, a further
assumption made in using Eq. (8) is that the aerosol hygro-
scopic characteristics in East Asia are the same as those in
USA. In addition, for the calculations of RH (≡e(z)/ew(z)),
water vapor pressure (e(z)) is calculated by the equation pro-
posed by Mattis et al. (2002) and saturation vapor pressure is
estimated by the Bolton equation shown below:

ew(z) = 6.112× exp

(
17.67×

T − 273.15

T − 29.65

)
(9)

whereT is temperature in K andew(z) indicates the satura-
tion vapor pressure at an altitudez. As discussed by Conant
et al. (2003), the mass extinction efficiencies are relatively
insensitive to the size-distribution of secondary particulate
species in East Asia because the Angstrom exponent (α) of
the polluted East Asia plumes is typically close to unity. One
exception is dust particles. The mass extinction efficiencies
of dust particles are size-dependent. Therefore, this study
considered two modes of dust particles: fine- and coarse-
mode dust particles (refer to Eq. 7).

3.4 AERONET data

Two sunphotometer/skyradiometer networks have been op-
erated in East Asia: AERONET and SKYNET (Skyradiome-
ter Network). The former is a federated sunphotometer net-
work and data archive for aerosol characterization that has
been managed by the NASA Goddard Space Flight Center in
USA (Holben et al., 1998). The latter is a skyradiometer (an
instrument similar to sunphotometer) network established in
late 1997 for studying the role of aerosols in climate change
as a part of GEWEX Asian Monsoon Experiment/Asian Au-
tomatic Weather Station Network (GAME/AAN) (Kim et al.,
2004). In this study, we obtained the sunphotometer-derived
AOD(τAERONET) from AERONET.

AERONET has 22 ground-based monitoring stations
within our East Asian modeling domain (shown in Fig. 10),
and provides total column spectralτ , single scattering albedo
(ωo), and reflective index at visible and NIR wavelengths.
Among the aerosol properties, the spectralτ provided by
AERONET are regarded as “ground true values”, since they
are unaffected by surface reflectance, unlike the satellite-
derivedτ . In this study, we selectedτ at 550 nm, by us-
ing a power law interpolation. For example, at the Gosan

AERONET site the AOD values at 550 nm were interpolated
betweenτ at 440 nm and 675 nm. In addition, the sunpho-
tometer data closest to the satellite scanning time were taken
from the AERONET sites andτMODIS were selected at the
nearest locations to the AERONET sites for further compar-
ison studies.

4 Results and discussions

Spatial, temporal, and seasonal distributions of aerosol mass
loading andτ generated by US EPA Models-3/CMAQ mod-
eling were compared with MODIS-derived AOD and AOD
from AERONET over East Asia. Following these compar-
isons, we discuss the species-wise formation characteristics
of particulate pollutants in the different regions of East Asia
for the four seasons.

4.1 CMAQ- and MODIS-derived AOD in East Asia

4.1.1 CMAQ-derived AOD vs. MODIS-derived AOD

The two MODIS-derived AOD (τM−BAER and τNASA)

were compared with both the aerosol column mass load-
ing (mg m−2) and theτCMAQ values calculated from the
aerosol composition produced by the Models-3/CMAQ
model.τCMAQ was calculated based on the reconstructed ex-
tinction coefficient method (Sect. 3.3). In addition,τCMAQ
was averaged between 10:00 and 13:00 local sun time (LST),
because the NASA Terra/MODIS measurements were taken
approximately at 10:30 LST, passing over the East Asian
domain for approximately 3–4 h. In addition, theτCMAQ
values in the pixels where theτMODIS values were cloud-
filtered were excluded. In Fig. 4, the spatial distributions
of the averagedτM−BAER, τNASA, τCMAQ, and aerosol col-
umn mass loading are shown for the four seasonal episodes.
The high τM−BAER and τNASA values appeared over four
highly polluted areas: (i) Bohai Bay, (ii) Sichuan Basin, (iii)
lower course of the Yangtze river (also called “Yangtze River
Delta”), and (iv) high NH3 emission area (refer to Fig. 1).
During the spring episode, a large dust storm broke out, and
was transported over long distances through Manchuria and
the Korean peninsula. Therefore, Fig. 4 shows a high aerosol
mass loading over these areas during this episode (note that
the scale of the column aerosol mass loading in spring was
changed to better present the dust plume in Fig. 4). However,
we observed highτMODIS over the Yellow Sea and the East
Sea (also known as the Sea of Japan, refer to Fig. 1), but low
τMODIS over Manchuria and the Korean peninsula. This may
be related to the cloud pixel screening procedure in the AOD
retrieval algorithms. Dust plumes are typically transported
behind or below the cold frontal clouds in East Asia (e.g. Liu
et al., 2002; Iino et al., 2004). During the spring episode, a
dust storm erupted over the eastern parts of Inner Mongolia
on 7 April 2002, and was transported out over Sakhalin and
Hokkai Islands, passing through Manchuria and the Korean
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τNASA

τCMAQ

τM-BAER

CMAQ 
Aerosol
Column 
Loading

FALL SPRIING SUMMER WINT

Figure 4
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Fig. 4. Spatial distributions of averagedτM−BAER (top panels),τNASA (panels in the second row),τCMAQ (panels in the third row), and
CMAQ-derived, aerosol column loading (panels in the fourth row) for the four seasons.

peninsula on 8 and 9 April 2002. Figure 5 shows snapshots
of the infrared difference dust index (IDDI) with clouds from
the NOAA satellite on 7 April to 9 April 2002. As shown in
Fig. 5, the dust plumes were accompanied by clouds. There-
fore, the many pixel values reflecting high dust concentra-
tions were screened out. These procedures resulted in low
averageτM−BAER and τNASA over Manchuria, as shown in
Fig. 4. Further analysis of the dust plumes with TOMS AI is
discussed in Sect. 4.1.2. Figure 4 also shows thatτM−BAER
andτNASA are higher thanτCMAQ over the Yellow Sea and
East Sea. This can be explained by three factors. First, the
accurate quantities of mineral dust generated during the dust
episode could not be estimated in this study. It should be
noted that the amounts of mineral dust estimated by Eq. (1)
may be lower than the actual level, which can in turn lead to
smallσext in Eq. (7), and thus a smallerτCMAQ thanτMODIS.
On the other hand, as mentioned in Sect. 3.3, the amounts
of α-Fe2O3 in East Asian dust particles can be larger than

those in the USA, which can affect the dry mass extinc-
tion efficiencies for fine- and coarse-mode dust particles in
Eq. (7). Thirdly, the edge parts of the frontal clouds often
cannot be filtered out using aerosol retrieval algorithms (e.g.
Al-Saadi et al., 2005). Cloud droplets in the edges of the
frontal clouds are highly reflective and are often misinter-
preted as strong aerosol signals. The edges of the frontal
clouds passed through the Yellow Sea and East Sea during
the spring episode (this is partly shown in Fig. 5). The high
τM−BAER andτNASA over the Yellow Sea and East Sea might
be influenced by the existence of the edge parts of frontal
clouds. Overall, it is difficult to correctly retrieve or esti-
mate the AOD values during dust storms in East Asia due
to the uncertainty in predicting the amounts of mineral dust
generated and/or the possible cloud effects accompanied by
dust plumes. In addition, there was a clear discontinuity in
τMODIS over land and ocean in the dust plume. This may
be caused by the different aerosol retrieval methods of the
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(a)

(b)

(c)

Figure 5Fig. 5. Snapshots of the infrared difference dust index (IDDI) with
clouds from the NOAA satellite:(a) 7 April, (b) 8 April, and(c) 9
April 2002. The yellow and white colors represent dust plumes and
clouds, respectively.

M-BAER and NASA algorithms over the “land” and “ocean”
(refer to Sect. 3.2).

In addition, noτMODIS values were reported over the desert
and loess areas due to surface glint effects (cf. Fig. 1). The
surface glint areas (white-colored areas in Fig. 4) were the
largest in winter and many parts of the desert and loess areas
were also covered by snow and ice during the winter season.
In contrast, the grass-covered areas were the largest in sum-
mer, and thus the surface glint areas were shrunken during
the summer episode. HighτM−BAER values (τM−BAER>1.0)
were also obtained, particularly around the desert areas. In
contrast, the AOD values inτNASA around the desert areas
were reasonably low. As shown earlier, since the M-BAER
algorithm deals with the surface reflectance with a combi-
nation of vegetation and soil, the strong reflectance over the
bright pixels, such as the desert regions and urban and coastal
areas, tend to produce strong aerosol signals (i.e. high bi-
ases), as shown in Fig. 4. In the NASA C005 algorithm, the
values are considered missing values if the AOD values are
>3 over and around the bright areas and are screened out.

Although the integrated satellite-CMAQ model analysis
has many merits, further “chemical” analysis are still use-
ful. τMODIS can provide the 2-D domain-wide, spatial dis-
tributions of columnar aerosol optical properties, but not the
species-wise, spatially-resolved, aerosol chemical composi-
tion distributions. Therefore, the different aerosol formation
characteristics in different regions and different seasons in
East Asia could not be described or identified byτMODIS it-
self, and the analysis requires comprehensive CTM such as
US EPA Models-3/CMAQ modeling in conjunction with the
satellite-derived, aerosol optical properties. This is discussed
in Sect. 4.1.3.

4.1.2 Dust event and TOMS AI

As discussed in Sect. 3.1, AI is a good optical indicator for
absorbing aerosols (such as dust and BC), especially when
they are transported through the “free” troposphere. Based
on this, many scientists have investigated the ability of re-
motely sensed, high AI plumes concurrently occurring over
the same regions to represent dust plumes transported over
long-distances across the oceans and continents (Phadnis and
Carmichael, 2000; Israelevich et al., 2002; Ginoux et al.,
2001, 2004; Ginoux and Torres, 2003).

Snapshots for the spatial and temporal AI distributions
during the dust period (7 to 9 April 2002) over East Asia
are shown in the top three panels in Fig. 6. The transport
of model-predicted, high column mass loading (mostly com-
posed of dust particles) through Manchuria and the Korean
peninsula are also presented in the bottom three panels in
Fig. 6. Figure 6 illustrates the good agreements in the spatial
and temporal distributions of both the high AI plumes and
the high column mass loading (although both quantities are
not directly compared to each other).
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Figure 6

Fig. 6. Spatial and temporal distributions of TOMS AI (top panels) and model-predicted, column mass loading (bottom panels) during a dust
storm period (from 7 to 9 April 2002) in East Asia.

In the top panels in Fig. 6, another high AI plume can
be found over the Guangxi and Guangdong provinces (near
Hong Kong). The high AI plume may have been caused by
the BC plume emitted from biomass burning events. Spring
is not only the typical dust season, but also the typical
biomass burning season in East Asia (Ma et al., 2003; Song
et al., 2005b, more references therein). The former usually
influences the northeast Asian atmosphere, whereas the latter
affects southeast Asian atmosphere, and frequently occurs in
the southwestern edges of China, Thailand, Myanmar, and
northern Vietnam. Since the biomass burning events took
place outside the modeling domain, and as the CMAQ mod-
eling does/can not consider the biomass burning event in the
boundary conditions, the BC plumes over the Guangxi and
Guangdong provinces were not captured in the results of the
CMAQ modeling (regarding this point, refer to the bottom
panels in Fig. 6, and also check theτMODIS values over the
Guangxi and Guangdong provinces in the spring panels of
Fig. 4).

4.1.3 Seasonal and regional formation characteristics of
particulate pollutants

Figure 7 presents the spatial distributions of the column con-
centrations of five major particulate constituents of PM2.5:
(i) nitrate (NO−

3 ), (ii) sulfate (SO2−

4 ), (iii) dust, (iv) BC, and

(v) SOAs. Although the spatial distribution of ammonium
(NH+

4 ) is not shown in Fig. 7, it can be estimated from the
column concentrations of nitrate and sulfate, because am-
monium is present in fine-mode particles as forms of crys-
tallized salt like NH4NO3 and (NH4)2SO4, and/or is neu-
tralized by nitrate and sulfate ions in the particulate water.
The NH4NO3 salt formation or NH+4 -NO−

3 ion association
takes place by the following equilibrium reaction (Seinfeld
and Pandis, 1998; Jacobson, 1999):

NH3(g) + HNO3(g) ↔ NH4NO3(s) and/or

NH+

4 (aq) + NO−

3 (aq) (R1)

The equilibrium reaction of Reaction (R1) is governed by
thermodynamic relationships. If the product of partial pres-
sures of gas-phase NH3 and HNO3 is larger than the equi-
librium constant (Keq), the equilibrium reactions proceed
in the forward direction (i.e., the formation or association
of NH4NO3 and/or NH+

4 -NO−

3 ions). On the contrary, if
the product is smaller thanKeq , the equilibrium is gov-
erned by the reverse reaction. The equilibrium is also con-
trolled by temperature, sinceKeq is a function of temper-
ature. When temperature is low, the equilibrium tends to
shift toward the particulate NH4NO3 and/or NH+

4 -NO−

3 for-
mation, whereas, if temperature is high, it proceeds in the
reverse direction. This heterogeneous process is considered
by the ISORROPIA module in the Models-3/CMAQ model
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Fig. 7. Species-wise, spatial distributions of particulate components for the four seasons. Nitrate and sulfate concentrations in the first and
second columns are associated with ammonium (NH+

4 ) in fine-mode particles. BC and SOAs denote black carbon and secondary organic
aerosols, respectively.

(Nenes et al., 1998), and both forward and reverse reactions
take place so rapidly that one can treat these processes in a
thermodynamic manner, as described in Sect. 2.1 (Capaldo et
al., 2000). In contrast, (NH4)2SO4 formation and/or NH+4 -
SO2−

4 association take place in an “irreversible” way:

2NH3(g) + SO2−

4 (aq) + 2H+
→ (NH4)2SO4(s) and/or

2NH+

4 (aq) + SO2−

4 (aq) (R2)

Once sulfate is formed via SO2+OH reaction and subsequent
gas-to-particle conversion, it is then neutralized by gas-phase
NH3, following Reaction (R2).

Some amounts of nitrate and sulfate can also be formed in
fine- and coarse-mode dust particles, in which nitrate and sul-
fate mainly exist as forms of Ca(NO3)2 and CaSO4. Song et
al. (2005a, 2007), however, revealed that major parts (>95%
on the mass basis) of NH+4 -NO−

3 -SO2−

4 are mainly present
in anthropogenic pollution particles and that they are almost
externally mixed with chemically near-fresh dust particles
in the East Asian atmosphere. Only small amounts of ni-
trate and sulfate can be formed in fine- and coarse-mode
dust particles due to the small magnitudes of uptake coef-
ficients of gas-phase sulfate and nitrate precursors (such as

SO2, H2SO4, NO3, N2O5, and HNO3) onto East Asian min-
eral dust. Based on the conclusions of Song et al. (2005a,
2007), we neglect the nitrate and sulfate formation in/on dust
particles in this study.

The first three columns in Fig. 7 present the spatial distri-
butions of the nitrate, sulfate, and dust concentrations. As
discussed previously, dust concentrations are large only in
spring due to the dust storm. In Fig. 7, two facts are particu-
larly noteworthy regarding the particulate NH+

4 -NO−

3 -SO2−

4
formation. First, the levels of nitrate (associated with ammo-
nium) were almost comparable to those of sulfate (associated
with ammonium). Thus, the NH+4 -NO−

3 formation should
not be neglected in the CTM studies, particularly over East
Asia. Second, the NH+4 -NO−

3 formation characteristics dif-
fered greatly from the NH+4 -SO2−

4 formation characteristics
throughout the four seasons. Regarding the sulfate forma-
tion, the SO2 into sulfate conversion rate peaked in summer,
because of the high temperature and high levels of hydroxyl
radicals (OH) due to the intense solar radiation and high lev-
els of H2O. Therefore, sulfate concentrations were the largest
in summer and the smallest in winter. On the contrary, the
fine-mode nitrate formation was active at low temperature.
Thus, the levels of nitrate were the highest in winter and the
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lowest in summer. Both fine-mode sulfate and nitrate are
the key particulate species that actually affect AOD (τMODIS
andτCMAQ) and therefore climate forcing by aerosols in East
Asia. The contributions of both species toτMODIS andτCMAQ
increased with increasing RH, because both species are “hy-
groscopic”, as described in Eq. (7). In addition, as mentioned
above, the contributions of both species toτMODIS andτCMAQ
exhibited seasonal variations. In East Asia, (NH4)2SO4 was
the main contributor to largeτMODIS andτCMAQ in summer,
whereas NH4NO3 was in winter. Meanwhile, the extent of
the contributions of both species also exhibited regional vari-
ations. NH4NO3 was usually formed over high NH3 emis-
sion areas (refer to Fig. 1), whereas (NH4)2SO4 was formed
mainly over the urban-polluted regions (regions A, B, and C
in Fig. 1), since SO2 was mainly emitted from such areas.
If the particulate species distributions in Fig. 7 are compared
closely with the distributions ofτCMAQ in Fig. 4 for the four
episodes, it can be seen that the distributions ofτCMAQ in
East Asia are governed mainly by the formation of NH+

4 -
NO−

3−
-SO2−

4 (i.e., highτCMAQ peaks occur with NO−3 and

SO2−

4 peaks in Figs. 4 and 7).
BC is a light-absorbing particle. With the same mass con-

centration, its contribution toσext andτ is large. Generally,
the absolute BC levels are usually lower in East Asia than
those of nitrate and sulfate. Since BC has similar emission
sources to SO2, its spatial distributions are more similar to
those of sulfate than those of nitrate.

The contributions of SOAs toσext and τ were also con-
sidered to be large, as shown in Eq. (7). The absolute levels
of SOAs in East Asia were approximately 0.25–0.33 times
lower than those of sulfate and nitrate. The SOA formation
is mainly governed by three factors: (i) temperature, (ii) the
intensity of solar radiation, and (iii) the levels of precursors
(i.e., NMVOCs). The SOA precursors react with OH radi-
cals. The levels of OH radicals are primarily controlled by
the intensity of solar radiation (Reaction R3), and are also
limited by the levels of H2O (Reaction R4):

O3 + hν → O1D
+ O2 (R3)

O1D
+ H2O → 2OH (R4)

NMVOCs+OH(O3 and NO3)→SOAs (multi-steps) (R5)

The subsequent reaction of Reaction (R4) proceeds very fast,
producing OH radicals in the atmosphere. The reaction rate
of Reaction (R5) is controlled by the levels of OH radicals
and increases with increasing temperature. Therefore, in
general SOAs were actively produced in summer. There are
other important routes for SOA production. NMVOCs re-
act with other oxidants in the atmosphere, such as O3 and
NO3. The concentrations of these two species are highest in
summer and lowest in winter. In addition to the high levels
of OH, O3 and NO3, biogenic NMVOC emissions were also
very active in summer. As mentioned in Sect. 2.3, we used

the monthly biogenic isoprene and mono-terpene emissions
from the GEIA inventory in the US EPA Models-3/CMAQ
modeling study. The biogenic emissions were highly active
in the southern parts of the Yangtze river. Thus, high lev-
els of SOAs were found in the southern areas of the Yangtze
river, and were the key particulate component that actually
affectedσext, and thusτMODIS andτCMAQ, over such regions
in summer (refer to the last column in Fig. 7).

4.1.4 Statistical analysis

This section presents an investigation into the correlation be-
tweenτMODIS andτCMAQ over a pollution-affected window
in the domain (100◦ E–130◦ E; 20◦ N–42◦ N). Remote ocean
and continental areas were excluded from the analysis be-
cause we were primarily interested in the pollution-affected
areas and did not consider the generation of sea-salt over the
ocean.

Figure 8 shows scatter plots ofτCMAQ, τM−BAER, and
τNASA. The threeτ values were compared over four ar-
eas (Central East China, South China, Korea, and Japan).
The Central East China (CEC) approximately includes high
NH3 emission areas and Regions A and C in Fig. 1, and
South China (SC) represents the areas located in the south-
ern parts of the Yangtze river (Guangxi, Guangdong, Fujian,
Hunan, Jiangxi provinces). As shown in Fig. 8, the scat-
tered plots show seasonally and regionally different charac-
teristics. In spring, manyτM−BAER, andτNASA values were
biased high compared with theτCMAQ over CEC and SC (i.e.,
τMODIS>τCMAQ). This can be attributed to the influences of
(i) dust storms over CEC and (ii) burning biomass plumes
over SC during the spring episode. For example, biomass
burning emissions occurred outside the domain was not con-
sidered in the CMAQ modeling but the biomass burning ac-
tually has an impact on the SC air quality, as shown in Figs. 4
and 6, which enhance the levels ofτM−BAER, and τNASA.
In addition, as discussed in Sect. 4.1.1, the uncertainty in
predicting the ambient amounts of mineral dust and possi-
ble cloud effects may lead to the under-prediction ofτMODIS
over the Yellow sea. Both effects may result in high biases
over CEC and SC in Fig. 8a and a-1. In contrast, low bi-
ases (i.e.,τCMAQ>τMODIS) over CEC and SC were observed
during fall and winter (cold seasons). A close examination
of Figs. 4 and 7, suggests that the low biases are caused
mainly by the excessive formation of NH4NO3. As men-
tioned in Sect. 2.3, the use of the official ACE-ASIA NH3
emission inventory tended to result in over-predictions of
the particulate NH4NO3 concentrations (Kim et al., 2006).
Such over-predictions can cause low biases over CEC and
SC during the fall and winter episodes. Low biases were
also observed over CEC and SC in summer. However, in
the summer case, (NH4)2SO4 formation appears to be re-
sponsible for the low biases (see Figs. 4 and 7). Since the
ACE-ASIA SO2 emissions are believed to be relatively ac-
curate (uncertainty of±16% was reported by Streets et al.,
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Table 3. Statistical values amongτCMAQ, τM−BAER, andτNASA over East Asia.

RMSE MNGE MB MNB
τCMAQ vs. τM−BAER τNASA τM−BAER τNASA τM−BAER τNASA τM−BAER τNASA

Central East Chinaa Spring 0.27 0.30 35.18 39.82 −0.01 −0.06 13.47 11.46
Summer 0.22 0.24 33.88 30.92 0.04−0.03 11.15 1.05
Fall 0.21 0.20 40.61 42.38 −0.01 0.07 −6.58 17.99
Winter 0.34 0.34 60.47 59.28 0.22 0.17 54.74 49.06

South Chinab Spring 0.20 0.33 27.78 38.73 −0.12 −0.23 −20.62 −36.04
Summer 0.31 0.28 60.67 45.92 0.21 0.12 52.64 31.65
Fall 0.31 0.39 99.50 151.85 0.23 0.33 96.07 151.31
Winter 0.27 0.24 65.75 55.47 0.21 0.14 63.40 34.72

Koreac Spring 0.34 0.23 45.32 36.01 −0.31 −0.20 −45.32 −33.55
Summer 0.11 0.13 20.55 19.27 −0.10 −0.09 −20.47 −18.46
Fall 0.11 0.18 39.96 117.56 0.05 0.15 30.13 113.36
Winter 0.08 0.10 14.39 19.68 0.00 0.01 1.66 5.47

Japand Spring 0.25 0.19 38.16 35.34 −0.20 −0.16 −38.16 −32.90
Summer 0.15 0.14 50.06 45.27 −0.14 −0.12 −50.06 −45.28
Fall 0.10 0.06 36.19 33.44 −0.07 −0.01 −32.91 −1.22
Winter 0.13 0.15 44.26 48.33 −0.09 −0.10 −38.85 −35.73

a 28–42◦ N, 110–122◦ E; b 22–28◦ N, 100–119◦ E; c 35–40◦ N, 126–130◦ E; d 31–35◦ N, 130–135◦ E; 34–38◦ N, 135–140◦ E; 37–45◦ N,
140–144◦ E

2003), the over-predictions may not be due to SO2 emis-
sions. Rather, the over-prediction may be related to over-
estimated values for NH3 emissions. In the CMAQ model,
not only were overestimated NH3 emission fluxes over East
Asia possibly used but constant NH3 fluxes were also as-
sumed without considering the seasonal variations. On the
other hand, summer is not a typical fertilizer application sea-
son in East Asia. Therefore, the virtual NH3 levels in the
atmosphere during summer can be much higher than the real
NH3 levels. Such high levels of NH3 lead to (NH4)2SO4 for-
mation in the CMAQ modeling with sufficient alkalinity in
the atmosphere. However, if the virtual levels of NH3 are in-
sufficient, highly active SO2−

4 production in summer would
lead to the formation of acidic NH4HSO4 in East Asia, not
(NH4)2SO4 (e.g., Song and Carmichael, 1999). If this is the
case, thenτCMAQ can be much lower during summer. How-
ever, this argument is a possibility, and further study on this
issue is necessary.

Figure 8 also shows correlations betweenτMODIS and
τCMAQ, with correlation coefficients (R) ranging from 0.43 to
0.73. As shown in Fig. 8, the correlations betweenτM−BAER
andτCMAQ are slightly better than those betweenτNASA and
τCMAQ.

For further statistical investigations (error and bias anal-
yses), four statistical parameters were introduced: (i) Root
Mean Square Error (RMSE), (ii) Mean Normalized Gross
Error (MNGE), (iii) Mean Bias (MB), and (iv) Mean Nor-
malized Bias (MNB).

RMSE=

√√√√ 1

N

N∑
1

(τCMAQ − τMODIS)2 (10)

MNGE =
1

N

N∑
1

(

∣∣τCMAQ − τMODIS
∣∣

τMODIS
) × 100 (11)

MB =
1

N

N∑
1

(τCMAQ − τMODIS) (12)

MNB =
1

N

N∑
1

(
τCMAQ − τMODIS

τMODIS
) × 100 (13)

The results from the statistical analyses are presented in Ta-
ble 3 for the four seasons over the four regions. In er-
ror analysis, the RMSEs (absolute errors) ranged from 0.06
(fall, over Japan) and 0.39 (fall, over SC), and the MNGEs
(relative errors) between 14.39% (winter, over Japan) and
151.85% (fall, over SC). In bias analysis, the MBs (abso-
lute biases) ranged from−0.31 (spring, over Korea) to 0.33
(fall, over SC), and the MNBs (relative biases) ranged from
−50.06% (summer, over Japan) to 151.31% (fall over SC).
The statistical values shown in Table 3 are in general agree-
ment with what has been discussed in this study. There-
fore, several specific points will be discussed. Again, dur-
ing spring, the biases (MBs and MNBs) are highly negative,
reflecting the influences of dust and biomass burning events,
as discussed above. Over Korea and Japan, these biases are
also negative during summer. Indeed, two typhoons (“Sin-
laku” and “Lusa”) impacted the regions during summer (Kim
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Fig. 9. Probability distribution function (PDF) ofτMODIS (τM−BAER andτNASA) andτCMAQ in the modeling domain for the four seasons:
(a) Spring,(b) Summer,(c) Fall, (d) Winter, and(e)all seasons.

et al., 2007), and it is believed that the typhoon-induced high
wind speeds generated large amounts of sea-salt that was not
considered in the CMAQ modeling. This contributed to the
negative biases in Table 3 over both regions. In addition,
the biases were negative around all seasons in Japan. The
AOD values are small over Japan (τ<0.4, except for spring).
Hence, it was not noticed. However, these trends are also
shown in Fig. 8. It is possible that the current ACE-ASIA

emission inventory underestimated the anthropogenic emis-
sions from Japan (cf. Uno et al., 2007). Again, as shown in
Table 3, the magnitudes of the four statistical values between
τM−BAER andτCMAQ and betweenτNASA andτCMAQ are sim-
ilar (except for the fall episode over SC and Korea), indi-
cating that the M-BAER and NASA C005 algorithms have
similar capability in producingτ .
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Fig. 10. AERONET sites in East Asia.

As discussed previously, except for the spring episode, the
values of MBs and MNBs were positive over China, indicat-
ing thatτCMAQ was larger thanτMODIS. This could mainly be
due to the overestimated NH3 emissions used in the CMAQ
modeling. This may also have been partly attributed to
the fact that the reconstructed extinction coefficient-based
method reacts sensitively to RH, particularly at RH>80%. In
addition, there are, of course, uncertainties in the M-BAER
and NASA algorithms. Such results are contradictory to
those reported by Chin et al. (2004) over East Asia during
the ACE-Asia campaign period. Although they used dif-
ferent methods from those in this study, i.e., (i)τNASA ob-
tained from the NASA Level-2 C004 products and (ii) Mie-
theory-basedσext calculations,τNASA tended to be larger than
τGOCART (i.e., MB and MNB would be negative, if Eqs. (12)
and (13) were employed in their study; here, GOCART is
the name of the 3-D global CTM used by Chin et al., 2004).
They interpreted these results by an explanation thatτNASA
from the NASA Level-2 C004 products tends to overesti-
mate AOD, mainly due to the possible underestimation of
the influences of the surface reflectance (Remer et al., 2005).
Based on this, NASA released NASA Level-2 C005 prod-
ucts processed with an improved surface reflectance consid-

eration (Levy et al., 2007). In addition, Chin et al.’ work
(2004) did not consider the particulate NH4NO3 formation
in their global modeling, and thereby they also omitted the
contribution of particulate NH4NO3 to σext andτ . Although
NH4NO3 formation in East Asia could be overestimated,
as discussed in this section, the contribution of fine-mode
NH4NO3to σext andτ cannot be neglected in East Asia, and
it should be taken into account in the 3-D CTM study over
East Asia. Such omission of the NH4NO3 formation would
lead to the under-predictions ofτGOCART.

The distribution ofτMODIS andτCMAQ can also be com-
pared by probability distribution function (PDF). The PDFs
of τMODIS andτCMAQ over the pollution-affected area, pre-
sented in Fig. 9, display highly similar shapes for the four
seasons.

4.2 CMAQ-, MODIS-derived AOD vs. AERONET AOD

This section compares four different kinds of AOD (τCMAQ,
τM−BAER, τNASA, andτAERONET) at several AERONET sites
in East Asia. Particularly,τAERONET has been regarded as
the “ground true value”, since it is not interfered by sur-
face reflectance (the largest uncertainty source in the retrieval
of satellite-derivedτ). Therefore, the comparison studies
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Fig. 11. Daily variations ofτAERONET, τCMAQ, τM−BAER, andτNASA (upper panels) and daily variations of CMAQ-derived particulate
composition (bottom panels) in several AERONET sites in East Asia for the four seasons. At the upper panel of each figure, the black bars,
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Fig. 12. Contributions of particulate species toσext and τCMAQ:
(a) Spring,(b) Summer,(c) Fall, and(d) Winter. The contributions
were calculated using Eq. (7) at the AERONET sites of the domain.

betweenτMODIS and τAERONET may be able to provide a
good opportunity to evaluate the accuracy of the M-BAER
and NASA algorithms and US EPA Models-3/CMAQ mod-
eling over East Asia.

AERONET has 22 ground-based monitoring stations in
East Asia (Fig. 10) which provide total column spectralτ

at visible and NIR wavelengths. As discussed previously,
we selectedτ at 550 nm for these comparison studies. The
comparisons among the four different types ofτ are shown
in Fig. 11 (upper panel of each figure). The selections of the
AERONET sites were based on the AERONET data avail-
ability in each season (i.e., in each season, the four sites
with the largest number ofτAERONET were chosen). The
particulate “chemical” composition generated from US EPA
Models-3/CMAQ modeling is also plotted in Fig. 11 (bottom
panel of each Figure), which exhibits the good agreement
amongτCMAQ, τM−BAER, τNASA, andτAERONET. This issue
will be further analyzed below.

During the spring episode, the peaks at the Gosan and
Shirahama sites on 7 to 9 April 2002 were predominantly
affected by the dust storm, and the influence lasted till 13
April 2002. During the non-dust period, however,τCMAQ,
τM−BAER, τNASA, andτAERONET appeared to be mainly in-

fluenced by secondary anthropogenic inorganic compounds
such as ammonium, nitrate, and sulfate, as discussed in
Sect. 4.1.3, whereas the contribution of SOAs was relatively
small. Again, the contribution of sea-salt particles toτ may
have been important, since the two sites were located in
coastal areas. However, in US EPA Models-3/CMAQ mod-
eling, the sea-salt emissions were not considered. Unlike
the Gosan and Shirahama sites, the influence of dust par-
ticles is negligible in Taipei, andτ is largely impacted by
secondary inorganic compounds. At the Dalanzadgad site,
τMODIS was hardly observed, since Dalanzadgad is located
inside the Gobi desert (i.e., due to the surface glint effects
over the desert areas).τAERONET available at the Dalan-
zadgad site showed two salient peaks on 3 and 5 April 2002,
but they were not predicted by the dust generation model
(Eq. 1). In practice, predictions and forecasts of dust storms
have been difficult and very challenging (Gillette and Passi,
1988; Gillette et al., 1992; Park and Lee, 2004; Uno et al.,
2006). The dust generation model used in this study can
predict large- or regional-scale dust storms like the one that
erupted on 7 to 9 April 2002 over Manchuria, but not the
local-scale dust events that take place inside the Gobi desert
and loess plateau areas.

Unlike the spring season, severalτMODIS were retrieved
at the Dalanzadgad site in summer due to the spreading of
grass-covered areas in this area (also refer to Fig. 4). Nev-
ertheless, the magnitude ofτ in Dalanzadgad was small, due
to its location in a remote continental background area. In
contrast,τ in Beijing was large and appeared to be primar-
ily affected by (NH4)2SO4 and secondarily by NH4NO3 in
summer (note that in Fig. 11 (summer), the y-axis in Bei-
jing has been re-scaled). Gosan was also greatly affected
by (NH4)2SO4 and NH4NO3 on 9 to 13 September 2002. In
particular, the Gosan site was strongly influenced by typhoon
“Sinlaku” from 2 to 8 September 2002 (Kim et al., 2007).
Sea-salt generation due to the high wind speeds would be so
active that highτMODIS values would be observed over the
period. However, again the generation of sea-salt was not
considered in the CMAQ modeling, which caused a discrep-
ancy betweenτMODIS andτCMAQ over the “Sinlaku” typhoon
period in Fig. 11 (summer). The magnitude ofτ in win-
ter was also large, but the contributions of particulate chem-
ical species were changed. As shown in Fig. 11 (winter),
τ from Beijing to Shirahama was more affected by the for-
mation of NH4NO3 than of (NH4)2SO4. In fall, not many
τAERONET were available except at the Anmyon site, where
both (NH4)2SO4 and NH4NO3 almost equally contributed
to τ .

Although Fig. 11 shows the particulate column composi-
tion at a limited number of the AERONET sites, it did not
show the contribution from each particulate species toσext
andτCMAQ. Figure 12 shows the contribution of each partic-
ulate species toσext andτCMAQ (i.e.,σext andτCMAQ budget)
at the 22 AERONET sites shown in Fig. 10 (here, the contri-
butions were estimated from the terms at the right-hand side
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Fig. 13. Correlations betweenτAERONET andτMODIS in the four seasons:(a) Spring,(b) Summer,(c) Fall, and(d) Winter.

of Eq. (7), and were averaged in a mass-weighted manner).
In summer (NH4)2SO4 and SOAs made a 60% and 15% con-
tribution toσext andτCMAQ, respectively, whereas in fall and
winter (cold seasons), NH4NO3 was the main contributor (al-
though it may have been overestimated in the CMAQ mod-
eling). In spring, the contributions of (NH4)2SO4, NH4NO3,
and dust particles toτCMAQ were similar. It should be em-
phasized that the “contribution of NH4NO3” in the aerosol
optical properties should not be neglected, particularly in
East Asia, as shown in Fig. 12.

In addition, we comparedτM−BAER and τNASA with
τAERONET at several AERONET sites in East Asia to eval-
uate the performance of the M-BAER and NASA algorithms
in East Asia. First, the correlations betweenτMODIS and
τAERONET were analyzed in Fig. 13 for the four seasons. The
two quantities were highly correlated to each other around

the 1:1 lines with correlation coefficients (R) ranging from
0.72 to 0.96 (except forR betweenτM−BAER andτAERONET
in the Fall). The reason for the lowR value (highly scattered
τM−BAER with reference toτAERONET) in the fall is unclear
but it may partly be due to the availability ofτAERONET. As
shown in Fig. 11, there were only limited days during which
τMODIS andτAERONET were available simultaneously. In par-
ticular, during the fall episode,τAERONET was available only
at Anmyon station, and the quantity of data was also limited.
This can affect the lowR in the fall, and should be investi-
gated further.

As previously discussed, since 2006 NASA has released
new satellite aerosol products, denoted as NASA Level-
2 C005, which are reported to have reduced the levels of
τNASA, compared withτNASA (NASA C004 product), and
thus show better agreement withτAERONET (Dubovik et al.,
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Table 4. Statistical values amongτCMAQ, τM−BAER, τNASA, andτAERONET at the AERONET sites in East Asia.

RMSE MNGE MB MNB
τCMAQ vs.a τM−BAER τNASA τAERONET τM−BAER τNASA τAERONET τM−BAER τNASA τAERONET τM−BAER τNASA τAERONET

Spring 0.25 0.24 0.29 45.51 41.88 61.95 −0.11 −0.10 −0.11 −21.67 −18.11 −31.44
Summer 0.39 0.65 0.52 82.23 83.57 78.85‘ −0.06 −0.21 −0.16 −9.90 −20.06 −22.29
Fall 0.30 0.26 0.26 78.63 119.04 96.55 −0.10 0.02 −0.05 10.10 73.68 11.73
Winter 0.21 0.26 0.27 49.63 54.31 54.67 −0.01 −0.06 −0.11 −1.17 −12.09 −29.05

vs.τb
AERONET

Spring 0.14 0.14 – 30.84 27.88 – 0.03−0.03 – 13.67 0.02 –
Summer 0.38 0.32 – 65.75 62.77 – −0.09 −0.00 – 33.99 39.71 –
Fall 0.29 0.13 – 153.54 20.29 – 0.02 −0.03 – 109.08 −0.72 –
Winter 0.17 0.17 – 43.69 62.50 – −0.01 0.04 – 23.96 47.79 –

a indicates thatτCMAQ was used as the test variable in Eqs. (10–13).b indicates thatτAERONET was used as the reference variable in
Eqs. (10–13).

2002; Remer et al., 2005; Levy et al., 2007; Li et al., 2007).
As shown in Fig. 13, with reference toτAERONET (ground
true value), bothτM−BAER andτNASA (NASA C005 product)
were highly correlated around the 1:1 lines during the four
seasons. This suggests that: i) both M-BAER and NASA al-
gorithms can produce a high qualityτMODIS and ii) the accu-
racy ofτM−BAER is almost equivalent to that ofτNASA. This
was further confirmed by statistical analysis.

RMSE, MNGE, MB, and MNB amongτM−BAER and
τNASAτCMAQ andτAERONET were analyzed in Table 4. Al-
though the largest differences appeared in the fall episode,
τCMAQ, τM−BAER, andτNASA andτAERONET exhibited good
agreements in the other three seasons. Again, the large dif-
ferences in fall could be partly caused by the scarcity of
τAERONET during the fall episode. Importantly, no significant
positive biases (τMODIS�τAERONET) were reported, which
have been typical in the analyses ofτMODIS vs. τAERONET
(Chin et al., 2004; Remer et al., 2005; Levy et al., 2007). This
may indicate that bothτM−BAER andτNASA (C005) can cap-
ture the spatial and seasonal aerosol characteristics in East
Asia better thanτNASA (C004).

5 Summary and conclusions

The spatio-temporal and seasonal distributions ofτMODIS
(τM−BAER andτNASA) were compared with those of aerosol
column mass loading (Mcolumn) andτCMAQ for the four sea-
sonal episodes in East Asia. AlthoughτMODIS can provide
information on spatial aerosol mass distributions, they can
not provide aerosol chemical composition. Therefore, in or-
der to estimate the aerosol chemical composition over East
Asia, the US EPA Models-3/CMAQ v4.3 model was uti-
lized, together with the PSU/NCAR MM5 meteorological
model and the ACE-Asia/TRACE-P official emission inven-
tory for East Asia. In this study,τCMAQ was calculated using
a reconstructed extinction coefficient-based method, whereas
τMODIS was retrieved from MODIS Level-1B (L1B) radiance

data using a modified Bremen Aerosol Retrieval Algorithm
(M-BAER algorithm) and NASA Collection 5 (C005) algo-
rithm. In addition,τAERONET from several AERONET sites
in East Asia was obtained and used as the “ground true value”
in this study.

Both τMODIS andτCMAQ showed high values around Chi-
nese urban and industrial centers, such as Sichuan Basin, Bo-
hai Bay and Yangtze Delta areas, as well as over active agri-
culture and livestock farming areas due to their high NH3
emissions. For the four season episodes selected in this
study, the CMAQ model in general generated similar lev-
els of τCMAQ to those ofτMODIS throughout the domain.
However, during the spring episode,τCMAQ was signifi-
cantly under-predicted compared toτMODIS, thereby show-
ing negative biases, particularly over the areas where dust
storm and burning biomass plumes had traveled. Unlike the
spring episode, the levels ofτCMAQ were generally higher
than those ofτMODIS. Through US EPA Models-3/CMAQ
modeling, this study investigated the contribution of each
particulate chemical species toτMODIS and τCMAQ. Dur-
ing the summer episode, the high levels of bothτMODIS and
τCMAQ may have been caused mainly by the high concen-
trations of (NH4)2SO4 produced over the Chinese urban and
industrial centers. In contrast, the highτMODIS andτCMAQ
plumes during the late fall and winter episodes were related
to NH4NO3 concentrations over the urban and industrial cen-
ters, as well as over Chinese agricultural and livestock farm-
ing areas. These results suggest that the formation of both
(NH4)2SO4 and NH4NO3 were over-predicted over China,
possibly due to the overestimated values for NH3 emissions
used in the CMAQ modeling. This might in turn cause strong
biases (τCMAQ>τMODIS). Finally, τMODIS was greatly corre-
lated with τAERONET, indicating the promising potential of
the application of the M-BAER algorithm to East Asian air
quality and satellite-based monitoring studies.

In future analysis, given the recent capability for aerosol
optical products to be retrieved with fine resolutions, 3-D
photochemistry-aerosol modeling should be conducted with
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matching fine resolutions, possibly by employing a nested-
grid technique (Byun and Ching, 1999). In addition, US
EPA has released a “spin-off” version of the CMAQ model,
called the CMAQ-MADRID (Model of Aerosol Dynamics,
Reaction, Ionization, and Dissolution) model (Zhang et al.,
2002, 2004; Pun et al., 2005). The CMAQ-MADRID model
still uses the US EPA Models-3/CMAQ frame, but includes
alternative aerosol dynamic, microphysical, and chemical
processes. As the CMAQ-MADRID model has a more so-
phisticated SOA formation scheme than the CMAQ model
(Zhang et al., 2004; Pun et al., 2002, 2005), the use of the
former may produce a different particulate chemical compo-
sition and therefore differentτCMAQ−MADRID .

In the remote sensing of aerosol optical properties, var-
ious types of aerosol optical properties (such asτ , ωo, α,
FMF, andreff) are becoming available at higher qualities. For
example, FMF was not considered in this study because it
has not yet been included in the M-BAER algorithm. How-
ever, future studies should consider and attempt to identify
the changes in the aerosol size-distribution by using satellite-
derived FMF,α, and/orreff. Furthermore, although satellite
remote sensing has a serious limitation in obtaining vertical
aerosol extinction profiles, space-borne lidar systems such as
CALIPSO have released vertically resolved, spectral aerosol
extinction profiles since 2006. The availability of such data
will provide further opportunities for atmospheric modelers
and the monitoring community to investigate aerosol forma-
tion and transport characteristics on both regional and global
scales.
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