16 research outputs found

    Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors

    Get PDF
    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at −0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms

    Electroactive Nanostructured Membranes (ENM): Synthesis and Electrochemical Properties of Redox Mediator-Modified Gold Nanoparticles Using a Dendrimer Layer-by-Layer Approach

    Get PDF
    The layer-by-layer (LbL) self-assembly process has become an important tool in the fabrication of nanostructured devices for electrochemical applications, especially in those cases where control at the molecular level is required. In this paper we present a system based on electroactive nanostructured membranes (ENM) with ITO-PVS/PAMAM-Au LbL electrodes, in which a redox mediator (Me) is electrodeposited around the Au nanoparticles to form an ITO-PVS/PAMAM-Au@Me system. The redox mediators used were Co, Fe, Ni and Cu hexacyanoferrates. The 3-bilayer ITO-PVS/PAMAM-Au@Me system was characterized electrochemically by cyclic voltammetry and electrochemical impedance spectroscopy. All hexacyanoferrate modified electrodes showed electrocatalytic activity towards hydrogen peroxide, thus demonstrating that this new approach can be used in biosensors and nanodevices, where a redox mediator is required

    Poly(neutral red) based hydrogen peroxide biosensor for chromium determination by inhibition measurements

    Get PDF
    Amperometric hydrogen peroxide enzyme inhibition biosensors based on horseradish peroxidase (HRP) immobilised on electropolymerised neutral red (NR) or directly on the surface of carbon film electrodes (CFE) have been successfully applied to the determination of toxic Cr(III) and Cr(VI). Parameters influencing the performance of the biosensor including the enzyme immobilisation method, the amount of hydrogen peroxide, applied potential and electrolyte pH were optimised. The inhibition of horseradish peroxidase by the chromium species was studied under the optimised conditions. Results from the quantitative analysis of chromium ions are discussed in terms of detection limit, linear range and sensitivity. The HRP kinetic interactions reveal mixed binding of Cr(III) with I50 = 3.8 μM and inhibition binding constant Ki = 11.3 μM at HRP/PNR/CFE biosensors and uncompetitive binding of Cr(VI) with I50 = 3.9 μM and Ki = 0.78 μM at HRP/CFE biosensors in the presence of H2O2 substrate. Interferences from other heavy metal ions were studied and the inhibition show very good selectivity towards Cr(III) and Cr(VI)

    A glucose biosensor using methyl viologen redox mediator on carbon film electrodes

    Get PDF
    A new methyl viologen-mediated amperometric enzyme electrode sensitive to glucose has been developed using carbon film electrode substrates. Carbon film electrodes from resistors fabricated by pyrolytic deposition of carbon were modified by immobilization of glucose oxidase through cross-linking with glutaraldehyde in the presence of bovine serum albumin. The mediator, methyl viologen, was directly immobilised with the enzyme together with Nafion cation-exchange polymer. The electrochemistry of the glucose oxidase/methyl viologen modified electrode was investigated by cyclic voltammetry and by electrochemical impedance spectroscopy. The biosensor response to glucose was evaluated amperometrically; the detection limit was 20 [mu]M, the linear range extended to 1.2 mM and the reproducibility of around 3%. When stored in phosphate buffer at 4 °C and used every day, the sensor showed good stability over more several weeks.http://www.sciencedirect.com/science/article/B6TF4-4F3FF0G-C/1/7593dcfb5c2e31c991139a06ef556ea

    Enzyme immobilisation on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing

    Get PDF
    Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H2O2, the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 [mu]M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples.http://www.sciencedirect.com/science/article/B6THP-4SDPX4X-3/1/4f9bf4e20f357feac1d3435f51b9823

    Characterisation of poly(neutral red) modified carbon film electrodes; application as a redox mediator for biosensors

    Get PDF
    Abstract The polymer redox mediator, poly(neutral red) (PNR), has been synthesised and characterised electrochemically to investigate the best electropolymerisation and mediation conditions for application in enzyme biosensors and to clarify the mechanism of action. Neutral red was electropolymerised by potential cycling on carbon film electrode substrates by allowing the monomer to be oxidised during the full 20 cycles of polymerisation or reducing the positive limit of the potential window after the first 2 cycles to impede monomer oxidation with a view to obtaining longer polymer chains and a lesser degree of branching. Comparison was made with glassy carbon substrates. The PNR films on carbon film electrodes were characterised using cyclic voltammetry and electrochemical impedance spectroscopy, as well as in glucose biosensors prepared with PNR. Glucose oxidase enzyme was immobilised by encapsulation in silica sol-gel and compared with that obtained by cross-linking with glutaraldehyde. The biosensors were evaluated by chronoamperometry in 0.1 M phosphate buffer saline solution, pH 7.0, and showed evidence of electron transfer between the enzyme cofactor flavin adenine dinucleotide and PNR dissolved in the enzyme layer competing with PNR-mediated electrochemical degradation of H2O2 formed during the enzymatic process

    Preparation and characterisation of poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene)/poly(neutral red) modified carbon film electrodes, and application as sensors for hydrogen peroxide

    Get PDF
    Poly(3,4-ethylenedioxythiophene) (PEDOT) films have been prepared for the first time on carbon-film electrodes (CFE) in aqueous solution using electropolymerisation by potential cycling, potentiostatically and galavanostatically. Characterisation of the modified electrodes was done by cyclic voltammetry and electrochemical impedance spectroscopy and the stability of the polymer films was probed. The coated electrodes were tested for application as hydrogen peroxide sensors, by oxidation and reduction. A novel polymer film was also formed by modification of CFE by co-electropolymerisation of EDOT and the phenazine dye neutral red (NR) – (PEDOT/PNR) with a view to enhancing the properties for sensor applications. It was found that hydrogen peroxide reduction at the PEDOT/PNR coated electrodes could be carried out at a less negative potential, the sensor performance comparing very favourably with that of other polymer-modified electrodes reported in the literature
    corecore