6,956 research outputs found

    Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells

    Get PDF
    The aim of this study was to investigate the effects of the androgenic hormone testosterone enanthate (TE) on human MG-63 cells. MG-63 were cultured for 24 h in the presence of TE at increasing concentrations to assess its lethal dose. Therefore, the suitable concentration for a prolonged use of TE in vitro was assessed by viability assay over 9 days. Finally, MG-63 were exposed to TE for 14 days and assayed for differentiation by qPCR and Alizarin Red S staining. TE in the amount of 100 µM resulted as the maximum dose tolerated by MG-63 cells after 24 h. However, a prolonged exposure in culture TE in the amount of 100 µM showed a cytostatic effect on cell proliferation. On the contrary, TE 10 µM was tolerated by the cells and did not boost cell proliferation, but did enhance new bone formation, as revealed by COL1A1, ALPL, BGLAP, and IBSP gene expression after 3, 7, and 14 days, and calcium deposition by Alizarin Red S staining after 14 days. Based on the current study, 10 µM is the critical dose of TE that should be used in vitro to support bone differentiation of MG-63 cells

    Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro

    Get PDF
    Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application

    Metallicity of solar-type stars with debris discs and planets

    Full text link
    Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to debris discs and a fraction of them are known to host planets. We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris discs and planets. Our analysis includes the calculation of the fundamental stellar parameters by applying the iron ionisation equilibrium conditions to several isolated Fe I and Fe II lines. The metallicity distributions of the different stellar samples suggest that there is a transition toward higher metallicities from stars with neither debris discs nor planets to stars hosting giant planets. Stars with debris discs and stars with neither debris nor planets follow a similar metallicity distribution, although the distribution of the first ones might be shifted towards higher metallicities. Stars with debris discs and planets have the same metallicity behaviour as stars hosting planets, irrespective of whether the planets are low-mass or gas giants. In the case of debris discs and giant planets, the planets are usually cool, -semimajor axis larger than 0.1 AU. The data also suggest that stars with debris discs and cool giant planets tend to have a low dust luminosity, and are among the less luminous debris discs known. We also find evidence of an anticorrelation between the luminosity of the dust and the planet eccentricity. Our data show that the presence of planets, not the debris disc, correlates with the stellar metallicity. The results confirm that core-accretion models represent suitable scenarios for debris disc and planet formation. Dynamical instabilities produced by eccentric giant planets could explain the suggested dust luminosity trends observed for stars with debris discs and planets.Comment: Accepted for publication by A&A, 17 pages, 10 figure

    Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis

    Get PDF
    Myeloid-derived cells play important modulatory and effector roles in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells, composed of monocytic (MO) and polymorphonuclear (PMN) fractions, which can suppress T cell activities in EAE. Their role in MS remains poorly characterized. We found decreased numbers of circulating MDSCs, driven by lower frequencies of the MO-MDSCs, and higher MDSC expression of microRNA miR-223 in MS versus healthy subjects. To gain mechanistic insights, we interrogated the EAE model. MiR-223 knock out (miR-223 12/ 12) mice developed less severe EAE with increased MDSC numbers in the spleen and spinal cord compared to littermate controls. MiR-223 12/ 12 MO-MDSCs suppressed T cell proliferation and cytokine production in vitro and EAE in vivo more than wild-type MO-MDSCs. They also displayed an increased expression of critical mediators of MDSC suppressive function, Arginase-1(Arg1), and the signal transducer and activator of transcription 3 (Stat3), which herein, we demonstrate being an miR-223 target gene. Consistently, MDSCs from MS patients displayed decreased STAT3 and ARG1 expression compared with healthy controls, suggesting that circulating MDSCs in MS are not only reduced in numbers but also less suppressive. These results support a critical role for miR-223 in modulating MDSC biology in EAE and in MS and suggest potential novel therapeutic applications

    Carrageenan-induced acute inflammation in the mouse air pouch synovial model. Role of tumour necrosis factor

    Get PDF
    We used the mouse air pouch model of inflammation to study the interaction between cytokines, prostaglandin E2 (PGE2) and cell migration during the various phases of acute local inflammation induced by carrageenan. In serum, the levels of interleukin 1 (IL-1), interleukin 6 (IL-6), tumour necrosis factor (TNF), serum amiloid-A (SAA) and Fe++ were never different from controls, indicating that no systemic inflammatory changes were induced. Locally the exudate volume and the number of leukocytes recruited into the pouch increased progressively until 7 days after carrageenan. The same was true for PGE2 production. We could not measure IL-1 but the production of IL-6 and TNF reached a maximum after 5-24 h then quickly decreased. Anti-TNF antibodies inhibited cell migration by 50% 24 h after treatment. Pretreatment with interleukin 10 (IL-10) inhibited TNF production almost completely and cell migration by 60%. Carrageenan-induced inflammation was modulated by anti-inflammatory drugs. Pretreatment with dexamethasone (DEX) or indomethacin (INDO) inhibited cell migration and reduced the concentration of TNF in the exudate. Production of PGE2 or vascular permeability did not correlate with the number of cells in the pouch. Local TNF seems to play an important role in this model, particularly for leukocyte migration in the first phase of the inflammatory process. In conclusion, the air pouch seems to be a good model for studying the regulation of the early events of local inflammation, particularly the role of cytokines and cell migration

    Benign hereditary chorea and deletions outside NKX2-1 : what's the role of MBIP?

    Get PDF
    Heterozygous point mutations or deletions of the NKX2-1 gene cause benign hereditary chorea (BHC) or a various combinations of primary hypothyroidism, respiratory distress and neurological disorders. Deletions proximal to, but not encompassing, NKX2-1 have been described in few subjects with brain-lung-thyroid syndrome. We report on a three-generation Italian family, with 6 subjects presenting BHC and harboring a genomic deletion adjacent to NKX2-1 and including the gene MBIP, recently proposed to be relevant for the pathogenesis of brain-lung-thyroid syndrome. We observed a clear reduction of NKX2-1 transcript levels in fibroblasts from our patients compared to controls; this finding suggests that MBIP deletion affects NKX2-1 expression, mimicking haploinsufficiency caused by classical NKX2-1 related mutations

    Mitochondrial Complex III Deficiency Caused by TTC19 Defects : Report of a Novel Mutation and Review of Literature

    Get PDF
    We report about a patient with infantile-onset neurodegenerative disease associated with isolated mitochondrial respiratory chain complex III (cIII) deficiency. The boy, now 13 years old, presented with language regression and ataxia at 4 years of age and then showed a progressive course resulting in the loss of autonomous gait and speaking during the following 2 years. Brain MRI disclosed bilateral striatal necrosis. Sequencing of a panel containing nuclear genes associated with cIII deficiency revealed a previously undescribed homozygous rearrangement (c.782_786delinsGAAAAG) in TTC19 gene, which results in a frameshift with premature termination (p.Glu261Glyfs(*)8). TTC19 protein was absent in patient's fibroblasts. TTC19 encodes tetratricopeptide 19, a putative assembly factor for cIII. To date TTC19 mutations have been reported only in few cases, invariably associated with cIII deficiency, but presenting heterogeneous clinical phenotypes. We reviewed the genetic, biochemical, clinical and neuroradiological features of TTC19 mutant patients described to date
    • …
    corecore