85 research outputs found

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Geographic Coincidence of Increased Malaria Transmission Hazard and Vulnerability Occurring at the Periphery of two Tanzanian Villages.

    Get PDF
    The goal of malaria elimination necessitates an improved understanding of any fine-scale geographic variations in transmission risk so that complementary vector control tools can be integrated into current vector control programmes as supplementary measures that are spatially targeted to maximize impact upon residual transmission. This study examines the distribution of host-seeking malaria vectors at households within two villages in rural Tanzania. Host-seeking mosquitoes were sampled from 72 randomly selected households in two villages on a monthly basis throughout 2008 using CDC light-traps placed beside occupied nets. Spatial autocorrelation in the dataset was examined using the Moran's I statistic and the location of any clusters was identified using the Getis-Ord Gi* statistic. Statistical associations between the household characteristics and clusters of mosquitoes were assessed using a generalized linear model for each species. For both Anopheles gambiae sensu lato and Anopheles funestus, the density of host-seeking females was spatially autocorrelated, or clustered. For both species, houses with low densities were clustered in the semi-urban village centre while houses with high densities were clustered in the periphery of the villages. Clusters of houses with low or high densities of An. gambiae s.l. were influenced by the number of residents in nearby houses. The occurrence of high-density clusters of An. gambiae s.l. was associated with lower elevations while An. funestus was also associated with higher elevations. Distance from the village centre was also positively correlated with the number of household occupants and having houses constructed with open eaves. The results of the current study highlight that complementary vector control tools could be most effectively targeted to the periphery of villages where the households potentially have a higher hazard (mosquito densities) and vulnerability (open eaves and larger households) to malaria infection

    The effects of zooprophylaxis and other mosquito control measures against malaria in Nouna, Burkina Faso

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of large scale, organized vector control programmes, individual protective measures against mosquitoes are essential for reducing the transmission of diseases like malaria. Knowledge of the types and effectiveness of mosquito control methods used by households can aid in the development and promotion of preventive measures.</p> <p>Methods</p> <p>A matched, population-based case control study was carried out in the semi-urban region of Nouna, Burkina Faso. Surveys and mosquito captures were conducted for each participating household. Data were analysed using conditional logistic regression and Pearson's product-moment correlations.</p> <p>Results</p> <p>In Nouna, Burkina Faso, the main types of reported mosquito control measures used included sleeping under bed nets (insecticide-treated and untreated) and burning mosquito coils. Most of the study households kept animals within the compound or house at night. Insecticide house sprays, donkeys, rabbits and pigs were significantly associated with a reduced risk of malaria only in univariate analyses.</p> <p>Conclusion</p> <p>Given the conflicting results of the effects of zooprophylaxis from previous studies, other community-based preventive measures, such as bed nets, coils and insecticide house-spraying, may be of more benefit.</p

    A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asymptomatic reservoirs of malaria parasites are common yet are difficult to detect, posing a problem for malaria control. If control programmes focus on mosquito control and treatment of symptomatic individuals only, malaria can quickly resurge if interventions are scaled back. Foci of parasite populations must be identified and treated. Therefore, an active case detection system that facilitates detection of asymptomatic parasitaemia and gametocyte carriers was developed and tested in the Macha region in southern Zambia.</p> <p>Methods</p> <p>Each week, nurses at participating rural health centres (RHC) communicated the number of rapid diagnostic test (RDT) positive malaria cases to a central research team. During the dry season when malaria transmission was lowest, the research team followed up each positive case reported by the RHC by a visit to the homestead. The coordinates of the location were obtained by GPS and all consenting residents completed a questionnaire and were screened for malaria using thick blood film, RDT, nested-PCR, and RT-PCR for asexual and sexual stage parasites. Persons who tested positive by RDT were treated with artemether/lumefantrine (Coartem<sup>®</sup>). Data were compared with a community-based study of randomly selected households to assess the prevalence of asymptomatic parasitaemia in the same localities in September 2009.</p> <p>Results</p> <p>In total, 186 and 141 participants residing in 23 case and 24 control homesteads, respectively, were screened. In the case homesteads for which a control population was available (10 of the 23), household members of clinically diagnosed cases had a 8.0% prevalence of malaria using PCR compared to 0.7% PCR positive individuals in the control group (p = 0.006). The case and control groups had a gametocyte prevalence of 2.3% and 0%, respectively but the difference was not significant (p = 0.145).</p> <p>Conclusions</p> <p>This pilot project showed that active case detection is feasible and can identify reservoirs of asymptomatic infection. A larger sample size, data over multiple low transmission seasons, and in areas with different transmission dynamics are needed to further validate this approach.</p

    Tuberculosis in UK cities: workload and effectiveness of tuberculosis control programmes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis (TB) has increased within the UK and, in response, targets for TB control have been set and interventions recommended. The question was whether these had been implemented and, if so, had they been effective in reducing TB cases.</p> <p>Methods</p> <p>Epidemiological data were obtained from enhanced surveillance and clinics. Primary care trusts or TB clinics with an average of > 100 TB cases per year were identified and provided reflections on the reasons for any change in their local incidence, which was compared to an audit against the national TB plan.</p> <p>Results</p> <p>Access to data for planning varied (0-22 months). Sputum smear status was usually well recorded within the clinics. All cities had TB networks, a key worker for each case, free treatment and arrangements to treat HIV co-infection. Achievement of targets in the national plan correlated well with change in workload figures for the commissioning organizations (Spearman's rank correlation R = 0.8, P < 0.01) but not with clinic numbers. Four cities had not achieved the target of one nurse per 40 notifications (Birmingham, Bradford, Manchester and Sheffield). Compared to other cities, their loss to follow-up during treatment was usually > 6% (χ<sup>2 </sup>= 4.2, P < 0.05), there was less TB detected by screening and less outreach. Manchester was most poorly resourced and showed the highest rate of increase of TB. Direct referral from radiology, sputum from primary care and outreach workers were cited as important in TB control.</p> <p>Conclusion</p> <p>TB control programmes depend on adequate numbers of specialist TB nurses for early detection and case-holding.</p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/9/127</url></p

    High Prevalence of Malaria in Zambezia, Mozambique: The Protective Effect of IRS versus Increased Risks Due to Pig-Keeping and House Construction

    Get PDF
    BACKGROUND: African countries are scaling up malaria interventions, especially insecticide treated nets (ITN) and indoor residual spraying (IRS), for which ambitious coverage targets have been set. In spite of these efforts infection prevalence remains high in many parts of the continent. This study investigated risk factors for malaria infection in children using three malaria indicator surveys from Zambezia province, Mozambique. The impact of IRS and ITNs, the effects of keeping farm animals and of the construction material of roofs of houses and other potential risk factors associated with malaria infection in children were assessed. METHODS: Cross-sectional community-based surveys were conducted in October of 2006, 2007 and 2008. A total of 8338 children (ages 1-15 years) from 2748 households were included in the study. All children were screened for malaria by rapid diagnostic tests. Caregiver interviews were used to assess household demographic and wealth characteristics and ITN and IRS coverage. Associations between malaria infection, vector control interventions and potential risk factors were assessed. RESULTS: Overall, the prevalence of malaria infection was 47.8% (95%CI: 38.7%-57.1%) in children 1-15 years of age, less than a quarter of children (23.1%, 95%CI: 19.1%-27.6%) were sleeping under ITN and almost two thirds were living in IRS treated houses (coverage 65.4%, 95%CI: 51.5%-77.0%). Protective factors that were independently associated with malaria infection were: sleeping in an IRS house without sleeping under ITN (Odds Ratio (OR)= 0.6; 95%CI: 0.4-0.9); additional protection due to sleeping under ITN in an IRS treated house (OR = 0.5; 95%CI: 0.3-0.7) versus sleeping in an unsprayed house without a ITN; and parental education (primary/secondary: OR = 0.6; 95%CI: 0.5-0.7) versus parents with no education. Increased risk of infection was associated with: current fever (OR = 1.2; 95%CI: 1.0-1.5) versus no fever; pig keeping (OR = 3.2; 95%CI: 2.1-4.9) versus not keeping pigs; living in houses with a grass roof (OR = 1.7; 95%CI: 1.3-2.4) versus other roofing materials and bigger household size (8-15 people: OR = 1.6; 95%CI: 1.3-2.1) versus small households (1-4 persons). CONCLUSION: Malaria infection among children under 15 years of age in Zambezia remained high but conventional malaria vector control methods, in particular IRS, provided effective means of protection. Household ownership of farm animals, particularly pigs, and living in houses with a grass roof were independently associated with increased risk of infection, even after allowing for household wealth. To reduce the burden of malaria, national control programs need to ensure high coverage of effective IRS and promote the use of ITNs, particularly in households with elevated risks of infection, such as those keeping farm animals, and those with grass roofs

    Prevalence Distribution and Risk Factors for Schistosoma hematobium Infection among School Children in Blantyre, Malawi

    Get PDF
    Schistosoma hematobium infection is a parasitic infection endemic in Malawi. Schistosomiasis usually shows a focal distribution of infection and it is important to identify communities at high risk of infection and assess effectiveness of control programs. We conducted a survey in one district in Malawi to determine prevalence and factors associated with S. hematobium infection among primary school pupils. Using a questionnaire, information on history of passing bloody urine and known risk factors associated with infection was collected. Urine samples were collected and examined for S. hematobium eggs. One thousand one hundred and fifty (1,150) pupils were interviewed, and out of 1,139 pupils who submitted urine samples, 10.4% were infected. Our data showed that male gender, child's knowledge of an existing open water source (includes river, dam, springs, lake, etc.) in the area, history of urinary schistosomiasis in the past month, distance of less than 1 km from school to nearest open water source and age 8–10 years compared to those 14 years and older were independently associated with infection. These findings suggest that children attending schools in close proximity to open water sources are at increased risk of infection

    Hot Spot or Not: A Comparison of Spatial Statistical Methods to Predict Prospective Malaria Infections.

    Get PDF
    Within affected communities, Plasmodium falciparum infections may be skewed in distribution such that single or small clusters of households consistently harbour a disproportionate number of infected individuals throughout the year. Identifying these hotspots of malaria transmission would permit targeting of interventions and a more rapid reduction in malaria burden across the whole community. This study set out to compare different statistical methods of hotspot detection (SaTScan, kernel smoothing, weighted local prevalence) using different indicators (PCR positivity, AMA-1 and MSP-1 antibodies) for prediction of infection the following year. Two full surveys of four villages in Mwanza, Tanzania were completed over consecutive years, 2010-2011. In both surveys, infection was assessed using nested polymerase chain reaction (nPCR). In addition in 2010, serologic markers (AMA-1 and MSP-119 antibodies) of exposure were assessed. Baseline clustering of infection and serological markers were assessed using three geospatial methods: spatial scan statistics, kernel analysis and weighted local prevalence analysis. Methods were compared in their ability to predict infection in the second year of the study using random effects logistic regression models, and comparisons of the area under the receiver operating curve (AUC) for each model. Sensitivity analysis was conducted to explore the effect of varying radius size for the kernel and weighted local prevalence methods and maximum population size for the spatial scan statistic. Guided by AUC values, the kernel method and spatial scan statistics appeared to be more predictive of infection in the following year. Hotspots of PCR-detected infection and seropositivity to AMA-1 were predictive of subsequent infection. For the kernel method, a 1 km window was optimal. Similarly, allowing hotspots to contain up to 50% of the population was a better predictor of infection in the second year using spatial scan statistics than smaller maximum population sizes. Clusters of AMA-1 seroprevalence or parasite prevalence that are predictive of infection a year later can be identified using geospatial models. Kernel smoothing using a 1 km window and spatial scan statistics both provided accurate prediction of future infection
    corecore