30 research outputs found

    Wellness Protocol: An Integrated Framework for Ambient Assisted Living : A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy In Electronics, Information and Communication Systems At School of Engineering and Advanced Technology, Massey University, Manawatu Campus, New Zealand

    Get PDF
    Listed in 2016 Dean's List of Exceptional ThesesSmart and intelligent homes of today and tomorrow are committed to enhancing the security, safety and comfort of the occupants. In the present scenario, most of the smart homes Protocols are limited to controlled activities environments for Ambient Assisted Living (AAL) of the elderly and the convalescents. The aim of this research is to develop a Wellness Protocol that forecasts the wellness of any individual living in the AAL environment. This is based on wireless sensors and networks that are applied to data mining and machine learning to monitor the activities of daily living. The heterogeneous sensor and actuator nodes, based on WSNs are deployed into the home environment. These nodes generate the real-time data related to the object usage and other movements inside the home, to forecast the wellness of an individual. The new Protocol has been designed and developed to be suitable especially for the smart home system. The Protocol is reliable, efficient, flexible, and economical for wireless sensor networks based AAL. According to consumer demand, the Wellness Protocol based smart home systems can be easily installed with existing households without any significant changes and with a user-friendly interface. Additionally, the Wellness Protocol has extended to designing a smart building environment for an apartment. In the endeavour of smart home design and implementation, the Wellness Protocol deals with large data handling and interference mitigation. A Wellness based smart home monitoring system is the application of automation with integral systems of accommodation facilities to boost and progress the everyday life of an occupant

    An enhanced secure delegation-based anonymous authentication protocol for PCSs

    Get PDF
    Rapid development of wireless networks brings about many security problems in portable communication systems (PCSs), which can provide mobile users with an opportunity to enjoy global roaming services. In this regard, designing a secure user authentication scheme, especially for recognizing legal roaming users, is indeed a challenging task. It is noticed that there is no delegation-based protocol for PCSs, which can guarantee anonymity, untraceability, perfect forward secrecy, and resistance of denial-of-service (DoS) attack. Therefore, in this article, we put forward a novel delegation-based anonymous and untraceable authentication protocol, which can guarantee to resolve all the abovementioned security issues and hence offer a solution for secure communications for PCSs

    DBGC:Dimension-Based Generic Convolution Block for Object Recognition

    Get PDF
    The object recognition concept is being widely used a result of increasing CCTV surveillance and the need for automatic object or activity detection from images or video. Increases in the use of various sensor networks have also raised the need of lightweight process frameworks. Much research has been carried out in this area, but the research scope is colossal as it deals with open-ended problems such as being able to achieve high accuracy in little time using lightweight process frameworks. Convolution Neural Networks and their variants are widely used in various computer vision activities, but most of the architectures of CNN are application-specific. There is always a need for generic architectures with better performance. This paper introduces the Dimension-Based Generic Convolution Block (DBGC), which can be used with any CNN to make the architecture generic and provide a dimension-wise selection of various height, width, and depth kernels. This single unit which uses the separable convolution concept provides multiple combinations using various dimension-based kernels. This single unit can be used for height-based, width-based, or depth-based dimensions; the same unit can even be used for height and width, width and depth, and depth and height dimensions. It can also be used for combinations involving all three dimensions of height, width, and depth. The main novelty of DBGC lies in the dimension selector block included in the proposed architecture. Proposed unoptimized kernel dimensions reduce FLOPs by around one third and also reduce the accuracy by around one half; semi-optimized kernel dimensions yield almost the same or higher accuracy with half the FLOPs of the original architecture, while optimized kernel dimensions provide 5 to 6% higher accuracy with around a 10 M reduction in FLOPs

    WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    No full text
    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance

    Wellness protocol for smart homes: an integrated framework for ambient assisted living

    No full text
    This book focuses on the development of wellness protocols for smart home monitoring, aiming to forecast the wellness of individuals living in ambient assisted living (AAL) environments. It describes in detail the design and implementation of heterogeneous wireless sensors and networks as applied to data mining and machine learning, which the protocols are based on. Further, it shows how these sensor and actuator nodes are deployed in the home environment, generating real-time data on object usage and other movements inside the home, and therefore demonstrates that the protocols have proven to offer a reliable, efficient, flexible, and economical solution for smart home systems. Documenting the approach from sensor to decision making and information generation, the book addresses various issues concerning interference mitigation, errors, security and large data handling. As such, it offers a valuable resource for researchers, students and practitioners interested in interdisciplinary studies at the intersection of wireless sensing processing, radio communication, the Internet of Things and machine learning, and in how they can be applied to smart home monitoring and assisted living environments

    Proposal and preliminary fall-related activities recognition in indoor environment

    No full text

    WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    No full text
    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance
    corecore