12 research outputs found

    Synthesis, crystal structure and antifungal activity of dihydroisoquinoline Oxaziridines Substitued in Position 1

    Get PDF
    We report here the synthesis and the X-ray crystallography of dihydroisoquinoline oxaziridines with methyl substitute in position 1 and with nitro group in position 7 (compound 3b). We also synthesized the compound 3a without nitro. These compounds have been prepared by the peracidic oxidation of imines with m-chloroperbenzoic (m-CPBA) like oxidizing agent. This two compounds exhibit higher antifungal activity

    Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting

    Get PDF
    In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm−1K−1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to −140 μV K−1 at 400 K, which is also beneficial for improved thermoelectric efficiency.This research was funded by the Spanish Ministry of Economy and Competitivity for granting the project MAT2013-41099-R.Peer reviewe

    Outcomes of treatment of severe COVID-19 pneumonia with tocilizumab: a report of two cases from Tunisia

    Get PDF
    The SARS CoV-2 pandemic is a global health threat with high morbidity and mortality (1 to 4%) rates. COVID-19 is correlated with important immune disorders, including a “cytokine storm”. A new therapeutic approach using the immunomodulatory drug, Anti-IL6 (tocilizimub), has been proposed to regulate it. We report here the first Tunisian experience using tocilizimub in two severe cases of COVID-19 pneumonia. The diagnosis was confirmed by chest scan tomography. Biological parameters showed a high level of Interleukin-6 (IL-6) that increased significantly during hospitalization. The patients developed hypoxia, so they received intravenously 8 mg/kg body weight tocilizumab. There was a resultant decrease in the level of IL6, with clinically good evolution. Blocking the cytokine IL-6 axis is a promising therapy for patients developing COVID-19 pathology

    Nanostructured Thermoelectric Chalcogenides

    Get PDF
    Thermoelectric materials are outstanding to transform temperature differences directly and reversibly into electrical voltage. Exploiting waste heat recovery as a source of power generation could help towards energy sustainability. Recently, the SnSe semiconductor was identified, in single-crystal form, as a mid-temperature thermoelectric material with record high figure of merit, high power factor and surprisingly low thermal conductivity. We describe the preparation of polycrystals of alloys of SnSe obtained by arc-melting; a rapid synthesis that results in strongly nanostructured samples with low thermal conductivity, advantageous for thermoelectricity, approaching the amorphous limit, around 0.3–0.5 W/mK. An initial screening of novel samples Sn1−xMxSe, by alloying with 3d and 4d transition metals such as M = Mn, Y, Ag, Mo, Cd or Au, provides for a means to optimize the power factor. M=Mo, Ag, with excellent values, are described in detail with characterization by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. Rietveld analysis of XRD data demonstrates near-perfect stoichiometries of the above-mentioned alloys. SEM analysis shows stacking of nanosized sheets, with large surfaces parallel to layered slabs. An apparatus was developed for the simultaneous measurement of the Seebeck coefficient and electric conductivity at elevated temperatures

    Nanostructured State-of-the-Art Thermoelectric Materials Prepared by Straight-Forward Arc-Melting Method

    Get PDF
    Thermoelectric materials constitute an alternative to harvest sustainable energy from waste heat. Among the most commonly utilized thermoelectric materials, we can mention Bi2Te3 (hole and electron conductivity type), PbTe and recently reported SnSe intermetallic alloys. We review recent results showing that all of them can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. These materials have been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM) and electronic and thermal transport measurements. Analysis of NPD patterns demonstrates near-perfect stoichiometry of above-mentioned alloys and fair amount of anharmonicity of chemical bonds. SEM analysis shows stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces parallel to layered slabs. This nanostructuration affects notably thermoelectric properties, involving many surface boundaries (interfaces), which are responsible for large phonon scattering factors, yielding low thermal conductivity. Additionally, we describe homemade apparatus developed for the simultaneous measurement of Seebeck coefficient and electric conductivity at elevated temperatures

    Analysis of the Cultivable Endophytic Bacterial Diversity in the Date Palm (Phoenix dactylifera L.) and Evaluation of Its Antagonistic Potential against Pathogenic Fusarium Species that Cause Date Palm Bayound DiseaseAnalysis of the Cultivable Endophytic

    No full text
    Abstract Biological control still remains an unexploited issue in southern countries such as Tunisia. Thus, the present study focused on the diversity of cultivable endophytic bacteria in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera L.). In order to assess their antagonistic potential towards date palm pathogens, particularly Fusarium. Indeed, the Genus Fusarium includes the causative agent of the Bayound disease, Fusarium oxysporum, a major treat for date production North Africa. Twenty two bacterial isolates presenting distinct colony morphology on TSA media were selected. The latter were characterized using Gram staining, biochemical tests, and molecular identification techniques based on 16S rRNA gene sequencing. Cultivable endophytic isolates were assigned into seven distinct groups. The species Arthrobacter agilis and Bacillus subtilis exhibited lasting antagonistic properties against a range of Fusarium species including the causing agent of the Bayoud disease, thus demonstrating their strong potential for future applications in the inoculation of date palm trees for biocontrol purposes. The isolates showed extracellular enzymatic activity including cellulase (76, 92%), protease (69, 23%) and amylase (38, 46%). This study thus demonstrates for the first time that the diversity of endophytic bacteria is abundant in date palm trees (Phoenix dactylifera L.) and could present varying biotechnological applications and particularly disease control

    Analysis of the Cultivable Endophytic Bacterial Diversity in the Date Palm (Phoenix dactylifera L.) and Evaluation of Its Antagonistic Potential against Pathogenic Fusarium Species that Cause Date Palm Bayound Disease

    No full text
    International audienceBiological control still remains an unexploited issue in southern countries such as Tunisia. Thus, the present study focused on the diversity of cultivable endophytic bacteria in the internal tissues (roots and leaves) of Tunisian date palm trees (Phoenix dactylifera L.). In order to assess their antagonistic potential towards date palm pathogens, particularly Fusarium. Indeed, the Genus Fusarium includes the causative agent of the Bayound disease, Fusarium oxysporum, a major treat for date production North Africa. Twenty two bacterial isolates presenting distinct colony morphology on TSA media were selected. The latter were characterized using Gram staining, biochemical tests, and molecular identification techniques based on 16S rRNA gene sequencing. Cultivable endophytic isolates were assigned into seven distinct groups. The species Arthrobacter agilis and Bacillus subtilis exhibited lasting antagonistic properties against a range of Fusarium species including the causing agent of the Bayoud disease, thus demonstrating their strong potential for future applications in the inoculation of date palm trees for biocontrol purposes. The isolates showed extracellular enzymatic activity including cellulase (76, 92%), protease (69, 23%) and amylase (38, 46%). This study thus demonstrates for the first time that the diversity of endophytic bacteria is abundant in date palm trees (Phoenix dactylifera L.) and could present varying biotechnological applications and particularly disease control
    corecore