350 research outputs found

    Intrinsic NLRP3 inflammasome activity is critical for normal adaptive immunity via regulation of IFN-γ in CD4+ T cells

    Get PDF
    The NLRP3 inflammasome controls interleukin-1b maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described.We found that the NLRP3 inflammasome assembles in human CD4+ Tcells and initiates caspase-1–dependent interleukin-1b secretion, thereby promoting interferon-g production and T helper 1 (TH1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in Tcells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to “innate immune cells” but is an integral component of normal adaptive TH1 responses

    Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis

    Get PDF
    Background: Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs. Methods: We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates. Results: Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4+IL17+, CD11b+Ly6G+ and CD11b+Ly6C+ cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype. Conclusions: DMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.This work was sponsored by grants from Acción Estratégica en Salud (PI13/00297 and PI11/00581), the Neurosciences and Aging Foundation, the Francisco Soria Melguizo Foundation, Octopharma, and Parkinson Madrid (PI2012/0032).S

    Acute diverticulitis in immunocompromised patients: evidence from an international multicenter observational registry (Web-based International Register of Emergency Surgery and Trauma, Wires-T)

    Get PDF
    Background: Immunocompromised patients with acute diverticulitis are at increased risk of morbidity and mortality. The aim of this study was to compare clinical presentations, types of treatment, and outcomes between immunocompromised and immunocompetent patients with acute diverticulitis. Methods: We compared the data of patients with acute diverticulitis extracted from the Web-based International Registry of Emergency Surgery and Trauma (WIRES-T) from January 2018 to December 2021. First, two groups were identified: medical therapy (A) and surgical therapy (B). Each group was divided into three subgroups: nonimmunocompromised (grade 0), mildly to moderately (grade 1), and severely immunocompromised (grade 2). Results: Data from 482 patients were analyzed—229 patients (47.5%) [M:F = 1:1; median age: 60 (24–95) years] in group A and 253 patients (52.5%) [M:F = 1:1; median age: 71 (26–94) years] in group B. There was a significant difference between the two groups in grade distribution: 69.9% versus 38.3% for grade 0, 26.6% versus 51% for grade 1, and 3.5% versus 10.7% for grade 2 (p < 0.00001). In group A, severe sepsis (p = 0.027) was more common in higher grades of immunodeficiency. Patients with grade 2 needed longer hospitalization (p = 0.005). In group B, a similar condition was found in terms of severe sepsis (p = 0.002), quick Sequential Organ Failure Assessment score > 2 (p = 0.0002), and Mannheim Peritonitis Index (p = 0.010). A Hartmann’s procedure is mainly performed in grades 1–2 (p < 0.0001). Major complications increased significantly after a Hartmann’s procedure (p = 0.047). Mortality was higher in the immunocompromised patients (p = 0.002). Conclusions: Immunocompromised patients with acute diverticulitis present with a more severe clinical picture. When surgery is required, immunocompromised patients mainly undergo a Hartmann’s procedure. Postoperative morbidity and mortality are, however, higher in immunocompromised patients, who also require a longer hospital stay

    Order versus Disorder: in vivo bone formation within osteoconductive scaffolds

    Get PDF
    In modern biomaterial design the generation of an environment mimicking some of the extracellular matrix features is envisaged to support molecular cross-talk between cells and scaffolds during tissue formation/remodeling. In bone substitutes chemical biomimesis has been particularly exploited; conversely, the relevance of pre-determined scaffold architecture for regenerated bone outputs is still unclear. Thus we aimed to demonstrate that a different organization of collagen fibers within newly formed bone under unloading conditions can be generated by differently architectured scaffolds. An ordered and confined geometry of hydroxyapatite foams concentrated collagen fibers within the pores, and triggered their self-assembly in a cholesteric-banded pattern, resulting in compact lamellar bone. Conversely, when progenitor cells were loaded onto nanofibrous collagen-based sponges, new collagen fibers were distributed in a nematic phase, resulting mostly in woven isotropic bone. Thus specific biomaterial design relevantly contributes to properly drive collagen fibers assembly to target bone regeneration

    Degradation, Bioactivity, and Osteogenic Potential of Composites Made of PLGA and Two Different Sol–Gel Bioactive Glasses

    Get PDF
    We have developed poly(l-lactide-co-glycolide) (PLGA) based composites using sol–gel derived bioactive glasses (S-BG), previously described by our group, as composite components. Two different composite types were manufactured that contained either S2—high content silica S-BG, or A2—high content lime S-BG. The composites were evaluated in the form of sheets and 3D scaffolds. Sheets containing 12, 21, and 33 vol.% of each bioactive glass were characterized for mechanical properties, wettability, hydrolytic degradation, and surface bioactivity. Sheets containing A2 S-BG rapidly formed a hydroxyapatite surface layer after incubation in simulated body fluid. The incorporation of either S-BG increased the tensile strength and Young’s modulus of the composites and tailored their degradation rates compared to starting compounds. Sheets and 3D scaffolds were evaluated for their ability to support growth of human bone marrow cells (BMC) and MG-63 cells, respectively. Cells were grown in non-differentiating, osteogenic or osteoclast-inducing conditions. Osteogenesis was induced with either recombinant human BMP-2 or dexamethasone, and osteoclast formation with M-CSF. BMC viability was lower at higher S-BG content, though specific ALP/cell was significantly higher on PLGA/A2-33 composites. Composites containing S2 S-BG enhanced calcification of extracellular matrix by BMC, whereas incorporation of A2 S-BG in the composites promoted osteoclast formation from BMC. MG-63 osteoblast-like cells seeded in porous scaffolds containing S2 maintained viability and secreted collagen and calcium throughout the scaffolds. Overall, the presented data show functional versatility of the composites studied and indicate their potential to design a wide variety of implant materials differing in physico-chemical properties and biological applications. We propose these sol–gel derived bioactive glass–PLGA composites may prove excellent potential orthopedic and dental biomaterials supporting bone formation and remodeling

    Patients with an Open Abdomen in Asian, American and European Continents: A Comparative Analysis from the International Register of Open Abdomen (IROA)

    Get PDF
    Background: International register of open abdomen (IROA) enrolls patients from several centers in American, European, and Asiatic continent. The aim of our study is to compare the characteristics, management and clinical outcome of adult patients treated with OA in the three continents. Material and methods: A prospective analysis of adult patients enrolled in the international register of open abdomen (IROA). Trial registration: NCT02382770. Results: 1183 patients were enrolled from American, European and Asiatic Continent. Median age was 63 years (IQR 49–74) and was higher in the European continent (65 years, p < 0.001); 57% were male. The main indication for OA was peritonitis (50.6%) followed by trauma (15.4%) and vascular emergency (13.5%) with differences among the continents (p < 0.001). Commercial NPWT was preferred in America and Europe (77.4% and 52.3% of cases) while Barker vacuum pack (48.2%) was the preferred temporary abdominal closure technique in Asia (p < 0.001). Definitive abdominal closure was achieved in 82.3% of cases in America (fascial closure in 90.2% of cases) and in 56.4% of cases in Asia (p < 0.001). Prosthesis were mostly used in Europe (17.3%, p < 0.001). The overall entero-atmospheric fistula rate 2.5%. Median open abdomen duration was 4 days (IQR 2–7). The overall intensive care unit and hospital length-of-stay were, respectively, 8 and 11 days (no differences between continents). The overall morbidity and mortality rates for America, Europe, and Asia were, respectively, 75.8%, 75.3%, 91.8% (p = 0.001) and 31.9%, 51.6%, 56.9% (p < 0.001). Conclusion: There is no uniformity in OA management in the different continents. Heterogeneous adherence to international guidelines application is evident. Different temporary abdominal closure techniques in relation to indications led to different outcomes across the continents. Adherence to guidelines, combined with more consistent data, will ultimately allow to improving knowledge and outcome

    IL-6-Dependent PGE2 Secretion by Mesenchymal Stem Cells Inhibits Local Inflammation in Experimental Arthritis

    Get PDF
    BACKGROUND: Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSC) are intensively studied for various clinical applications. Although it has been shown in vitro that the immunomodulatory effect of MSCs mainly occurs through the secretion of soluble mediators, the mechanism is still not completely understood. The aim of the present study was to better understand the mechanisms underlying the suppressive effect of MSCs in vivo, using cells isolated from mice deficient in the production of inducible nitric oxide synthase (iNOS) or interleukin (IL)-6 in the murine model of collagen-induced arthritis. PRINCIPAL FINDINGS: In the present study, we show that primary murine MSCs from various strains of mice or isolated from mice deficient for iNOS or IL-6 exhibit different immunosuppressive potential. The immunomodulatory function of MSCs was mainly attributed to IL-6-dependent secretion of prostaglandin E2 (PGE2) with a minor role for NO. To address the role of these molecules in vivo, we used the collagen-induced arthritis as an experimental model of immune-mediated disorder. MSCs effectively inhibited collagen-induced inflammation during a narrow therapeutic window. In contrast to wild type MSCs, IL-6-deficient MSCs and to a lesser extent iNOS-deficient MSCs were not able to reduce the clinical signs of arthritis. Finally, we show that, independently of NO or IL-6 secretion or Treg cell induction, MSCs modulate the host response by inducing a switch to a Th2 immune response. SIGNIFICANCE: Our data indicate that mscs mediate their immunosuppressive effect via two modes of action: locally, they reduce inflammation through the secretion of anti-proliferative mediators, such as NO and mainly PGE2, and systemically they switch the host response from a Th1/Th17 towards a Th2 immune profile

    A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    Get PDF
    The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants

    Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis

    Get PDF
    We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis

    Increased 30-Day Mortality in Very Old ICU Patients with COVID-19 Compared to Patients with Respiratory Failure without COVID-19

    Get PDF
    Purpose: The number of patients ≥ 80 years admitted into critical care is increasing. Coronavirus disease 2019 (COVID-19) added another challenge for clinical decisions for both admission and limitation of life-sustaining treatments (LLST). We aimed to compare the characteristics and mortality of very old critically ill patients with or without COVID-19 with a focus on LLST. Methods: Patients 80 years or older with acute respiratory failure were recruited from the VIP2 and COVIP studies. Baseline patient characteristics, interventions in intensive care unit (ICU) and outcomes (30-day survival) were recorded. COVID patients were matched to non-COVID patients based on the following factors: age (± 2 years), Sequential Organ Failure Assessment (SOFA) score (± 2 points), clinical frailty scale (± 1 point), gender and region on a 1:2 ratio. Specific ICU procedures and LLST were compared between the cohorts by means of cumulative incidence curves taking into account the competing risk of discharge and death. Results: 693 COVID patients were compared to 1393 non-COVID patients. COVID patients were younger, less frail, less severely ill with lower SOFA score, but were treated more often with invasive mechanical ventilation (MV) and had a lower 30-day survival. 404 COVID patients could be matched to 666 non-COVID patients. For COVID patients, withholding and withdrawing of LST were more frequent than for non-COVID and the 30-day survival was almost half compared to non-COVID patients. Conclusion: Very old COVID patients have a different trajectory than non-COVID patients. Whether this finding is due to a decision policy with more active treatment limitation or to an inherent higher risk of death due to COVID-19 is unclear.info:eu-repo/semantics/publishedVersio
    corecore