55 research outputs found

    Anthropogenic Sulfate, Clouds, and Climate Forcing

    Get PDF
    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions

    Unstable radiative-dynamical interactions

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1988.Includes bibliographical references.by Steven John Ghan.Sc.D

    Modelling the synoptic scale relationship between eddy heat flux and the meridional temperature gradient

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology and Physical Oceanography, 1981.Microfiche copy available in Archives and Science.Bibliography: leaves 63-65.by Steven John Ghan.M.S

    Dust-wind interactions can intensify aerosol pollution over eastern China.

    Get PDF
    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s-1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies

    A Simple Model of Global Aerosol Indirect Effects

    Get PDF
    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values

    Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    Get PDF
    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and long-wave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000335798000044&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Multidisciplinary SciencesSCI(E)[email protected]; [email protected]

    Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing

    Full text link
    The new Energy Exascale Earth System Model Version 1 (E3SMv1) developed for the U.S. Department of Energy has significant new treatments of aerosols and lightâ absorbing snow impurities as well as their interactions with clouds and radiation. This study describes seven sets of new aerosolâ related treatments (involving emissions, new particle formation, aerosol transport, wet scavenging and resuspension, and snow radiative transfer) and examines how they affect global aerosols and radiative forcing in E3SMv1. Altogether, they give a reduced total aerosol radiative forcing (â 1.6 W/m2) and sensitivity in cloud liquid water to aerosols, but an increased sensitivity in cloud droplet size to aerosols. A new approach for H2SO4 production and loss largely reduces a low bias in small particles concentrations and leads to substantial increases in cloud condensation nuclei concentrations and cloud radiative cooling. Emitting secondary organic aerosol precursor gases from elevated sources increases the column burden of secondary organic aerosol, contributing substantially to global clearâ sky aerosol radiative cooling (â 0.15 out of â 0.5 W/m2). A new treatment of aerosol resuspension from evaporating precipitation, developed to remedy two shortcomings of the original treatment, produces a modest reduction in aerosols and cloud droplets; its impact depends strongly on the model physics and is much stronger in E3SM Version 0. New treatments of the mixing state and optical properties of snow impurities and snow grains introduce a positive presentâ day shortwave radiative forcing (0.26 W/m2), but changes in aerosol transport and wet removal processes also affect the concentration and radiative forcing of lightâ absorbing impurities in snow/ice.Plain Language SummaryAerosol and aerosolâ cloud interactions continue to be a major uncertainty in Earth system models, impeding their ability to reproduce the observed historical warming and to project changes in global climate and water cycle. The U.S. DOE Energy Exascale Earth System Model version 1 (E3SMv1), a stateâ ofâ theâ science Earth system model, was developed to use exascale computing to address the grand challenge of actionable predictions of variability and change in the Earth system critical to the energy sector. It has been publicly released with new treatments in many aspects, including substantial modifications to the physical treatments of aerosols in the atmosphere and lightâ absorbing impurities in snow/ice, aimed at reducing some known biases or correcting model deficiencies in representing aerosols, their life cycle, and their impacts in various components of the Earth system. Compared to its predecessors (without the new treatments) and observations, E3SMv1 shows improvements in characterizing global distributions of aerosols and their radiative effects. We conduct sensitivity experiments to understand the impact of individual changes and provide guidance for future development of E3SM and other Earth system models.Key PointsA description and assessment of new aerosol treatments in the Energy Exascale Earth System Model Version 1 (E3SMv1) is providedContributions to the total aerosolâ related radiative forcing by individual new treatments and different processes are quantifiedSome of the new treatments are found to depend on model physics and require further improvement for E3SM or other Earth system modelsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/1/jame21034-sup-0001-Figure_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/2/jame21034.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153241/3/jame21034_am.pd

    Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    Get PDF
    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds

    Aerosol indirect effects

    Get PDF
    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (tau a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. cloud droplet number concentration (N d) compares relatively well to the satellite data at least over the ocean. The relationship between (tau a) and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and tau a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–tau a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between tau a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - tau a relationship show a strong positive correlation between tau a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of tau a, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic tau a and satellite-retrieved Nd–tau a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2

    Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    Get PDF
    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty
    corecore