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Abstract

The interaction between trace shortwave radiative absorbers and the dynamical
circulation is shown to be linearly unstable for horizontally uniform basic states
with a vertical gradient in the basic state absorber mixing ratio. Two types of
instability are identified, described as the advective mode and the propagating
mode. The advective mode is usually unstable when the basic state absorber
mixing ratio decreases with height. Upward motion, high absorber concentration
and warm temperatures are typically in phase for this mode. Growth rates, which
can be competitive with those associated with baroclinic instability, are largest for
perturbations that are much shorter than the internal deformation radius. Thus,
the requirement that the basic state be horizontally uniform is often satisfied for the
advective mode. The propagating mode is normally unstable when the basic state
absorber mixing ratio increases with altitude. Propagating waves such as Rossby
and inertia-gravity waves are amplified by the feedback with absorber transport
and radiative heating. Growth rates for the propagating mode are usually bounded
by the frequency of oscillation of the ambient wave, an important limitation for
slowly propagating waves such as Rossby waves. Vertical transport of the absorber
by the amplifying mode is down the basic state absorber gradient in each case.
Complicating factors such as the effects of dissipative processes, vertical shear, and
scattering of sunlight are also considered.

The competition between vertical transport of absorber due to the modal in-
stability mechanism described above and that due to initial horizontal patchiness
of an absorber injection is also examined. For patches with horizontal scales much
larger than the deformation radius the modal form of absorber transport is shown
to be important, while for smaller patch scales the nonmodal form dominates.
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1. Introduction

An outstanding feature of the terrestrial and Martian atmospheres is their near-

transparency with respect to solar radiation. Although terrestrial water clouds

scatter a significant fraction of the incoming solar radiation, and ozone absorbs

much of the ultraviolet radiation, most absorption of visible radiation normally

occurs at the surface. Radiative heating rates throughout most of the troposphere

are dominated instead by infrared radiative cooling.

In the Martian atmosphere this situation is occasionally disrupted by global-

scale dust storms, which increase the solar opacity of the atmosphere, leading to

substantial tropospheric warming. Although such global storms fortunately do

not develop in the terrestrial atmosphere, recent numerical simulations (Malone

et al., 1986) involving the terrestrial atmospheric response to massive injections

of absorptive smoke produced by hypothetical post-nuclear war fires have exhib-

ited a similar phenomenon. Substantial lofting of the smoke is found to occur in

these simulations, suggesting that the feedback between shortwave radiative heat-

ing and the dynamical response to the heating can be important. In the case of

Martian dust storms, it has been suggested (Gierasch and Goody, 1973) that the

phenomenon is similar to a terrestrial hurricane, with dust playing the role of water

vapor lifted from the surface by the intense surface winds and transported to an in-

ner core where heating (latent in the case of hurricanes, radiative in the case of dust

storms) drives the circulation. There is, however, an important distinction between

terrestrial and dusty hurricanes: whereas the radiative heating of dusty hurricanes

is limited by the available insolation, the latent heating of terrestrial hurricanes is

limited only by the efficiency with which water vapor can be transported to the

hurricane core.



The interaction between radiative heating, the dynamical circulation, and an

absorber distribution has been investigated in several previous analytical studies.

Lindzen (1966a,b) and Leovy (1966) examined the interaction between ozone and

photochemical, shortwave radiative, and dynamical processes in the stratosphere

and mesosphere. Gierasch et al. (1973) proposed an instability mechanism involv-

ing clouds, longwave radiation, and the dynamical circulation. Houben (1981)

considered the interaction of Martian dust, solar radiation, and tidal circulations.

While these previous works represent important contributions to the specific

problems that they address, there exists as yet no general theory of unstable

radiative-dynamical interactions. The work of Lindzen (1966a,b) and Leovy (1966)

specifically includes photochemical processes that, though important for ozone, do

not apply to most aerosols. The theory developed by Geirasch et al. (1973) is

restricted to constituents that are important only for infrared radiation. Leovy et

al. (1973), Leovy and Zurek (1979), and Schneider (1983) discuss mechanisms for

the interaction of solar heating and transport of dust, but never explicitly represent

the dust transport. Houben (1981) treats dust transport, but only horizontally.

Haberle et al. (1982), Haberle et al. (1985), and Malone et al. (1986) treat the

vertical transport of the absorber, but resort to numerical means to do so. What

is clearly needed for Martian dust, post-nuclear war smoke, stratospheric ozone,

volcanic aerosols, and any other shortwave radiative absorber is a general theory

for the unstable interaction between the absorber and the dynamical circulation.

The development of such a theory shall be the topic of this dissertation.

As in other instability theories, only modal (i.e., exponentially amplifying)

instabilities shall be considered in the theory. Thus, lofting of the absorber due

simply to an initial horizontal inhomogeneity in its distribution will be excluded

from the initial analysis. While such nonmodal lofting may be important for both

Martian dust storms and smoke lofting, it is not as amenable to analysis as is



the modal instability. The obvious question of which form of lofting, modal or

nonmodal, is more important shall be addressed in numerical simulations.

For clarity the theory is developed under a variety of simplifying approxima-

tions. However, the general procedure is the same in each case. In particular,

the radiative heating is first expressed in terms of an absorber mixing ratio. The

equations governing conservation of mass, momentum, potential temperature and

absorber mixing ratio are then linearized about a horizontally uniform basic state.

The linear system of equations is then reduced to a single partial differential equa-

tion (PDE). By expressing solutions in terms of orthogonal basis functions with a

time dependence given by exp(-iot), the PDE reduces to an algebraic equation

for o. Solutions are unstable if Im(o) > 0.

An important parameter that emerges from the analysis is the rate of radiative-

dynamical feedback, defined as

RSoaT 8-
a - - (1.1)

cN 2H 8z

where So is the solar constant, J is the basic state absorber mass mixing ratio, a

is the specific absorption coefficient for the absorber, and

T(z) = exp -- aPoqdz' (1.2)

is the basic state transmissivity between the top of the atmosphere and level z.

The remaining symbols take their standard meteorological meaning, as defined

in Appendix A. One interpretation of a is that a-1 represents the time scale in

which perturbations in absorber mixing ratio, through vertical advection induced

by radiative heating, feed back upon themselves. In many instances the growth

rate of unstable disturbances is, in the absence of dissipation, proportional to a; in

most cases the growth rate does not exceed the feedback rate. Thus, the radiative-

dynamical feedback rate characterizes the growth rate. By determining limits to

the feedback rate, we can place an upper bounds on the growth rate.
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For example, if we assume that q(z) decreases exponentially with scale height

h, then for grey absorption

a - ah = r H + h (1.3)
a z Po Hh2

where

a(z) = apoqdz' (1.4)

is the absorption optical depth from the top of the atmosphere to level z. The

feedback rate then becomes

a= ao -- 1+ )'a exp -- (1.5)

where

ao RSo 4 x 10-'s -  (1.6)
cppoN2H3

for po = 1 kg m - 3 , So = 1360 Wm- 2 , N = 10-2s - 1 , and H = 10 km. At sufficiently

high altitudes, where ra < t, the transmissivity is near unity but the absorber

gradient is small, so the feedback rate is small. In optically thick atmospheres

(ra > 1), the absorber gradient is large near the surface but the transmissivity

is small, so the feedback rate is again small. However, at the altitude for which

ra = Cj the feedback rate for a given q(z) is a maximum, given by

am. = 0.37 ao - 1 + H . (1.7)

For / = 1 (i.e., summertime at local noon), maximum values are

am= (4days)- ' forh=H=10km (1.8)
(1.7 hrs) - 1 for h = H/10 = 1 km

Thus, if the absorption optical depth exceeds unity and the vertical gradient of

absorber mixing ratio is large enough, the radiative-dynamical feedback rate in

the summer hemisphere (i.e., when solar radiation is strong) can be quite strong.



Growth rates of unstable modes can be competitive with those associated with

baroclinic instability.

The physical mechanism for the instability depends on whether the basic state

absorber mixing ratio increases or decreases with altitude. If the basic state ab-

sorber mixing ratio decreases with altitude, then upward motion increases the local

absorber concentration. Assuming radiative heating increases with increasing local

absorber concentration, the upward motion increases the radiative heating, leading

to warming. If the perturbation is to amplify, warm temperatures must be posi-

tively correlated with the upward motion. To maximize the conversion of potential

energy to kinetic energy, warm temperatures should be perfectly correlated with

the upward motion. In this instance, this occurs if the frequency of oscillation

is much less than the growth rate. As illustrated in Figure 1.1, upward motion,

high absorber concentration, radiative heating, and warm temperatures all coin-

cide. This unstable mode we shall term the advective mode, since propagation for

this mode is weak; indeed, the mode does not propagate at all in the limit of zero

radiative-dynamical feedback.

If, on the other hand, the basic state absorber mixing ratio increases with al-

titude, then the advective mode is damped. However, as we shall demonstrate,

propagating Rossby and inertia-gravity waves can amplify. If the frequency of os-

cillation is much larger than the growth rate, then high absorber concentrations,

and hence strong radiative heating, lags downward motion by one quarter cycle,

and lead warm temperatures by one quarter cyle. Thus, warm temperatures are

again positively correlated with upward motion. Potential energy is converted to

kinetic energy, and the perturbation amplifies. This mechanism was first described

by Leovy (1966). Figure 1.1 also illustrates the phase relation for this type of

instability, which we shall term a propagating instability because it relies on prop-

agation for the proper phase relation of heating, temperature, and vertical motion.



Note that the growth rate for the propagating instability must be much less than

the frequency of oscillation, a significant constraint for slowly propagating waves

when the radiative-dynamical feedback rate is strong.

The remainder of this thesis shall describe various aspects of the radiative-

dynamical interaction in considerably greater detail. Chapter 2 discusses the rep-

resentation of the radiative heating in terms of the absorber mixing ratio. In

Chapter 3 the theory is developed using the quasi-geostrophic approximation; the

theory is generalized to the primitive equations on an f-plane and on a /3-plane in

Chapter 4. Chapter 5 addresses the effect of mechanical, thermal, and absorber

damping processes on the instability. Chapter 6 considers the importance of the

constraint that the feedback rate be uniform, and the effect of removing that con-

straint. The effect of vertical shear in the basic state zonal wind is addressed in

Chapter 7, and the effect of scattering is treated in Chapter 8.

The development of the theory of radiative-dynamical interaction in Chapters

2-8 is intentionally general, with few references to specific examples of physical

phenomena. This approach is taken to permit the exploration of a wide range of

values in parameter space, and hence broaden our understanding of the radiative-

dynamical interaction. Indeed, numerous surprising aspects of the interaction are

discovered which might have been overlooked in a more specialized investigation.

In Chapter 9 the theory is applied to a specific problem, namely that of smoke

lofting following a nuclear war. The particular issue addressed in Chapter 9 is the

question of whether nonmodal forms of lofting associated with the initial patchiness

of the smoke concentration might dominate the modal form of lofting predicted by

the theory. In Chapter 10 nonhydrostatic interactions are considered by applying

solar heating to the Morton-Taylor-Turner theory of thermal convection. Applica-

tion of the hydrostatic instability theory to planetary atmospheres is addressed in

Chapter 11. Finally, a summary of the dissertation is presented in Chapter 12.



Figure 1.1. Schematic structure of advective mode (top) and propagating mode
(bottom) of radiative-dynamical instability. In the propagating mode, phase prop-
agation is from left to right.
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2. Parameterization of Radiative Heating

As stated in Chapter 1, the first step in developing a theory of radiative-

dynamical instability is to express the shortwave radiative heating in terms of the

absorber distribution. Here we do so under the assumption that scattering can be

neglected and that absorption is grey (i.e., independent of wavelength in the solar

spectrum). Although the first assumption is not strictly true for most aerosols,

calculations discussed in Chapter 8 demonstrate little sensitivity to the fraction of

sunlight scattered. The grey approximation is reasonable for many aerosols but is

inaccurate for most gaseous absorbers. However, we suggest a manner in which

nongrey effects can be treated.

In the absence of scattering, the shortwave radiative heating at a level z can

be expressed, under the grey approximation, as

9F a 1 f
Q(z) = S exp - apoqdz' = Soapoq(z)T(z) (2.1)

where So is the solar constant, u is the cosine of the solar zenith angle, a is the

specific absorption coefficient, q is the absorber mass mixing ratio, and

T(z) = exp - aPoqdz' (2.2)

is the atmospheric transmissivity. For small perturbations about a stratified q(z),

Q' Soapo ( t' +T (2.3)

unless t < 0, in which case Q' = 0.

The first term in (2.3) represents the dependence of the local perturbation

heating rate on the local perturbation absorber concentration. The second term

represents the dependence of the heating on the absorption above the reference

level. If, for example, an absorber perturbation has a sufficiently deep vertical dis-

tribution, the reduction in the transmissivity due to high absorber concentrations

12



aloft can reduce or even dominate the enhanced heating associated with high lo-

cal absorber concentrations. The second term, then, is potentially important and

hence should be treated.

To do so, and to determine the conditions under which perturbations in trans-

missivity are important, we shall assume that the perturbation absorber mixing

ratio is, after scaling for density variations with height, oscillatory in the vertical,

q = qo exp + imz . (2.4)

Such a distribution is justified if the coefficients of the problem are constant, per-

mitting plane-wave solutions. If the coefficients are not constant, then numerical

methods are required both to express the heating in terms of the absorber distri-

bution, and to solve the eigenvalue problem. For the present we shall assume that

the coefficients of the problem are uniform, so that (2.4) is justified. The treatment

of cases in which the coefficients vary with altitude is deferred until Chapter 6.

Given (2.4), the perturbation transmissivity

T' = exp - apoq'dz' - 1 T L apoq'dz' (2.5)

can be expressed, assuming a constant density scale height H,

- apoq' 2H
S 1 - 2 imH

Then (2.3) becomes

Q = Soapo T( 1 - 27 (2.7)

where

H Hapo- (2.8)

can be interpreted as the absorption optical depth experienced by a beam of sun-

light directed at the solar zenith angle from the top of the atmosphere to the

reference level, assuming uniform -.



If rH or

m -apo (2.9)
jim

is small, then perturbations in the transmissivity can be neglected, so that (2.7)

reduces to

' = SoapoTq' . (2.10)

Here Tm can be interpreted as the absorption optical depth experienced by the

direct solar beam through one vertical wavelength, assuming uniform absorber

density.

If, on the other hand, rH and Tm are both large, then perturbations in transmis-

sivity are important. In this case, the perturbation heating for deep perturbations

(2mH < 1) becomes

Q' - -2SoapoTTHq' . (2.11)

The perturbation heating is now negatively correlated with the perturbation ab-

sorber concentration. While this case is not necessarily an unlikely one, we shall

find that radiative-dynamical instabilities are possible independent of the sign of

the correlation between radiative heating and absorber concentration. Moreover,

the basic state transmissivity for such large optical depths is small, so less sunlight

is available to drive the radiative-dynamical interaction.

If rH and Tm are large but perturbations are shallow (2 mH > 1), the pertur-

bation heating becomes

Q' -iSoapoT-rmq' . (2.12)

In this case the perturbation heating and absorber concentration are 900 out of

phase, with the heating leading the absorber concentration for upward-propagating

waves, and lagging the absorber concentration for downward-propagating waves.

As we shall see in Chapter 4, this phase shift can reduce or in some cases increase

the growth rate of the radiative-dynamical instability.



The grey approximation, based on the assumption that the specific absorption

coefficient is independent of wavelength, and hence of optical depth, is a reason-

able approximation for aerosols, which are typically as large as or larger than

wavelengths of most solar radiation. However, for gaseous absorption the grey ap-

proximation is generally not valid. A more general treatment is therefore required.

For nongrey absorption, the shortwave radiative heating is, in the absence of

scattering, given by

Q(z) = poq a(A)S(A)T(z, A, ~)dA = SoaopoToq (2.13)

where

So = S(A)dA (2.14)

To(z,.) = S(A)T(z,A)d (2.15)

ao(z,pj) = a(A)S(A)T(z, A,)dA . (2.16)
SOT() o)

An accurate treatment of scattering of sunlight is too complicated for analytical

techniques. However, a numerical treatment is possible within the context of linear

theory. If q represents a vector of absorber mixing ratio at a discrete set of levels,

the perturbation heating can be expressed

Q' = Jq' (2.17)

where
aQ,

Ji = ( = ) (2.18)

is the Jacobian of the heating with respect to the absorber mixing ratio, evaluated

at the basic state absorber concentration. In practice, J is evaluated numerically

from the difference between the heating rate for the basic state absorber distribu-

tion, and the heating rate for the basic state absorber distribution plus a small



perturbation in layer j. Note that perturbations in the transmissivity can be ne-

glected if the off-diagonal elements of J are set to zero. The treatment of the effects

of scattering on the radiative-dynamical interaction is discussed in Chapter 8.

Finally, infrared radiative heating can be treated in a similar manner as for

scattering. In this case a Jacobian of the heating with respect to temperature is

required. In addition, if the shortwave absorber also emits longwave radiation,

a Jacobian of longwave heating with respect to the absorber mixing ratio would

also be required. The numerical implementation of this technique presents serious

difficulties, however, as discussed in Chapter 8.



3. Quasi-Geostrophic Stability Analysis

The essential aspects of the radiative-dynamical instability can be demon-

strated most easily within the context of the quasi-geostrophic theory. In this

chapter we present an illustrative solution of the instability, or eigenvalue, problem

under a number of somewhat restrictive assumptions. These include, in addition to

the quasi-geostrophic approximation, the assumption of no vertical shear in the ba-

sic state flow, no dissipation (or, at least, the same uniform damping rate for all de-

pendent variables), and uniform Briint-Vaisala frequency and radiative-dynamical

feedback rate. These assumptions will be relaxed in subsequent chapters.

Consider the linearized quasi-geostrophic equations governing the conservation

of vorticity C, and potential temperature 0, which for log-pressure coordinates can

be written
18

DC + /v = fo (Po w) (3.1)
Po az

DO = w + Q/(Ecppo) (3.2)8z
where

a a
D=b + +e (3.3)at ;Z

is the linearized advection and damping operator, and E = (p/po)' is the Exner

function. The remaining symbols are defined in Appendix A.

In quasi-geostrophic theory, the horizontal velocity can be expressed in terms

of a streamfunction k,

V = (3.4)
az

C = V (3.5)

and the potential temperature follows from the hydrostatic relation

0 = foH (3.6)
RE cz

17



Substituting (3.4)-(3.6) into (3.1)-(3.2), the conservation equations for vortic-

ity and potential temperature become

DV12 + = 1 (Pow) (3.7)
(x Po (pz

fo D = -N 2  + RQ/(cpoH) . (3.8)
8z

Solving (3.7) and (3.8) for the vertical velocity w yields the Rossby wave equation

f (poDw) + DV2 +) a) [N2 W - RQ/(cppoH)] = o (3.9)

where we have assumed u and hence D does not vary with altitude (we shall relax

this constraint in Chapter 7).

The feedback between the radiative heating Q and the dynamical circulation

w is treated by expressing the heating in terms of a shortwave radiative absorber

mixing ratio q and then relating the absorber concentration to the circulation.

Combining (2.7) and (3.9), the Rossby wave equation then becomes

f2 o (poDw)+ DV2 + p N2w - 1R- (1 7H q' = 0 .
8z Po8 z 8x] cpH 1 - 2 imH

(3.10)

The linearized equation governing conservation of absorber can be similarly ex-

pressed

Dq' 5 . (3.11)

Eliminating q' between (3.10) and (3.11) yields the PDE

f2 a 1 a (poD2aw) + (DV 2 +# -)(D - ae)w = 0 (3.12)
N 2 8z po8z

where

( 1 - 27H (3.13a)
1 - 2 imH

represents the effective rate of radiative-dynamical interaction, with

a RSoaT (3.13b)
cN 2 H 8z

18



defined to be the rate of radiative-dynamical interaction in the absence of pertur-

bations in transmissivity. As we shall see, the magnitude of a, characterizes the

growth rate of unstable solutions of (3.12).

If -rH = 0 then ae is pure real, with positive ae corresponding to absorber

mixing ratio decreasing with height, and negative a corresponding to absorber

mixing ratio increasing with height. This particular sign convention was chosen

with absorber lofting, which occurs for positive ae, in mind. In fact, we shall soon

find that unstable modes exist for both positive and negative ae.

If rH is large and perturbations are deep (2mH < 1), then ae is again pure real,

but with positive (negative) a corresponding to absorber mixing ratio increasing

(decreasing) with height.

If Hr is large and perturbations are sufficiently shallow that 2mH > 1 yet

sufficiently deep that 7,,, = -rH/(mH) is also large, then ae is complex, thus altering

both the propagation characteristics and, as we shall see in Chapter 4, the growth

rate of solutions.

We shall now assume that the coefficients of (3.12) are constant (density is as-

sumed to vary with a constant scale height H). This permits plane-wave solutions,

which greatly simplifies the analysis, and justifies the use of (2.7) to represent

the heating. While such an assumption is common and often justifiable for the

Briint-Vaisala frequency, it is not necessarily reasonable for the effective radiative-

dynamical feedback rate ae. The conditions under which such an assumption is

reasonable, and the effects of treating variations in the feedback rate, are discussed

in Chapter 6.

Assuming N 2 and a, are independent of height, normal mode solutions of the

form

w(oy, z, t) = wo exp(z/2H) exp[i(kx + ly + mz - at)] (3.14)



yield the algebraic relation

n2 D + (k2 D - ikp)(D - ae) = 0 (3.15)

where

n2 = m + (3.16)
4H2

k2= k2+2 . (3.17)

Solutions satisfying the proper boundary conditions are unstable provided Im(o) >

0. Because

D = -i + iik + e (3.18)

for such waves, this is equivalent to the condition that the real part of D exceeds

We shall now consider solutions to (3.15). Although the solutions can be ex-

pressed analytically, the expressions are complicated and not particularly meaning-

ful. We shall instead consider several limiting cases, each of which assumes rH = 0

and hence ae = a (cases for which *rH 5 0 are considered in Chapter 4). The feed-

back parameter ae is therefore pure real, with positive (negative) ae corresponding

to absorber mixing ratio decreasing (increasing) with height.

In the first case the magnitude of the feedback rate is much less than the

frequency of internal Rosssby waves, i.e.,

lal < kp/kI (3.19)

where

S_ 2 N . (3.20)

Approximate solutions of (3.15) are

ik ff2 n 2  ia 2k 2 f 2 n 2

D ~ a a - .(3.21)
kC N 2k2 ek N 2k3 3 3



The first solution corresponds to an internal Rossby wave which propagates

westward with respect to the mean flow but, in the absence of radiative-dynamical

feedback (a = 0), does not amplify. The second solution corresponds to the ad-

vective mode which, in the absence of feedback, neither propagates nor grows. If

SoaT 5 0 but 4z = 0, the two solutions correspond to (a) the absorber being sim-

ply advected by the mean flow, forcing vertical motion through radiative heating,

and driving a circulation through vortex stretching, and (b) no absorber pertur-

bation, with Rossby waves propagating freely; if, on the other hand, z $ 0 but

SoaT = 0, the solutions correspond to (a) Rossby waves propagating freely, ad-

vecting the absorber, and (b) the absorber simply advected by the mean flow, with

no perturbation circulation.

In the presence of positive radiative-dynamical feedback (a > 0, i.e., absorber

mixing ratio decreasing with altitude), the Rossby mode is damped but the advec-

tive mode will, in the absence of dissipation, amplify. In the absence of dissipative

effects, the growth rate of the advective mode is approximately equal to the feed-

back rate (note that the growth rate is not identically equal to the feedback rate,

for (3.15) could only be satisfied in such a case if n = 0, which requires that w = 0

to satisfy the boundary conditions, but also prevents the physical mechanism, ver-

tical absorber transport, from operating). Because a < kf/k for this case and

f 2 n2 < N 2 k2 in general, the growth rate of the advective mode dominates the

frequency of oscillation (which, incidently, indicates eastward propagation). Thus,

the perturbation heating and vertical velocity are in phase, with upward motion

coinciding with high absorber concentrations and temperatures.

In the presence of negative radiative-dynamical feedback (a < 0, i.e., absorber

mixing ratio increasing with height), the advective mode is damped but the Rossby

mode is unstable. For perturbations that are short and deep (i.e., f 2 n2 < N 2 k2)



the growth rate of the Rossby mode increases with the horizontal scale and de-

creases with the vertical scale. Thus, for perturbations that are long and shallow,

the growth rate is approximately equal to the feedback rate. Because f2 n2 < N2 k 2

for all perturbations, the growth rate of the Rossby mode is always less than the

feedback rate, which for this case is also much less than the Rossby wave frequency.

Thus, the unstable Rossby mode is qualitatively different from the unstable advec-

tive mode. Although the perturbation vertical velocity and temperature are in

phase for both the unstable advective mode and the unstable Rossby mode, the

perturbation heating and vertical velocity are in phase for the advective mode but

they are nearly 900 out of phase for the Rossby mode. In terms of energetics, both

unstable modes amplify by generating available potential energy (APE) through

radiative heating (i.e., Q'O' > 0) and then converting the APE to kinetic energy

(i.e., w'O' > 0), but the energy generation process is less efficient for the Rossby

mode because the phase difference between the heating and temperature is nearly

900.

For both positive and negative radiative-dynamical feedback the unstable mode

transports the absorber down the gradient of mean absorber mixing ratio, i.e., from

the absorber balance the vertical transport

WI q = Re I D +D I (3.22)D) z D + D? az

is upward (downward) if the mean absorber mixing ratio decreases (increases) with

altitude. Thus, the unstable modes reduce the magnitude of the absorber gradient,

and hence reduce the instability of the radiative-dynamical system. The unstable

modes will continue to disperse the absorber distribution until the feedback mech-

anism is too weak to overcome the dissipative processes. Given (3.22) and simple

(or the more accurate general analytical) solutions such as (3.20) for the growth



rate and frequency, it may be possible to develop parameterizations for the ab-

sorber transport in terms of the basic state variables. However, a plausible closure

assumption for the perturbation amplitude |w12, and a scale selection criterion, are

required.

In the second limiting case the magnitude of the feedback rate is much greater

than the internal Rossby wave frequency but is much less than another limit:

0 k k k2
k a . (3.23)

3 22

This case only holds for waves that are long and shallow, i.e., f 2 n 2  N2k2.

Approximate solutions are

D (i - 1)a 2, (1 - i) a (3.24)

The first solution corresponds to the Rossby mode, while the second solution rep-

resents the advective mode.

In the presence of positive radiative-dynamical feedback (a > 0), the advective

mode is again unstable, and the Rossby mode is damped by the feedback. Because

the feedback rate is much larger than the internal Rossby wave frequency for this

case, the growth rate of the advective mode is much smaller than the feedback

rate. Although the growth rate still increases with the feedback rate, it increases

more slowly than in the previous limit. The growth rate now depends on the scale

of the perturbation, increasing with increasing vertical and meridional scale, and

increasing with decreasing zonal scale if the zonal scale is long. In contrast to the

previous limit, the growth rate of the advective mode is equal to, rather than much

greater than, the oscillation frequency. Propagation is again eastward with respect

to the mean flow.

The Rossby mode is strongly affected by the radiative-dynamical feedback

for this case. The oscillation frequency is increased substantially. For positive



radiative-dynamical feedback, the damping rate equals the oscillation frequency.

For negative feedback (absorber increasing with altitude), the growth rate equals

the oscillation frequency and, for the same feedback magnitude, the growth rate

of the unstable advective mode. In contrast to the previous limit, the growth rate

increases rather than decreases with the vertical scale and, for waves with long

zonal scales, decreases rather than increases with increasing zonal scale. Thus,

the growth rate is largest for certain vertical and zonal scales. This aspect of the

unstable Rossby mode will be more fully explored in Chapter 4.

In the third limiting case we assume that

S <  al < f . (3.25)
2 2

The upper bound follows from subsequent consideration of the primitive equations

in Chapter 4. Note that implicit in (3.25) is the assumption that the Coriolis

frequency exceeds the Rossby wave frequency. While this is true for synoptic scale

waves in mid-latitudes, it is not true for planetary waves in mid-latitudes or for

all waves near the equator. Thus, the present case is restricted to sub-planetary

scales in mid-latitudes. Approximate solutions of (3.15) for this case are

i3k p 2k2 f 2n2  ak2 ifk f 2n 2

Da 1 k2 k 2  (3.26)
2g a N2kg ' k2 Q N2k2

In the presence of positive radiative-dynamical feedback (a > 0), the advective

mode is again unstable, but with the growth rate somewhat less than the feedback

rate. The growth rate increases with decreasing horizontal scale and increasing

vertical scale. In particular, the growth rate is largest for waves with horizontal

scales much less than the internal deformation radius, i.e., for such that k2 - k2 >

f 2n2 /N 2 . For all perturbation scales that satisfy the condition (3.25), the growth

rate of the advective mode again dominates the frequency of oscillation and, for

the same feedback magnitude, the growth rate of the unstable Rossby mode.



In the presence of negative radiative-dynamical feedback (a < 0), the Rossby

mode is again unstable in the absence of dissipation. As in the case (3.19) with weak

feedback, but in contrast to the case (3.23) with moderate feedback and shallow

waves, the Rossby mode growth rate for the present case decreases with increasing

vertical scale, provided the condition (3.25) is satisfied. As in the case (3.23)

with moderate feedback, but in contrast to the case (3.19) with weak feedback, the

growth rate of the Rossby mode for the present case (3.25) increases with increasing

meridional scale but with decreasing zonal scale (unless the meridional scale is much

longer than the zonal scale, in which case the growth rate increases with increasing

zonal and meridional scale). This scale dependence is quite different from that

of the unstable advective mode, with the growth rate of the Rossby mode either

increasing or decreasing with zonal and vertical scales, depending on which of the

limits (3.19), (3.23), and (3.25) are satisfied. In the transition between these limits

we can expect to find maxima in the Rossby mode growth rate. This feature of the

unstable Rossby mode is further addressed in Chapter 4. For all perturbation scales

that satisfy (3.25), the growth rate of the Rossby mode is much less than both the

feedback rate and the frequency (which, incidently, is increased as a result of the

strong radiative-dynamical feedback), and actually decreases as the feedback rate

increases in magnitude. This is in contrast to the cases with weak and moderate

feedback, in which the growth rate increases with the magnitude of the feedback

rate. Thus, for a given perturbation scale (k, 1, m), the growth rate of the Rossby

mode is largest for an intermediate feedback rate.

Although we cannot demonstrate it analytically, the feedback rate at which the

Rossby mode growth rate is largest is found to be near the transition frequency

between cases (3.23) and (3.25), i.e.,

a I 3 (3.27)Q Qa2~a



Because this feedback rate is not within the limits of the three cases considered

by (3.19), (3.22) and (3.25), we cannot offer a simple expression for the maxi-

mum Rossby wave growth rate as a function of perturbation scale. However, the

analytical solution, though complicated, is readily evaluated numerically. Before

examining numerical solutions in the intermediate feedback range, we shall first

extend the limits of the present theory to feedback rates exceeding the Coriolis

frequency by considering the theory within the context of the primitive equations.

However, before doing that, we shall first discuss the appropriate boundary condi-

tions of the instability problem.

In addition to satisfying the dispersion relation (3.15), solutions must also

satisfy the boundary conditions, which are

w(O) = 0

powu bounded as z -- oo (3.28)

The lower boundary condition determines the vertical phase of solutions. For an

atmosphere with a finite top, the upper boundary condition leads to the restriction

that only a discrete set of vertical wavenumbers is permitted. For an infinite atmo-

sphere, this quantization does not apply. However, downward energy propagation

is permitted due to energy released by the instability at higher levels.

In summary, we have found through a number of simplifying approximations

that unstable radiative-dynamical interactions are possible when absorber mixing

ratio increases or decreases with height. The physical mechanisms for the instability

in the two cases are quite different, but also exhibit some similarities. We have

derived some approximate expressions for the complex eigenfrequencies in several

special cases. These expressions are summarized in Table 3.1. The assumptions

required for the analysis in this illustrative chapter are relaxed in the following

chapters. Many of the basic conclusions of this chapter are, however, unaltered by

the additional considerations.



Table 3.1. Approximate solutions for the complex eigenfrequency 0-. Perturbations
in transmissivity are neglected (i.e., -rJ = 0).

Mode Feedback Rate

ik Ok kIc
jal < q lal < 3 lal

a'k2 f 2n 2  ( (k k1/2 Pk f 2n2  iak
Advective 3 n + ia (1 + i)a n +  k,

k Nik 2ak) ka N2k 2 k
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4. Generalization to the Primitive Equations

The theory developed so far has been restricted by the quasi-geostrophic ap-

proximation, which filters out the inertia-gravity modes. Moreover, the quasi-

geostrophic solution of the advective mode is inaccurate when the rate of radiative-

dynamical feedback exceeds the Coriolis frequency. To apply the theory to the

inertia-gravity modes, and to cases in which the feedback rate exceeds the Coriolis

frequency, the theory must be extended to the primitive equations. In addition,

nonzero values of the parameter 7T shall be considered in this chapter.

Linearizing about a horizontally uniform basic state, the primitive equations

in log-pressure coordinates can be written

Du - fv = (4.1)

O(

Dv + fu = (4.2)
ay

9u v 1 8
+ + (pow) = 0 (4.3)

RQD = -N'w + (4.4)
Oz cppoH

The solution on a P-plane is much more complicated than on an f-plane. Be-

cause inertia-gravity waves are insensitive to the f term, we shall first consider the

solution for a midlatitude f-plane.

4.1. Midlatitude f-Plane

On an f-plane, the Coriolis parameter is assumed to be constant. Assuming

the advective operator D is uniform, the primitive equations can then be reduced

to a single partial differential equation for the vertical velocity,

2 1 8 RQ(D2 + fo )D (pow) + DV(Nw - ) 0 . (4.5)
8z Po 8z cppoH



This wave equation differs from the Rossby wave equation (3.9) because of the

presence of the D 2 term and the absence of a P-term.

Combining (4.5) with the heating expression (2.7) and the absorber budget

equation (3.11) yields

(D' + f 1 )D (Pow) + N 2 V 2 (D - ae)w = 0 (4.6)
9z po z

where the effective radiative-dynamical feedback rate ae is defined by (3.13). As-

suming N, ae and the density scale height H are constant, normal mode solutions

of the form (3.14) yield the algebraic relation

(D 2 + f2)Dn2 + N 2k2(D - a,) = 0 . (4.7)

In the absence of radiative-dynamical feedback (ae = 0), solutions to (4.7) are

D = 0,iNk3  (4.8)
n

which correspond to the advective and eastward- and westward-propagating inertia-

gravity modes.

In the presence of feedback, solutions to (4.7) are more complicated. We shall

therefore consider approximate solutions in some limiting cases, corresponding to

whether the magnitude of the radiative-dynamical feedback rate is much greater

than or much less than a scale-dependent parameter

2Nk3- . (4.9)
3,.3 nk2

In all cases we shall assume rH = 0, so that ae = a is pure real (cases with

7rH $ 0 are considered in Section 4.2). For waves that are either long and shallow

(f2n2 > N 2 k2) or short and deep (f 2n 2 < N 2k2), it can be shown that 7 is much

larger than the Coriolis frequency. For waves with an intermediate aspect ratio

(f 2n 2 = N 2k2) y is of the same order as the Coriolis frequency. Thus, - is larger

than or of the same order as f for all wave scales.
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In the first case, we assume weak radiative-dynamical feedback, i.e., lal < 7. If

atI < f, this condition is assured for all waves scales. Then approximate solutions

to (4.7) are
akc iNk 3  ak'

D7 2 . (4.10)
k2 ' n 2k0

In the presence of positive radiative-dynamical feedback (a > 0, i.e., absorber

mixing ratio decreasing with altitude), the two inertia-gravity modes are damped

by the feedback, while the advective mode amplifies in the absence of dissipation.

In fact, the expression for the growth rate of the advective mode agrees exactly

with the approximate quasi-geostrophic solution when the feedback rate is much

larger than the internal Rossby wave frequency. Thus, we conclude that the quasi-

geostrophic solution is accurate for all scales if the feedback rate is less than the

Coriolis frequency. Even for feedback rates greater than f, the quasi-geostrophic

solution is accurate for waves that are sufficiently short and deep or sufficiently

long and shallow that lal < 7. Note that the oscillation frequency of the advective

mode vanishes for the present case because we have assumed an f-plane rather

than a P-plane.

In the presence of negative radiative-dynamical feedback (a < 0, i.e., ab-

sorber mixing ratio increasing with altitude), the advective mode is damped, while

both inertia-gravity modes are unstable in the absence of dissipation. The scale-

dependence of the growth rate of the unstable inertia-gravity modes is identical to

that of the unstable advective mode, except that the growth rate of the inertia-

gravity modes is one half that of the advective mode for the same feedback mag-

nitude. As with the Rossby waves on the P-plane, the growth rate of the unstable

inertia-gravity waves is much less than the frequency of oscillation. Thus, the

inertia-gravity waves will have a phase structure similar to that of the unstable

Rossby waves. Leovy (1966) first discussed the physical mechanism of this mode of

instability, in the context of the photo-chemistry of oxygen in the lower mesosphere.



For strong radiative-dynamical feedback (Ica > y), approximate solutions to

(4.7) are

D 13iv(N2 )' 3  (4.11)a 2n2 2 an (4.11)

In the presence of positive feedback (a > 0), the advective mode is again non-

propagating and, in the absence of dissipation, unstable. However, the growth rate

increases much more slowly with increasing feedback. In particular, the growth

rate is proportional to the feedback rate to the one-third power. Moreover, the

scale dependence of the growth rate is different from the cases with weaker feed-

back. The growth rate increases with the vertical scale of the wave, even for waves

that are short and deep, and decreases as the horizontal scale increases, even for

waves that are long and shallow. For all waves scales for which lal > -y, however,

the growth rate of the advective mode is much less than the feedback rate, and is

less than the quasi-geostrophic solution.

In the presence of negative radiative-dynamical feedback (a < 0), the inertia-

gravity modes are again unstable in the absence of dissipation. The growth rate of

the inertia-gravity modes is again equal to one-half that of the unstable advective

mode for the same feedback magnitude. The frequency of oscillation of the inertia-

gravity modes is greatly increased by the feedback, but is only slightly larger than

the growth rate.

Table 4.1 summarizes the approximate expressions for the complex eigenfre-

quency derived here, along with those derived in Chapter 3.

4.2. fl-plane

We have seen that for the advective mode the latitudinal variation of the Cori-

olis parameter must be accounted for if aIcl < k/k3. We have also seen that the

primitive equations may be required if aIcl f. If f > pk/k2 then jal cannot be



both less than 3k/k2 and greater than f, so that the previous analyses are suffi-

cient to cover all possible feedback rates. However, if f < ja < k/k2 the foregoing

analyses are inapplicable. In this case it is necessary to treat the primitive equa-

tions on a -plane, if not a sphere. In midlatitudes, the condition f < 3k/k2 is

met for the planetary scales (for which spherical geometry is required regardless of

the feedback rate); in the subtropics and tropics, f may be less than 3k/kg for a

variety of spatial scales.

In this section we shall consider the radiative-dynamical feedback for the prim-

itive equations on /-planes. Two cases will be considered, namely a midlatitude

#-plane, for which f < 3k/k2 for the planetary scales, and an equatorial #-plane,

for which f < /k/k2 for all spatial scales.

In either case, accounting for the latitudinal variation of the Coriolis parameter

greatly complicates the analysis. In the absence of radiative-dynamical feedback,

the classical /-plane theory of waves (Lindzen, 1967) reduces the linearized primi-

tive equations to a single equation for the meridional rather than vertical velocity;

solutions for which v = 0 are treated separately. We shall take the same approach

here. The resulting wave equation with radiative-dynamical feedback can be writ-

ten

(D2 2 1 + N 2  DV2 + p (D -D,)v = 0 . (4.12)

For the middle latitude case it is sufficient to treat f and / as constants in (4.12);

this approximation is not reasonable for the equatorial #-plane. Because this dis-

tinction alters the analysis considerably, we shall consider the midlatitude and

equatorial cases separately.

4.2.1. Mid-latitude /-plane

If f and / are treated as constants in (4.12), then the usual Fourier basis func-

tions given by (3.14) are sufficient to reduce the problem to an algebraic equation,

32



namely,

D4 + k2 2 - (aek2 + ik) D + iaek = 0 . (4.13)

This quartic equation for D admits four solutions, corresponding to the advec-

tive mode, the Rossby mode, and two inertia-gravity modes. We have discussed

these modes in the previous analyses of the quasi-geostrophic system on a mid-

latitude 3-plane, and the primitive equations on an f-plane. For synoptic and

meso-scales in midlatitudes, those treatments covered all possible cases except for

the inertia-gravity modes on a #-plane and the Rossby mode when the feedback

rate exceeds the Coriolis frequency. Here we shall consider those cases and so-

lutions when the feedback rate does not satisfy any of the special limiting cases.

Although one can express exact solutions to (4.13) analytically, the expressions

are not meaningful, and hence will not be presented. Rather, we shall present the

analytical solutions graphically, thereby illustrating the parametric dependence of

the growth rate for parameter ranges that do not admit simple solutions. First we

shall consider cases with TH = 0(ae = a), and then cases rH $ 0.

The advective mode is unstable for positive radiative-dynamical feedback, i.e.,

absorber decreasing with altitude. Figure 4.1 shows the advective mode growth

rate, normalized by the feedback rate, as a function of the feedback rate, for rH = 0,

zonal and meridional wavelengths of 1000 km, and a vertical wavelength of 10 km.

Three different parameter regimes are evident in this figure. For feedback rates

much smaller than the internal Rossby wave frequency (8 x 10- 7 s- 1 for the wave

scale assumed in Figure 4.1), the growth rate is, consistent with (3.21), nearly

equal to the feedback rate. For feedback rates much larger than the Rossby wave

frequency but much smaller than the Coriolis frequency (10- 4 s-l), the growth rate

is again approximately proportional to the feedback rate, but with the constant of

proportionality less than one. Consistent with (3.26), the constant is k2/k2, or 0.67

for the wave scale assumed in Figure 4.1. For feedback rates much greater than the



Coriolis frequency, the growth rate increases more slowly than the feedback rate.

In particular, according to (4.11), the growth rate increases with the feedback rate

to the one-third power in this regime. Thus, the growth rate of the advective mode

is always less than the feedback rate, and always increases as the feedback rate

increases.

Figure 4.2 shows the advective mode growth rate as a function of vertical

wavelength, for -rH = 0, a feedback rate of 10- 5 s- 1 (chosen to be competitive with

baroclinic instability), and zonal and meridional wavelengths of 1000 km. For such

a horizontal scale, the external Rossby wave frequency is 1.3 x 10-6 s- 1, much less

than the assumed feedback rate, so that the deepest waves will satisfy the condition

(3.25), while shallow waves will satisfy (3.23). Consistent with (3.24) and (3.26),

the growth rate increases as the vertical scale increases, eventually reaching the

feedback rate. Note that for deep waves the condition (3.23) cannot be satisfied,

so that the growth rate is given by either (3.21), (3.26) or (4.10); in either case,

the growth rate approaches the feedback rate as the waves become deeper.

Figure 4.3 shows the growth rate of the advective mode as a function of zonal

wavelength, for 'rH = 0, a feedback rate of 10- 5 s- ', a meridional wavelength of

10,000 km, and a vertical wavelength of 10 km. Consistent with (3.24) and (3.26),

the growth rate decreases with increasing zonal scale. For very short zonal scales,

condition (3.25) applies, so that by (3.26) the growth rate is approximately equal to

the feedback rate when the zonal scale is much less than the internal deformation

radius, i.e., when k2 > fon 2 /N 2 . For the 10 km vertical wavelength, the internal

deformation radius is 1000 km.

In summary, the growth rate of the advective mode is always less than the

radiative-dynamical feedback rate. It increases with increasing feedback rate, in-

creasing vertical scale, and decreasing meridional and zonal scale. Although Figures

4.2 and 4.3 consider only feedback rates less than the Coriolis frequency, (4.11) tells



us that the same qualitative scale dependence of the advective mode growth rate

also holds for feedback rates larger than the Coriolis frequency.

According to (4.10) and (4.11), the growth rate of the inertia-gravity modes for

negative radiative-dynamical feedback (absorber increasing with altitude) has the

same scale dependence as that of the unstable advective mode, but with half the

amplitude for the same feedback rate magnitude. However, the analysis leading to

(4.10) and (4.11) is based on an f-plane. On a 3-plane, we have seen that the 3

term enhances the growth rate of the advective mode when the feedback rate is

less than the Rossby wave frequency. It remains to be seen whether the inertia-

gravity modes are also affected by the 3 term. Figure 4.4 shows the gravity wave

growth rate, normalized by the feedback rate, as a function of the feedback rate, for

rH = 0, zonal and meridional wavelengths of 1000 km, and a vertical wavelength

of 10 km. For feedback rates much larger than the Coriolis frequency (10- 4 s-1 ),

(4.11) applies, with the growth rate increasing with the cube root of the feedback

rate. For feedback rates much less than the Coriolis frequency, (4.10) applies, with

the growth rate proportional to the feedback rate, even for feedback rates much less

than the Rossby wave frequency. Thus, the analysis of the inertia-gravity mode

on the f-plane is a good approximation for all feedback rates. Because the growth

rates of the gravity and advective modes have the same scale dependence, we need

not discuss the scale dependence of the gravity modes, but refer the reader to the

previous discussion of the advective mode.

Of the three modes of instability, the Rossby mode is the most complex and

hence, interesting. The analysis of Chapter 3 considered a wide range in the feed-

back rate, from values much smaller than the Rossby wave frequency to values

much larger, but was restricted by the quasi-geostrophic approximation. However,

consistent with the fact that Rossby waves are low-frequency modes, the more



general primitive equation solution of (4.13) for the Rossby mode is virtually iden-

tical to the quasi-geostrophic solution. Thus, the approximate solutions (3.24) and

(3.26) for the Rossby mode are valid for feedback rates larger than the Coriolis

frequency as well as smaller.

Figure 4.5 shows the growth rate of the Rossby mode as a function of the feed-

back rate, for rH = 0 and a variety of zonal, meridional and vertical wavelengths.

The most notable feature of Figure 4.5 is that for each wave scale the Rossby mode

growth rate peaks at a specific feedback rate. This result is consistent with (3.21),

(3.24) and (3.26), which indicate that for small feedback rates the Rossby mode

growth rate increases as the magnitude of the feedback rate increases, but for large

feedback rates the growth rate decreases as the feedback rate increases. The precise

transition cannot be determined analytically, but appears to be given by (3.27) i.e.,

near the lower bound of the feedback rate given in (3.25). For each of the wave

scales of Figure 4.5, this value of the feedback rate is indicated on the figure. The

agreement between this value and the actual feedback rate of maximum growth is

evidently quite good.

The scale dependence of the Rossby mode growth rate also exhibits some in-

teresting features. Figure 4.6 shows the growth rate as a function of vertical wave-

length for two cases, each with rH = 0. One curve is for synoptic scale waves with

zonal and meridional wavelengths of 1000 km and a feedback rate of -10 - 7 s- 1,

while the other curve is for planetary scale waves with zonal and meridional wave-

lengths of 10,000 km and a feedback rate of -10-6 s- 1. In each case the feedback

rate is about an order of magnitude less than the external Rossby wave frequency.

Thus, for large vertical wavelengths (3.19) applies and, according to (3.21), the

Rossby mode growth rate will increase as the vertical wavelength is decreased. For

sufficiently small vertical wavelengths, (3.23) rather than (3.19) applies, so that,

according to (3.24), the Rossby mode growth rate will decrease as the vertical scale



decreases. For some intermediate vertical wavelength then, the growth rate will

peak. Although we cannot demonstrate it analytically, we expect this transition

to occur when the internal Rossby mode frequency has decreased sufficiently to

match the feedback rate, i.e., when

2 )
S N 2  + 1 . (4.14)

The vertical wavelength at which this occurs is indicated in Figure 4.6. The agree-

ment with the actual vertical wavelength of maximum growth rate is seen to be

fair.

A second transition in the dependence of the growth rate on vertical scale occurs

when (3.27) is satisfied. Figure 4.7 shows the Rossby mode growth rate as a function

of vertical wavelength for two different cases. The horizontal scales are the same

as in the previous Figure, but the feedback rates have been increased by a factor of

100 for each case. The feedback rates are now about an order of magnitude greater

than the external Rossby wave frequency. Thus, for large vertical wavelengths,

(3.25) applies and, according to (3.26), the Rossby mode growth rate will increase

as the vertical scale decreases. For sufficiently small vertical wavelengths, (3.23)

rather than (3.25) applies, so that, according to (3.24), the Rossby mode growth

rate will decrease as the vertical scale decreases. For some intermediate vertical

wavelength then, the growth rate will peak, but the transition occurs when (3.27),

or equivalently,

SN /n2 a2 + 1 (4.15)

rather than (4.14) is satisfied. The vertical wavelength at which this occurs is

indicated in Figure 4.7. The agreement with the actual vertical wavelength of

maximum growth rate is seen to be somewhat better than the previous case.

The dependence of the Rossby mode growth rate on zonal scale is even more

complicated. For sufficiently small or large zonal wavenumber, the condition (3.25)
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is satisfied, in which case the growth rate increases with zonal wavenumber if k2 <

j2/2, and decreases with zonal wavenumber if k2 > 12/2. Thus, if condition (3.25)

is satisfied for all zonal wavenumbers, then the growth rate of the Rossby mode

is largest when k2 = 12/2. This situation is illustrated in Figure 4.8, which shows

the Rossby mode growth rate as a function of zonal wavelength for a meridional

wavelength of 1000 km, a vertical wavelength of 10 km, ,r = 0, and a feedback rate

of -10- 4 s- 1.As expected, the growth rate is seen to peak at a zonal wavelength

of about 1500 km, when k2 = 12/2.

For sufficiently small feedback rates or sufficiently large meridional and vertical

scales, the condition (3.19), that the feedback rate be much smaller than the inter-

nal Rossby wave frequency, is satisfied for a wide range in zonal scales. For such

scales the Rossby mode growth rate decreases with increasing zonal wavenumber,

in contrast to the case in which condition (3.25) is satisfied but k 2 < 12/2, or the

case in which condition (3.23) is satisfied but k2 < 12 + f2n/N 2.Thus, as the zonal

wavenumber is increased from values much smaller than the meridional wavenum-

ber, the increase in growth rate with zonal wavenumber will change to a decrease

with zonal wavenumber, not because k2 > 12/2 or k 12 > 12 + f 2 2 /N 2, but because

the internal Rossby wave frequency increases enough to dominate the feedback

rate, i.e., condition (3.19) is satisfied. This might suggest that for sufficiently small

feedback rates or sufficiently large meridional and vertical scales the peak growth

rate occurs when the internal Rossby wave frequency equals the magnitude of the

feedback rate. However, the maximum internal Rossby wave frequency for given

meridional and vertical scales occurs when k2 = 12 + f 2n 2 /N 2, so that the Rossby

wave frequency can only dominate the feedback rate if the transition between con-

ditions (3.23) and (3.19) occurs at a zonal wavenumber k2 < 12 + f 2n 2 /N 2 . For

such small zonal wavenumbers, the dependence of the growth rate on zonal scale



according to (3.21) is much weaker than that according to (3.24) or (3.26). Al-

though the approximate expressions (3.21), (3.24) and (3.26) are not formally valid

when the internal Rossby wave frequency equals the feedback rate, the compari-

son of the scale depedence for the approximate expressions does suggest that the

growth rate peaks not when the internal Rossby wave frequency equals the feed-

back rate, but when it is much larger. Thus, for conditions in which the Rossby

wave frequency dominates the feedback rate, the growth rate of the Rossby mode

peaks at zonal scales substantially smaller than that at which the Rossby wave

frequency equals the feedback rate. Such zonal scales can, for sufficiently weak

feedback, far exceed that implied when the conditions (3.23) or (3.25) apply. This

case is illustrated in Figure 4.9, which shows the Rossby mode growth rate as a

function of zonal wavelength for a meridional wavelength of 1000 km, a vertical

wavelength of 10 km, TH = 0, and a feedback rate of 10-8 s-1.For such meridional

and vertical scales, the zonal wavelength for which c2 = £2 + f 2 n2 /N 2 is 700 km,

and the zonal wavelength for which c2 = £2/2 is 1400 km, both smaller than the

zonal scale 8000 km at which the growth rate actually peaks. For comparison, the

zonal scale for which the internal Rossby mode frequency equals the feedback rate

is the implausible 120,000 km.

When the wave is shallow, i.e., when f 2n2 > N 212 , condition (3.23) is satisfied

for a wide range in zonal scales. For such waves the Rossby mode growth rate

peaks at zonal wavenumber k2 = £2 + f 2n2 /N 2 . Figure 4.10 shows the growth

rate as a function of zonal wavelength for a meridional wavelength of 10,000 km,

a vertical wavelength of 10 km, -rj = 0, and feedback rates of -10-4, -10-6, and

-10-8 s-1. For the strong feedback case, condition (3.25) is nearly satisfied for

all zonal scales. The peak growth rate therefore occurs at a zonal wavelength,

6000 km, which is much larger than that corresponding to k2 = £2 + f 2 n2 /N 2,

i.e., 1000 km, but is also somewhat smaller than that corresponding to k2 = 2/2,



i.e., 14,000 km. For the weak feedback case, condition (3.19) is satisfied for a wide

range in zonal scales; for the reasons outlined above, the growth rate for the case of

weak feedback therefore peaks at a large zonal scale, i.e., at about 12,000 km (the

correspondence between this value and that corresponding to k2 = 2/2 is purely

coincidental, for the conditions required for such a correspondence are not satisfied).

For the moderate feedback case, the feedback rate is near the maximum internal

Rossby wave frequency and hence satisfies the conditions (3.23) for which the zonal

wavelength at peak growth rate is predicted to correspond to k2  2 + f2n 2/N 2 ,

or 1000 km; the actual zonal wavelength at which the growth rate is largest is seen

to be about 2000 km.

The dependence of the Rossby mode growth rate on the meridional scale is

much simpler: for all parameter regimes, the growth rate increases as the meridional

scale of the perturbation increases. Thus, waves with the largest meridional scale

consistent with the horizontal domain of the radiative-dynamical feedback will grow

fastest in the linear stage.

We have so far only considered the scale dependence of the growth rate for each

dimension separately. A more general question is: for which three-dimensional

wave vector is the Rossby mode growth rate largest? According to the analysis

of Chapter 3, the Rossby mode growth rate is much less than the feedback rate

when conditions (3.23) or (3.25) are satisified, but can be as large as the feedback

rate when condition (3.19) is satisfied. When (3.19) is satisfied, the feedback rate

is largest for waves that are shallow and long, i.e., f 2n2 > N 2k. However, if

the waves are too shallow, the internal Rossby wave frequency won't exceed the

feedback rate, so that condition (3.19) is not satisfied. Thus, the growth rate is

largest for waves that are very long and deep enough to satisfy (3.19). This is

illustrated in Figure 4.11, which shows the Rossby mode growth rate contoured as

a function of zonal and vertical wavelength for a meridional wavelength of 10,000



km, -rH = 0, and a feedback rate of -10 - 5 s - 1. The growth rate is seen to increase

as the zonal and vertical scales are progressively increased.

For many problems the zone of strong radiative dynamical feedback may be

somewhat restricted. For example, a layer of strong absorber gradient may span

only a few kilometers. In that case the vertical wavelength of the unstable modes

should not exceed the vertical span of strong feedback. The zonal scale of the

fastest growing Rossby mode would then be limited somewhat.

The analysis of the primitive equations on a mid-latitude #-plane has so far

been based on (4.12), which admits nontrivial solutions if the meridional veloc-

ity is nonzero. If, on the other hand, the meridional velocity is identically zero,

the primitive equations can be reduced to a single wave equation for the vertical

velocity,

D3 (pow) + N(D-a)w. = . (4.16)
9z Po z

Substituting solutions of the form (3.14) yields the algebraic relation

n 2 D3 + N2 (D - a)k 2 = 0 . (4.17)

This cubic equation is identical to the corresponding equation for the primitive

equations on an f-plane, except that the two-dimensional wavenumber k2 has been

replaced by the zonal wavenumber k2, and the Coriolis parameter is absent. Thus,

in the absence of radiative-dynamical feedback, it describes an advective mode

and two gravity (rather than inertia-gravity) modes. The Rossby mode is missing

because the meridional velocity is identically zero.

In the presence of the radiative-dynamical feedback, the analysis of section 4.1

applies, but with the two-dimensional and three-dimensional wavenumbers replaced

by the zonal wavenumber. Thus, for positive radiative-dynamical feedback, the

advective mode is unstable in the absence of dissipation and the gravity modes are

damped, while for negative feedback the advective mode is damped and the gravity



modes are unstable. For weak radiative-dynamical feedback (i.e., lal < Nk/n),

the growth rates are, in the absence of dissipation, proportional to the feedback

rate, while for strong feedback (lai > Nk/n) the growth rate is proportional to the

cube root of the feedback rate. The maximum growth rate of the advective mode

is the feedback rate, which occurs for all wavenumbers such that Jai < Nk/n. The

maximum growth rate of the gravity modes is one half the feedback rate, which

again occurs for all wavenumbers such that lal < Nk/n. In no instance does the

advective mode propagate, while the frequency of the gravity modes dominates the

growth rate except when lal > Nk/n.

Finally, let us consider cases for which H 7a 0. If TH is large and perturbations

are deep (2mH < 1), (2.7) reduces to (2.11), and the perturbation heating and

absorber concentration are 1800 out of phase, rather than in phase as in the case

-r- = 0. One therefore expects the mode of instability to change as -H is increased

from zero to large values. Figure 4.12 shows the growth rate of the advective,

Rossby, and inertia-gravity modes as a function of rH for a = 10- 5 s- 1, zonal

and meridional wavelengths of 1000 km, and a vertical wavelength of 10 km (note

that the requirement that 2mH < 1 cannot be strictly satisfied for any reasonable

perturbation, for it requires vertical wavelengths much larger than 100 km). For

small rH, ae - a so the advective mode is unstable while the Rossby and gravity

modes are damped. For larger THr the radiative heating is less strongly coupled

to the absorber concentration, so that the effective radiative dynamical feedback

is reduced (it is important to note here that because a has been held constant in

Figure 4.12, we have neglected the dependence of the basic state transmissivity on

optical depth; the magnitude of ae would be expected to decline exponentially with

increasing optical depth if this effect were accounted for). For r = 2n 2 H' (= 51

for a 10 km vertical wavelength and a density scale height of 8 km), where n2 is

defined by (3.16), the radiative heating and absorber concentration are uncorrelated



(at zero lag) even for shallow perturbations, and the growth rate of all modes is

exactly zero (in the absence of dissipation). For larger TH, the radiative heating

and absorber concentration are negatively correlated, and the advective mode is

damped while the Rossby and inertia-gravity modes amplify.

Figure 4.13 shows the growth rate of the advective mode as a function of vertical

wavelength for a = 10-5 s- 1, zonal and meridional wavelengths of 1000 km, and for

rFH = 0, 1, and 10. For H = 0, the previous analysis is valid, which concludes that

the growth rate of the advective mode is largest for the deepest waves. However,

such a case is unphysical, for it does not permit any basic-state absorber. For rT

= 1 and r1H = 10, the growth rate of deep waves is smaller than for TH = 0. Indeed,

when n 2 = -rH/(2H2), which corresponds to vertical wavelengths of 100 km and

23 km for rH = 1 and 10, respectively, the growth rate of the advective mode is

zero; for deeper waves, the advective mode is damped. Thus, the growth rate of

the advective mode is largest at a vertical wavelength that must be smaller than

that corresponding to n2 = -H/(2H2 ).

If waves are shallow (m > 1/(2H), which is satisfied for vertical wavelengths

much less than 100 km) but deep enough that m, = -rH/(mH) is large, (2.7) re-

duces to (2.12). The perturbation heating and absorber concentration are 900 out

of phase, with the heating lagging the absorber for downward phase propagation,

but leading the absorber for upward propagation. The effective radiative-dynamical

feedback, defined by (3.13), is in this case complex. In fact, if rH = 2n 2H 2 the feed-

back is pure imaginary; for other rH which are consistent with large Tm and large

mH the imaginary part of a dominates the real part. Then the quasi-geostrophic

solution for D becomes

i (k3 + C,k2) ± 4k kf3ai - (k8 + aik2) 2

D 2 2 (4.18)



Here the feedback parameter has been expressed ae = iai, where

ai = -a H(4.19)
n2H2

is either positive or negative, depending on the sign of the vertical wavenumber m.

If ai is negative, then from (4.18) we conclude that both roots of D are pure

imaginary, indicating propagation but neither growth nor decay. In this case the

real part of the feedback, however small, determines the rate of growth or decay.

On the other hand, if

k# (ks - ) k (k + I)2
Ic 2 kQ < < < Q (4.20)

then the roots of D have real components, reflecting growth and decay of the

respective modes. The growth rate can, in fact, be quite strong, with a maximum

growth rate of

Dr =k3fn (4.21)k2 k3N

occurring for

a k 3 (4.22)

If a is small (i.e., much smaller than the external Rossby wave frequency), the

growth rate can actually be much larger than a, but is less than ai as well as the

oscillation frequency, which is that of an external Rossby wave. Thus, the growth

rate is bounded by the magnitude of the effective feedback rate, even when ae is

complex.

This analytic result is surprising, as one might intuitively expect the instability

to vanish when the real part of the effective feedback is zero. Indeed, Figure

4.12 exhibits just such behavior, with the growth rate of all modes vanishing for

THr = 2n 2 H2 . To explain why unstable modes are possible when the Re(ae) is

zero and the condition (4.20) is satisfied, consider the phase structure of unstable



solutions illustrated in Figure 4.14 for the two cases arising when ai is positive, i.e.,

when a is positive and m is negative, and when a is negative and m is positive.

If a is positive, then the basic state absorber mixing ratio decreases with height,

and high absorber concentrations lag upward motion. For negative m phase prop-

agation is upward when (4.20) is satisfied, so that weak heating lags high absorber

concentrations by 900 . Thus, cool temperatures lagging the weak heating coincide

with downward motion, indicating positive energy conversion, and hence instabil-

ity.

If a is negative, then high absorber concentrations lag downward motion. For

positive m phase propagation is downward when (4.20) is satisfied, so that strong

heating lags high absorber concentrations. The warm temperatures following the

strong heating coincide with upward motion, indicating instability.

These unstable modes are characterized by roughly 450 phase lags between

vertical motion and high absorber concentration and between radiative heating and

warm temperatures. The growth rate of these modes can therefore be comparable

to the oscillation frequency. Thus, the downward-propagating Rossby mode (m >

0), which for the case TH = 0, a < 0 is characterized by growth rates much less

than the oscillation frequency, grows more rapidly for large rm and large mH. On

the other hand, the upward-propagating Rossby mode (m < 0) is rendered neutral

for large m and large mH because ai is negative, and hence (4.20) is not satisfied.

For the case illustrated in Figure 4.12, ai is negative because both a and im are

positive; the real part of D therefore vanishes when TH = 2n2 H2 -

4.2.2. Equatorial 3-plane

In the tropics it is not reasonable to treat the Coriolis parameter as a constant

in (4.12). Following the classical theory, we approximate the Coriolis parameter as



a linear function of latitude. Equation (4.12) then becomes

(D2 + ) D2 (po) + N2(D - a) (DV2 + v =0 . (4.23)

Because the coefficients of (4.23) are no longer constant, the simple plane-wave

solution form (3.14) is inappropriate. Following the classical theory, we express

solutions in the form

v = V(y)ez2H ei(ks+mz - Ot) (4.24)

which reduces (4.23) to the ordinary differential equation

N2 (D - c)DV, - Pfy 2 D2 n2V + [N2(D - a)(#ik - k2 D) - D4n2] V = 0 . (4.25)

To reduce (4.25) to canonical form, we introduce the scaling y = r and choose

4 N 2 (D - a)D
= 2D2 2  (4.26)

#2D2n2

Then (4.25) reduces to

N2 (D - a) (ik - k'D) - D4 n'
V - 2V + r22D2n2 V = 0 . (4.27)

We can now expand solutions in a series of Hermite functions,

V(O) = E V H(4O) (4.28)
I t

and apply the orthogonality relation

H1 - 02H, = -(21 + 1)H (4.29)

to reduce (4.27) to the algebraic equation

n 2 D 4 + N 2 (D - a) (k2D - ik) + (2t + 1) NpnD D(D - a) = 0 . (4.30)

Equation (4.30) has eight solutions for D. However, because D determines

the meridional scaling (4.26), some of these solutions cannot satisfy the lateral

46



boundary conditions of boundedness. To see this, consider solutions with zero

meridional velocity. Then the 3 term vanishes and the dispersion relation (4.30)

reduces to

n 2D 3 + N 2(D - a)k 2 = . (4.31)

Equation (4.31) is very similar to (4.7) without the Coriolis term. The analysis

of section 4.1 demonstrates that two of the three solutions correspond to eastward

and westward propagating gravity waves, and the third represents the advective

mode, which does not propagate at all. From the momentum equations with v = 0

we find that

= o exp - y 2  e (k+mz-t) (4.32)

In order to satisfy the boundedness condition for large y, the imaginary part of

D cannot be positive. Thus, only the eastward propagating (Kelvin) mode and

the advective mode satisfy the boundary conditions; the westward propagating

solution must be rejected. In contrast with the classical theory, in which D is purely

imaginary and hence the solution is a Gaussian, D is complex in the presence of

feedback, and solutions oscillate in latitude.

Because of the large number of solutions of (4.30), we shall not attempt fur-

ther investigation of the equatorial #-plane here. Given the ubiquity of unstable

modes in midlatitudes for nonzero meridional velocity and in the tropics for zero

meridional velocity, we would expect to find additional unstable solutions of (4.30).



Table 4.1. Approximate solutions for the complex eigenfrequency ar. Perturbations
in transmissivity are neglected (i.e., TH = 0).
Mode Feedback Rate

IOk 3k k 2Na 3

2kk fkn2 2p

Advective k + ia (1 + i)a + k i
)3k N 2c 2ack k N2 kc 2 2
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Figure 4.1. Advective mode growth rate normalized by the radiative-dynamical
feedback rate, as a function of the feedback rate. Midlatitude beta-plane. The zonal
and meridional wavelengths are 1000 km; the vertical wavelength is 10 km. The
Briint-Vaisala frequency is 10-2 s-1; the density scale height is 8 km. Perturbations
in transmissivity have been neglected (rH = 0). The Coriolis and internal Rossby
wave frequencies are indicated.
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Figure 4.2. Advective mode growth rate as a function of vertical wavelength, for
a radiative-dynamical feedback rate of 10- s s - 1. Otherwise as in Figure 4.1.
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Figure 4.3. Advective mode growth rate as a function of zonal wavelength, for
a radiative-dynamical feedback rate of 10- 5 s- 1 and a meridional wavelength of
10,000 km. Otherwise as in Figure 4.1. The internal deformation radius is indi-
cated.
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Figure 4.4. Normalized inertia-gravity mode growth rate as a function of the
radiative-dynamical feedback rate. Otherwise as in Figure 4.1.
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Figure 4.5. Rossby mode growth rate as a function of the radiative-dynamical feed-
back rate for zonal and meridional wavelengths of 1000 km and a vertical wavelength
of 10 km (solid line); for a zonal wavelength of 1000 km, a meridional wavelength
of 10,000 km, and a vertical wavelength of 10 km (long dashed line); for zonal and
meridional wavelengths of 1000 km and a vertical wavelength of 1 km (medium
dashed line); and for a zonal wavelength of 10,000 km, a meridional wavelength of
1000 km, and a vertical wavelength of 10 km (short dashed line). Otherwise as in
Figure 4.1.
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Figure 4.6. Rossby mode growth rate as a function of vertical wavelength for zonal
and meridional wavelengths of 1000 km and a radiative-dynamical feedback rate
of -10-7 s-1 (solid line); and for zonal and meridional wavelengths of 10,000 km
and a feedback rate of -10 - 6 s- 1 (dashed line). Otherwise as in Figure 4.1.
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Figure 4.7. Rossby mode growth rate as a function of vertical wavelength for zonal
and meridional wavelengths of 1000 km and a radiative-dynamical feedback rate
of -10 - 5 s-1 (solid line); and for zonal and meridional wavelengths of 10,000 km
and a feedback rate of -10 - 4 s- 1 (dashed line). Otherwise as in Figure 4.1.
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Figure 4.8. Rossby mode growth rate as a function of zonal wavelength for a

meridional wavelength of 1000 km, a vertical wavelength of 10 km, and a radiative-

dynamical feedback rate of -10 - 4 s- 1. Otherwise as in Figure 4.1.
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Figure 4.10. Rossby mode growth rate as a function of zonal wavelength for a
meridional wavelength of 10,000 km, a vertical wavelength of 10 km, and radiative-
dynamical feedback rates of -10 - 4 s- 1 (solid line), -10 - 6 s- 1 (short dashed line),

and -10 - 8 s- 1 (long dashed line). Otherwise as in Figure 4.1.
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Figure 4.11. Rossby mode growth rate as a function of zonal and vertical wave-
lengths, for a radiative-dynamical feedback rate of- 10- s s - 1 Otherwise as in Figure
4.1.
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Figure 4.12. Growth rates of the advective mode (solid line), inertia-gravity mode
(long dashed line), and Rossby mode (short dashed line) as functions of TH for a
radiative-dynamical feedback rate of 10- 5 s-1, zonal and meridional wavelengths
of 1000 km, and a vertical wavelength of 10 km. Midlatitude #-plane. The Briint-
Vaisala frequency is 10- 2 s-1; the density scale height is 8 km.
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Figure 4.13. Advective mode growth rate as a function of vertical wavelength for

TH = 0 (solid line), rH = 1 (short dashed line), and rH = 10 (long dashed line).

The radiative-dynamical feedback rate is 10- s s- 1 . Otherwise as in Figure 4.12.
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Figure 4.14. Phase structure of unstable modes associated with a > 0, m < 0
(above) and a < 0, m > 0 (below) for the case in which the imaginary part of the
effective radiative-dynamical feedback parameter dominates the real part.



5. Effect of Dissipation

Until now we have only included the effects of dissipative processes on the

unstable modes under the assumption that mechanical, thermal and absorbing

damping are linear and equal in magnitude. This makes the treatment of the

effects of damping on the growth rate of unstable modes trivial: the damping

rate is simply subtracted from the real part of the advective-dissipative operator

D to give the growth rate. If the damping rate exceeds Re(D) then the modes

decay rather than grow. Because Re(D) is always less than the magnitude of the

feedback rate, we conclude that all modes will decay if the damping rate exceeds

the magnitude of the feedback rate.

In some instances such a treatment is reasonable. In the troposphere, Ekman

pumping of barotropic Rossby waves leads to a decay time of typically 10 days,

the radiative relaxation time is about 30 days, and the residence time of aerosols

is 10-30 days, depending on proximity to precipitation systems. However, in the

stratosphere, mechanical dissipation is less important, radiative damping is more

rapid, while the residence time of aerosols is measured in months or years, and the

photochemical lifetime of ozone is just a few hours. In the mesosphere, mechanical

damping associated with gravity wave drag (Lindzen, 1981) leads to damping times

of days. Even in the troposphere, mechanical damping of the advective and inertia-

gravity modes is rather weak except in the tropics or near the surface. Thus, a

consideration of different damping rates associated with mechanical and thermal

dissipation, and with damping of the absorber concentration, is essential. We

shall find that the sensitivity of the growth rate to each form of damping is quite

different, and that the sensitivity of each wave mode also differs.

To treat different damping rates for momentum, heat, and absorber concen-

tration, we replace the advective-dissipative operator D by D + ei, where D now



represents only the advective operator, i = 1 corresponds to the mechanical damp-

ing rate, i = 2 to the thermal damping rate, and i = 3 to the absorber damping

rate. Then (4.13) becomes

n 2 (D + E3 )(D + e2) [(D + e) 2 + f2]

+ N (D + ,E) k - ik] (D + e3 - ae) = 0 (5.1)

Once again, although exact analytical solutions to (5.1) have been found, we

shall first consider approximate solutions of the quasi-geostrophic version of (5.1),

f2n2 (D + E3) (D + 2 ) + N 2 [(D + e,) k2 - ik] (D + e - a.) = 0 (5.2)

in the limit of strong damping, i.e., ei > a. For simplicity we shall assume 7r < 1,

so that ae - a.

Consider first the case of strong mechanical damping (El > a) but weak ther-

mal and absorber damping (e2k2,3 ek < ak ). Then (5.2) reduces to

kD 2 + (ek - ikf - ak2) D + (ik3 - Ek) a = 0 . (5.3)

If e1ck > kP, approximate solutions of (5.3) are

ikk ikfa 2 f2 n 2

D , e a- kN (5.4)

In this case the Rossby mode is strongly damped (the damping rate dominates the

frequency), while the growth rate of the advective mode is actually increased by

the mechanical damping if ak > k and k~ < k 2 (compare with (3.26)). This

surprising result can be explained in terms of the quasi-geostrophic vorticity and

heat balance on an f-plane. In the absence of dissipation, the dynamical response

to a given heating rate Q can be expressed w = ka2 / (k1cN ); the response for

a deep circulation (kc = ka) is therefore stronger than for a shallow circulation

(k2 > k ). In the presence of strong mechanical dissipation, we have found that



the dissipation rate greatly exceeds D for the advective mode because the growth

rate is always less than a while el is assumed here to be much larger than a. The

response for this case can therefore be approximated by w = Q/N 2 , which is inde-

pendent of the aspect ratio of the circulation. In this case the Coriolis acceleration

of the divergent part of the circulation is balanced by the drag on the rotational

part of the circulation. As the dissipation rate increases, the rotational circulation

weakens with respect to the divergent circulation. Because the rotational flow is

related through hydrostatic balance to temperature, the temperature perturbation

becomes unimportant in the heat balance for strong drag. The heat balance then

becomes the simple balance between the diabatic heating and the adiabatic cool-

ing associated with vertical motion; however, if the dissipation rate exceeds the

Coriolis frequency, the divergent part of the circulation becomes stronger than the

rotational part, and the quasi-geostrophic assumption breaks down (this feature

is evident in the solution using the primitive equations). In the absence of dissi-

pation, part of the energy associated with the heating must be used to increase

the thermal/rotational part of circulation. Because only the divergent part of the

circulation contributes to the local increase in absorber concentration, and hence

diabatic heating, the circulation with minimal storage of thermal energy is most

efficient at generating eddy available potential energy. While this result contradicts

one's intuitive notion that dissipation is an energy sink and hence should reduce

growth rates, it is important to note that for quasi-geostrophic flow mechanical

dissipation only reduces the intensity of the rotational part of the circulation; the

divergent part, which is the circulation mode responsible for the instability, is

undamped under quasi-geostrophic conditions.

If ak < e1k2 < kI, approximate solutions of (5.3) are

ikop Q ia2 f 2 n 2
D lN 2 Ic a - N2 (5.5)

3g k3 ' k N



Although the frequency of the advective mode for this case differs from that in

(5.4), it remains much less than the growth rate, which equals the inviscid growth

rate (see (3.21)). The Rossby mode is again damped, but the damping rate is now

much less than the frequency.

Consider now the case in which mechanical and absorber damping are weak

(el k2,ce 3k2 < ak2,kP), but thermal damping is strong (ezf 2n 2 /N 2 > ak ). Then

(5.2) reduces to

k 2 D 2 + e2 n ik - ak) D + ikia = O . (5.6)

If f 2f 2n 2/N 2 > kf3, approximate solutions of (5.6) are

ikp f 2 n2  ak 2 2 N 4  ikpaN2
D~ - f2 (5.7)
k3 2 kN2 , e2n4f 4  f2n2f 2

As in the case with mechanical damping, strong thermal dissipation strongly

damps the Rossby mode, with the damping rate dominating the frequency. In con-

trast with the case of mechanical damping, the growth rate of the advective mode

is strongly reduced, but remains positive (though much less than the frequency)

for positive radiative-dynamical feedback.

If ak<e2f 2 n2 /N 2 < k, approximate solutions of (5.6) are

ik f 2n 2  iae2f 2 n2  (5.8)
D ~N kN a (5.8)
k32 kN2 ' kN2

The approximate Rossby solution is the same as for stronger thermal damping, with

damping at a rate much less than the frequency of oscillation. The advective mode

growth rate is unchanged from the case without thermal dissipation (see (3.21)),

indicating that the instability of the advective mode is not necessarily eliminated

when the thermal damping rate exceeds the feedback rate. Unless waves are shallow

(k > kc2), the thermal damping rate must be much larger than both the feedback

rate and the Rossby wave frequency in order to diminish the advective mode growth



rate. For shallow waves, the conditions required by (5.7) for stability are satisfied

for thermal damping rates that are less than the feedback rate provided the thermal

damping rate also exceeds the internal Rossby wave frequency. Because thermal

damping rates generally increase as the vertical scale of the perturbation decreases

(Fels, 1982), it is likely that thermal damping is much more capable of reducing

the growth rate of shallow perturbations than deep perturbations.

Finally consider the case of strong damping of the absorber mixing ratio (e3 >

a), but weak mechanical and thermal damping (elk2, e2k < ak2,kP). Then (5.2)

reduces to

+ 3k - ik - + - ) 0 . (5.9)

If e3k > kP, approximate solutions of (5.9) are

ikp ak2f32 f2n 2  ikp3f 2n 2

D - - es + (5.10)
Q fN2k' e3N2k2

In this case the growth rate of the Rossby mode (for a < 0) is greatly reduced by

the strong absorber damping, but the instability is not eliminated. The advective

mode, on the other hand, is strongly damped, with a westward rather than eastward

phase velocity. However, as we shall see, the distinction between the Rossby mode

and the advective mode is, despite appearances, not altogether obvious.

If ak2 < ekc < ko, approximate solutions of (5.9) are

D i af 2n 2  f2 2  (5.11)
k N 2k -+e N 2  (5.11)

For this more moderate damping the advective mode is again strongly damped and

westward propagating, while the Rossby solution is unchanged from the completely

undamped case (see (3.21)). Unless the perturbation is shallow, the absorber damp-

ing rate must therefore exceed both the magnitude of the feedback rate and the

internal Rossby wave frequency in order to reduce the growth rate of the Rossby

mode. For shallow perturbations, the Rossby mode instability can be reduced for
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absorber damping rates less than the magnitude of the feedback rate provided the

damping rate exceeds the Rossby wave frequency.

While the preceeding analysis is revealing, it is restricted by the quasi-geostrophic

assumption, which filters out gravity waves, and by the assumption of strong damp-

ing. Indeed, some of the most interesting behavior occurs when the damping rate

is comparable to the feedback rate. In order to treat the effects of damping on

the gravity modes, and to consider more moderate values of the damping rates, we

shall now examine graphical illustrations of exact analytical solutions of (5.1).

Figure 5.1 shows the normalized growth rate of the advective mode as a func-

tion of the damping rate for a radiative-dynamical feedback rate of 10- s s- 1, zonal

and meridional wavelengths of 100 km, and a vertical wavelength of 10 km. Sepa-

rate curves are shown for mechanical, thermal, and absorber damping. Consistent

with the preceeding analysis, we see that mechanical damping actually increases

the growth rate of the advective mode. However, as the mechanical damping rate

exceeds the Coriolis frequency (10- 4 s-1 ), drag on the divergent part of the circu-

lation becomes important. The quasi-geostrophic analysis loses validity, and the

growth rate begins to decline with increasing mechanical damping. For thermal

damping, the normalized growth rate declines to small values as the damping rate

increases, consistent with the approximate solution. According to the exact solu-

tion, the growth rate becomes negligibly small only for thermal damping rates much

larger than the radiative-dynamical feedback rate. Contrary to the approximate

solution for absorber damping, the exact normalized growth rate becomes small

and negative rather than large and negative as the absorber damping rate becomes

much larger than the feedback rate. According to the approximate solution, the

Rossby mode growth rate (for a > 0) becomes small and negative for strong ab-

sorber damping, while the advective mode becomes large and negative. However,



the modes in the approximate solution were identified on the basis of the expres-

sions for the frequency. While both approximate solutions indicate westward phase

propagation, we have identified the Rossby mode as that mode which has about

the same phase velocity as the Rossby mode in the absence of dissipation. In the

exact analytical solution, the modes are identified on the basis of continuity with

respect to lesser damping rates. That is, starting with small absorber damping, the

advective and Rossby mode are easily identified; by slowly increasing the absorber

damping rate, these modes are readily distinguished provided the two solutions of

(5.9) remain distinct. However, if solutions intersect, it is not immediately obvious

how the modes might be identified.

While the advective mode solution depicted in Figure 5.1 is distinguished from

the Rossby mode for all absorber damping rates, under certain conditions the

growth rate curves for the two solutions of (5.9) intersect. To determine these

conditions, we first express the growth rate as Re(D) = D 1 ± D 2 , where

D2 = Rehr + ihi= 2 (5.12)

with

h, = (,ek - ak-) 2 k- 2 (5.13)

hi = kc3 (2e 3ka + 2a1k - 4cak) . (5.14)

The two growth rate curves will intersect if D 2 = 0, which occurs when hi = 0

provided h, < 0. The condition hi = 0 determines the damping rate at which the

two curves will intersect, namely, when

e3 = k - a . (5.15)

Substituting (5.15) into (5.13), the condition that h, < 0 becomes

a< N2  (5.16)

2f2n2
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Note that because the absorber damping rate is necessarily positive, (5.15) can

only be satisfied for positive a.

Figure 5.2 shows the normalized growth rate of the advective and Rossby modes

as functions of the absorber damping rate, for a feedback rate (1.2 x 10-6 s- 1) that

almost satisfies condition (5.16). The two curves are seen to almost, but not quite,

intersect; for a slightly smaller feedback rate the curves would intersect. Thus, one

possible means of distinguishing which solution corresponds to the Rossby mode

and which represents the advective mode would be to choose the same solution

branch that corresponds to each mode when the curves do not intersect. That

is, assume that the mode corresponds to the same branch independent of whether

(5.16) is satisfied. This method, however, yields physically implausible choices

for solution modes. For example, if there is no radiative-dynamical feedback, the

Rossby mode neither grows nor decays as a result of absorber damping, while the

advective mode, since it describes simple advection of the absorber in the absence

of feedback, decays at the absorber damping rate. In this case (5.16) is satisfied,

and the two solutions intersect at e3 = 0; the upper branch corresponds to the

Rossby mode, while the lower branch represents the advective mode. For larger

positive feedback rates, the intersection point shifts toward larger e3, with the upper

branch corresponding to the advective mode for weak damping, but the Rossby

mode for strong damping. When the feedback rate is large enough so that (5.15)

is no longer satisfied, the growth rate curves no longer intersect. The only possible

conclusion then is that the upper branch represents the advective mode for absorber

damping rate much less than the feedback rate, and the Rossby mode for absorber

damping rate much greater than the feedback rate. For intermediate absorber

damping rates, the distinction between the advective and Rossby modes is unclear;

indeed, if (5.15) is satisfied and (5.16) is just barely satisfied, both the real and the

imaginary parts of the two solutions are identical. For absorber damping rates that



differ substantially from the feedback rate, the physically most reasonable method

of distinguishing modes is on the basis of frequency of oscillation: the Rossby mode

is westward propagating, with a much higher phase speed than the advective mode.

Regardless of the nomenclature, we can conclude from the approximate solu-

tions that strong absorber damping eliminates the instability if the feedback rate is

positive, and greatly reduces it if the feedback rate is negative. From (5.9), one can

show that if the absorber damping rate equals the feedback rate, one solution is

D = 0, while the other solution is damped. Thus, for positive radiative-dynamical

feedback there are no unstable solutions if the absorber damping rate exceeds the

feedback rate. For moderate absorber damping and negative radiative-dynamical

feedback, we must consider the exact analytical solution.

Figure 5.3 shows the normalized growth rate of the Rossby mode as a function

of the damping rate for a radiative-dynamical feedback rate of -10 - 5 s- 1 , zonal and

meridional wavelengths of 10,000 km, and a vertical wavelength of 10 km. Separate

curves are shown for mechanical, thermal, and absorber damping. Consistent with

the preceeding analysis, we see that strong mechanical damping eliminates the

instability of the Rossby mode. However, for mechanical damping rates much

larger than the Coriolis frequency, the Rossby mode becomes more weakly damped

rather than more strongly damped with increasing mechanical damping. This effect

must be an ageostrophic effect, for it is neglected in the approximate analysis but

included in the exact analytical solution of (5.1). Contrary to the approximate

solution for strong thermal damping, the Rossby mode growth rate becomes small

and negative rather than large and negative as the thermal damping rate becomes

much larger than the magnitude of the feedback rate. This contradiction again

reflects the transformation of a solution branch from a solution characterizing a

Rossby mode to one characterizing an advective mode as the damping rate increases



from values much less than the magnitude of the feedback rate to values much larger

than the feedback rate. In this case the two solutions of (5.6) intercept at

= f 2n2) a (5.17)

if

Ia < 2k (5.18)

As in the case of absorber damping, the thermal damping rate given by (5.17)

marks the transition from solutions that are characteristic of Rossby waves to

those representative of advective modes, even if (5.18) is not satisfied, i.e., the

two solutions do not intersect. For example, the solution illustrated in Figure 5.3

should be considered an advective mode rather than a Rossby mode for strong

thermal damping (eC > a), even though (5.18) is not satisfied for the wave scale

considered. It is therefore impossible to illustrate the growth rate of what one would

consider to be Rossby waves for all thermal damping rates without introducing a

discontinuity; we have chosen to illustrate the growth rate of the solution that

would be considered a Rossby wave for weak thermal damping, but an advective

mode for strong thermal damping.

While we have been unable to determine approximate solutions for the growth

rate of the inertia-gravity modes, the very large phase speeds of these waves makes

the selection of the gravity mode growth rate from the exact solution of (5.1) rather

simple. Thus, we can illustrate the exact solutions with confidence that what we

are examining is in fact the inertia-gravity mode (although the two different grav-

ity modes do not have identical growth rates in the presence of dissipation, the

difference is small for all reasonable parameter values, so that concentrating on

the growth rate of the fastest-growing gravity mode introduces little bias into the

treatment). Figure 5.4 shows the normalized growth rate of the inertia-gravity

mode as a function of the damping rate for a radiative-dynamical feedback rate
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of -10 - s s- 1, zonal and meridional wavelengths of 1000 km, and a vertical wave-

length of 10 km. Separate curves are shown for mechanical, thermal, and absorber

damping. The gravity mode is seen to be most sensitive to mechanical damping,

with the instability eliminated for a mechanical damping rate somewhat less than

the magnitude of the feedback rate, and strongly damped for larger mechanical

damping rates. Thermal damping is also rather efficient at removing the instabil-

ity, with decay occurring when the thermal damping rate is somewhat greater than

the magnitude of the feedback rate, and strong decay for larger thermal damping

rates. Damping of the absorber concentration, however, is evidently inefficient at

reducing the gravity-mode growth rate, with little change in the growth rate for

absorber damping rates less than the Coriolis frequency.

To summarize, we have found that dissipative processes can damp modes that

are otherwise unstable, or simply reduce the growth rates to negligible levels, or

even enhance growth rates. Mechanical dissipation is effective at eliminating the

instability of the gravity mode, with damping of the gravity mode for mechanical

dissipation rates larger than the magnitude of the feedback rate. Mechanical dis-

sipation is less effective for the Rossby mode, with the instability eliminated only

when the dissipation rate dominates the feedback rate. For the advective mode,

mechanical damping actually enhances the growth rate under certain conditions.

Thermal dissipation is nearly as efficient as mechanical damping in eliminating

the instability of the gravity mode. The Rossby mode is also sensitive to thermal

dissipation, with the instability eliminated when the thermal dissipation rate ex-

ceeds the magnitude of the feedback rate. Thermal dissipation is most efficient at

reducing the growth rate of the advective mode for shallow perturbations, for which

thermal dissipation rates that are much less than the feedback rate can reduce the

instability provided the dissipation rate also dominates the internal Rossby wave

frequency.



Absorber dissipation has little effect on the gravity mode growth rate unless the

dissipation rate exceeds the Coriolis frequency. The effect of absorber dissipation

on the growth rate of the Rossby mode is similar to the effect of thermal dissipation

of the advective mode: the growth rate is reduced if the dissipation rate exceeds

the internal Rossby wave frequency and the feedback rate, but for shallow waves

lower absorber dissipation rates are sufficient to reduce growth rates provided the

dissipation rate still exceeds the Rossby wave frequency. The advective mode is

also sensitive to the absorber dissipation rate, with decay of the advective mode

occurring for dissipation rates larger than the feedback rate.
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Figure 5.1. Advective mode growth rate as a function of damping rate for me-
chanical damping (solid line), thermal damping (short dashed line), and for ab-
sorber damping (long dashed line). The radiative-dynamical feedback rate is 10- s

s - 1. Midlatitude /-plane. The zonal and meridional wavelengths are 1000 km; the
vertical wavelength is 10 km. The Briint-Vaisala frequency is 10-2 s-1; the density
scale height is 8 km. Perturbations in transmissivity have been neglected.
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damping (long dashed line). The radiative-dynamical feedback rate is -10-5 s - 1 .
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6. Effect of Nonuniform Basic State

The analysis up to this point has relied on the assumption that the basic state

parameters of the problem are constant. In particular, the radiative-dynamical

feedback rate, defined either with or without accounting for perturbations in the

transmissivity, is assumed to be independent of altitude. With this assumption, and

the usual assumptions that the density scale height and Briint-Vaisala frequency are

also constant, solutions to (3.12) of the form (3.14) reduce the differential equation

to an algebraic relation for the complex eigenfrequency. While much information

concerning the nature and parametric dependence of solutions has been derived

from such an analysis, the assumption of constant feedback rate is generally valid

only for a limited domain. If the radiative-dynamical feedback rate is constrained to

be constant, one might expect that at some high altitude the basic state absorber

concentration implied by such a constraint must become negative (for positive

feedback) or unrealistically large (for negative feedback). This suggests that a

more general treatment of the instability problem is required.

Before considering absorber distributions that produce feedback rates that are

not constant, it is useful to consider the question of what absorber distributions

yield feedback rates that are constant. If the resulting absorber distributions are

unrealistic, we have a strong incentive to consider the more general problem. To

simplify the problem, we shall neglect perturbations in the transmissivity (TH < 1),

an assumption that is reasonable provided the perturbations are sufficiently shallow

or the absorption optical depth is sufficiently low. Assuming that the density scale

height and Briint-Vaisala frequency are also constant, the feedback rate

RSoa= T - (6.1)
cN 2H dz



is constant if

d2" + apo d
d + z -  =0. (6.2)
dz2  dz

To determine analytical expressions for the absorber distribution that satisfy

(6.2), we shall assume that both the specific absorption a and the density po are

constant. Defining the non-dimensional measure of altitude, = apoz/IL, (6.2)

becomes

- ((6.3)

or, upon integration,

q 4+ . (6.4)

There are several possible solutions to (6.4). If C = -2 C, then one solution

of (6.4) is

(C) = 2Citan (C2 - C ) . (6.5)

From (6.4) one finds that the absorber mixing ratio decreases with altitude for this

case. However, (6.5) can only apply to finite atmospheres, in which the argument

of the tangent varies by less than 7r. A second solution of (6.4) for C = -2C2 is

-(C) = 2CI cot (C1C + C 2) (6.6)

which is identical to (6.5) shifted by 7r/2.

If C = 2C?2, then two other solutions to (6.4) are

Y(C) = 2C 1 coth (C1 C + C2) (6.7)

and

$(C) = 2C 1 tanh (C1 C + C2 ) . (6.8)

Whereas (6.7) yields absorber distributions that again decrease with height, (6.8)

applies to absorbers increasing with height. Both (6.7) and (6.8) yield positive

absorber concentrations for semi-infinite as well as finite atmospheres, and hence
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ought to prove more useful in representing the distribution of absorber mixing

ratio. However, a semi-infinite atmosphere requires a realistic representation of

density. Because we have assumed density to be constant in solving (6.2), our

solutions are only formally valid for relatively shallow atmospheres. We shall now,

therefore, consider numerical solutions of (6.2) for density decreasing exponentially

with scale height H.

Figure 6.1 saows four vertical distributions of absorber mixing ratio deter-

mined from the numerical solution of (6.2), subject to the boundary conditions

4(0) = 0 and Iz(0) = 5 x 10-12, 1 x 10- 11 , 2 x 10- 1 and 5 x 10-11 m-'. The

resemblance between the curves and the hyperbolic tangent solution of (6.8) is ap-

parent, suggesting that variations in atmospheric density do not qualitatively alter

the solutions. Note that because the hyperbolic tangent is bounded by unity, the

solution (6.8) does not produce physically unreasonable distributions of absorber

mixing ratio at high altitude. For the sake of quantitative accuracy, however, we

shall use the numerical solution of (6.2) in subsequent calculations.

The radiative-dynamical feedback rates (as defined by (6.1)) corresponding to

the four absorber distributions illustrated in Figure 6.1 are -1.23 x 10-6, -1.46 x

10- 6, -1.32 x 10- 6 , and -6.81 x 10 - s- 1 for the surface gradients -q(0) = 5 x10 - 1 2

1 x 10- 11, 2 x 10- 11 and 5 x 10 - 11 m- 1, respectively, assuming a specific absorption

coefficient of 1000 m 2kg - ', a solar constant of 1360 W m-2, a solar zenith angle of

600, and a Briint-Vaisala frequency of 10 - 2 s- 1 (the specific choice for the value of

the absorption coefficient, though appropriate for smoke, is arbitrary in that the

feedback depends only on the product ay; the same feedback rates would therefore

arise for different absorption coefficients if the basic state absorber mixing ratio

is scaled accordingly). The numerical integration of (6.2) was only carried to an

altitude of 30 km. Above this level, the mixing ratio is assumed to be constant;

given the reduced atmospheric density at altitude, the error incurred by such a



treatment is small because for weak surface gradients in the absorber mixing ratio

there is little attenuation of the solar beam, while for strong surface gradients the

distribution rapidly approaches the asymptotic limit of the hyperbolic tangent and

hence is consistent with the treatment of uniform mixing ratio above the model

top. Note that the feedback rate is greatest for the intermediate surface absorber

gradient, in which the absorption optical depth from the top of the atmosphere

to the surface is roughly equal to the cosine of the solar zenith angle. This result

is consistent with the analysis of the exponential distribution of absorber mixing

ratio in the introduction, which does not guarantee a constant feedback rate.

According to the analysis for constant density, several solutions that preserve a

constant feedback rate are possible when the absorber distribution decreases with

altitude. Figure 6.2 shows two vertical distributions of absorber mixing ratio de-

termined from numerical solutions of (6.2), subject to the boundary conditions

q(O) = 10-6 and qz(0) = -8 x 10- 1 0 m - 1 and -z(0) = -9 x 10 - 10 m - 1 . Although

the boundary conditions for these two solutions are very similar, the distribution

of absorber concentration at high altitudes is qualitatively different. When the

surface gradient is weak, the mixing ratio approaches an asymptotic limit at high

altitude, a characteristic in common with the hyperbolic cotangent in the analyt-

ical solution (6.7). When the surface gradient is sufficiently strong, however, the

absorber mixing ratio becomes negative at high altitudes. This is a feature of the

cotangent function in solution (6.6).

The radiative-dynamical feedback rates for these two solutions are also quite

different. For the solution with the weaker surface gradient, the feedback rate is

4 x 10- 8 s- 1, while for the stronger surface gradient the feedback rate is 4 x 10-6

s- 1 (except at those altitudes at which the absorber mixing ratio is zero). These

feedback rates differ so much, even at the surface where the surface gradients are



similar, because the transmissivity of the weak feedback solution is reduced by

absorption at higher altitudes.

While the sensitivity of solutions illustrated in Figure 6.2 is most apparent

when the absorber concentrations are strong, some sensitivity to surface absorber

gradient persists for all absorber concentrations. To understand why, let us return

to the analytical solution (6.7) for constant density. From (6.7), the absorber

gradient is

q= 2 -aO csch 2 (C 1 C + C 2) (6.9)

Solving for C1 and C2 in terms of I and iz, we find

4apoC = apolq2 + 2 u (6.10)

C 2 = -C 1  1+ in + ) . (6.11)
2 4- 2CI

Because solution (6.7) assumes C1 is real (and positive), we can conclude from

(6.10) that (6.7) is a solution only if

apoq 2 > - 2 u=- . (6.12)

Thus, if the boundary conditions of the solution do not satisfy (6.12), then (6.7)

cannot be a solution. Rather, (6.6) or, equivalently, (6.5) is the solution, and a

positive absorber mixing ratio cannot be guaranteed at all altitudes. From the

specific absorption coefficient of 1000 m2 kg-1 and an atmospheric density of 1

kg m -3, we find that the transition between solutions (6.6) and (6.7) occurs at

an absorber gradient of -1 x 10-9 m -1 for an absorber mixing ratio of 10-6, in

excellent agreement with the numerical solutions of Figure 6.2.

For stronger absorber gradients, the feedback rate is constant for only a finite

region of the atmosphere. At those altitudes at which (6.2) predicts negative



absorber mixing ratio, we assume zero mixing ratio, and hence zero radiative-

dynamical feedback. Thus, the feedback rate is piecewise uniform in altitude, with

different values for two regions of the atmosphere:

a = z < zt (6.13)
0 z > zt

By matching solutions at the boundary zt between the two regions, we can

determine the solution analytically at all levels. In the region with feedback the

solution D is generally complex, and depends on a and the horizontal and vertical

scales of the perturbation. In the region without feedback the quasi-geostrophic

dispersion relation becomes

(kD - ik) D = . (6.14)

If the solution above zt is to grow and propagate in phase with the solution

below zt, D must be the same for both regions. However, the vertical wavenumber

need not be the same in both zones. Thus, above zt the vertical wavenumber must

satisfy

m2 = (ik//D - k) N'2 /f 2 - (4H)-' (6.15)

with the constraint that the imaginary part of m must be positive to satisfy the

upper boundary condition. Thus, solutions in the zone without feedback decay

with distance away from the region with feedback. The (complex) amplitude of

the solution in the neutral region is related to that of the region with feedback by

the requirement that the real part of the solution for the vertical velocity and the

pressure perturbation (or, by continuity, the derivative of the vertical velocity with

respect to z), are continuous at zt. The amplitude of the solution below zt is of

course arbitrary because this is a linear problem. It is important to note here that

the solution below zt is unaffected by the absence of feedback above zt.



The foregoing analysis demonstrates that plausible basic state absorber dis-

tributions are consistent with a constant radiative-dynamical feedback rate at all

altitudes. However, such ideal absorber distributions may not characterize an ac-

tual distribution with sufficient accuracy. Moreover, we have found that the range

of possible feedback rates consistent with the ideal absorber distributions is limited

if the constant feedback rate is to hold for the entire atmosphere. While stronger

feedback rates can be considered over limited domains, the piecewise-continuous

absorber distribution implied by such a treatment is probably unrealistic. To ad-

dress more general problems with arbitrary absorber distributions, we therefore

resort to numerical solutions of the eigenvalue problem.

In the previous local analyses with constant coefficients the eigenfunctions of

the eigenvalue problem can be prescribed as in (3.14). For the more general problem

with nonconstant coefficients, the eigenfunctions must be determined as part of the

solution.

In the most general treatment of the problem the basic state would also vary

horizontally; the horizontal eigenfunctions as well as vertical eigenfunctions would

be determined as part of the solution. However, from the local analysis we have

found that the most unstable modes are often those with the smallest horizontal

scale. Thus, the most unstable modes of the numerical solution would be dominated

by those with the smallest resolved scale, an unsatisfactory situation. To simplify

the problem we shall therefore retain the assumption that all parameters of the

problem are horizontally uniform. This allows the horizontal eigenfunctions to be

prescribed, while the vertical eigenfunctions are determined numerically.

In order to treat the Rossby waves, it is necessary to consider the latitudinal

variation of the Coriolis parameter. However, it is not possible to do so in a prim-

itive equation numerical model without resorting to a two-dimensional (latitude-

height) representation, with its associated horizontal resolution problems. On the



other hand, while a one-dimensional quasi-geostrophic treatment can treat the

Rossby waves, it does not allow inertia-gravity waves and, according to the local

analysis of the primitive equations, overestimates the growth rate of the advec-

tive mode when the feedback rate exceeds the Coriolis frequency. Thus, a one-

dimensional model can either treat Rossby waves or gravity waves, but not both.

Two types of one-dimensional models are therefore required, one that is quasi-

geostrophic on a #-plane, the other that is based on the primitive equations on

an f-plane. Between them, these models can accurately represent the Rossby,

inertia-gravity, and advective modes for all feedback rates provided the Rossby

wave frequency is less than the Coriolis frequency. In the tropics however, the

Rossby wave frequency exceeds the Coriolis frequency, so that a two-dimensional

model of the primitive equations on a /-plane or on a sphere is required. Given the

horizontal resolution problems of such a model (and the overwhelming number of

numerical eigenmodes), we shall not attempt to numerically treat tropical waves.

Rather, we shall restrict our numerical solutions to the midlatitude synoptic scales

using a one-dimensional model of the quasi-geostrophic equations on a /-plane.

Although a model based upon the primitive-equations on an f-plane would also be

useful, we shall not construct such a model here.

To solve an eigenvalue problem numerically, the equations with boundary con-

ditions must be cast in the discrete form

Ax = oBx (6.16)

where o is the complex eigenvalue and x represents the corresponding eigenvector.

For a model with N levels there are N eigenmodes. Many of these eigenmodes will

be sensitive to the resolution of the model; a useful test for robustness is then that

the eigenfrequency and eigenvector be insensitive to the resolution. Obviously if the

most unstable modes are the shortest modes we have an unsatisfactory situation.



Fortunately, our local analysis in previous chapters indicates that the most unstable

modes tend to be either intermediate in vertical scale or the largest resolved scale.

While there will be some sensitivity to the model domain if the most unstable

mode possesses the largest vertical scale, the sensitivity will be largely confined to

the vertical scale, rather than the phase structure, of the most unstable mode.

The quasi-geostrophic numerical model is based upon the linearized quasi-

geostrophic conservation equations for vorticity,

fo 8
(D + E) V2 k + #'pz o (pow) (6.17)Po az

potential temperature,

fo (D + Ir)z -fz, = -N 2 + RQ (6.18)
cppoH

and absorber mixing ratio,

(D + eq) q = -qzw (6.19)

where the radiative heating Q depends linearly on the absorber mixing ratio, either

locally or at all altitudes.

To cast the model equations in the form (6.16), it is necessary to eliminate w

from (6.17)-(6.19), yielding the quasi-geostrophic potential vorticity equation

So2 ( Poz fo8 Rf Q

Po 8z ( N 2  po cz cpN2H) =0 (6.20)

and an absorber-potential temperature equation

foq ffo R"z9(D f+ q) q g (D + eT) + =0 . (6.21)
N N2 cppoN 2H

Equations (6.20) and (6.21) constitute the required two equations for the two un-

knowns 0 and q (the dependence of the heating on the distribution of q is also

included of course, but has not been expressed in (6.20) and (6.21)).
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Because i/ is twice differentiated with respect to z, two boundary conditions on

are required to close the problem. These are the usual boundary conditions em-

ployed in adiabatic problems, namely that the thermodynamic balance is satisfied

at the surface and at the top of the model atmosphere, with no vertical motion at

each boundary. Such a boundary condition at the model top, although convenient,

is purely artificial. As discussed at the end of Chapter 3, a lid placed at a finite top

restricts the vertical wavenumber m to one of a discrete set. This constraint will

be clearly evident in the numerical solutions for uniform radiative-dynamical feed-

back. It is important to note here that, because the energy source is uniform for

uniform feedback (neglecting perturbations in transmissivity), such solutions are

identical to solutions for a semi-infinite atmosphere with the same uniform feed-

back and vertical wavenumber. Indeed, from the analysis earlier in this chapter

of an atmosphere with uniform feedback below a level zt and zero feedback above

zt, we conclude that the region above level zt affects the vertical structure of the

solution above zt but not the eigenvalue or the vertical structure of the solution

below zt. Thus, for uniform feedback the only problem caused by the artificial lid

is the restriction to the discrete set of vertical wavenumbers. This is only a serious

problem when the most rapidly amplifying modes are either much deeper than the

model domain or much shallower than the model grid spacing.

Assuming solutions of the form exp(ikx + ily-iot) and applying (6.20), (6.21),

and the boundary conditions on a staggered grid with second-order accurate finite

differences, yields the eigenvalue problem of the correct form (6.16). Details are

given in Appendix B. Because the only requirement for the perturbation heating is

that it depend linearly on the absorber mixing ratio, the restriction to a purely ab-

sorbing constituent is no longer necessary. In fact, in Chapter 8 a delta-Eddington

model is used to represent the solar heating, thus permitting treatment of the

effects of scattering by the absorber.



To lay the groundwork for consideration of arbitrary basic state absorber distri-

butions, and to test the numerical model for accuracy, we first consider numerical

solutions for absorber distributions that yield uniform feedback rates. Figure 6.3

shows the most unstable solution for a zonal wavelength of 10,000 km, a meridional

wavelength of 1000 km, and an absorber distribution that yields a feedback rate of

1 x 10-6 s- 1. The values for the solar constant, solar zenith angle, specific absorp-

tion coefficient, and Briint-Vaisala frequency are the same as above, and vertical

shear, damping, and perturbations in the transmissivity have all been neglected.

For these parameter values the growth rate is 9.6 x 10- 7 s -1 , only slightly less than

the feedback rate. The frequency is 9.9 x 10- 9 s- 1, much less than the growth

rate, a feature indicative of the advective mode. The absorber amplitude is small

near the boundaries (a feature required by the boundary conditions), while the

absorber phase is nearly constant with altitude, indicating a standing mode asso-

ciated with the cancellation of the phases in upward and downward propagating

modes of equal amplitude and vertical scale. Consistent with the local analysis,

the vertical scale of this most rapidly amplifying mode is clearly the largest that

can be resolved by the model (smaller vertical scales would be marked by rapid

1800 shifts in the phase at periodic altitudes). The transport of both potential

temperature and absorber is upward, so that the absorber gradient is reduced and

potential energy is released by the perturbation.

When perturbations in transmissivity are accounted for the effective radiative-

dynamical feedback parameter ae becomes complex. The analysis of Chapter 4

demonstrates that, unless the imaginary part of the effective feedback rate is com-

parable to the external Rossby wave frequency, the growth rate depends only on the

real part of the effective feedback rate. Because the real part of the effective feed-

back rate decreases to zero as 2n 2H 2 decreases to TH, the growth rate of the deeper

modes is reduced by perturbations in transmissivity. The most rapidly amplifying



mode would then be a mode with a somewhat reduced vertical scale. Figure 6.4

shows the most rapidly amplifying numerical solution for the same parameter val-

ues as were used for the calculations of Figure 6.3, but this time with perturbations

in transmissivity accounted for. For these parameter values a is much greater than

the external Rossby frequency, so that if perturbations in transmissivity are impor-

tant the imaginary part of the effective feedback rate, aj, will also dominate the

external Rossby frequency. Thus, as expected the vertical scale of the most rapidly

amplifying solution is reduced by perturbations in transmissivity, in this case to

about half of that without accounting for perturbations in transmissivity. Also as

expected, the growth rate has been reduced, from 9.6 x 10- T s- 1 to 8.0 x 10 - 7

s- 1. The frequency, on the other hand, has been greatly increased, from 1 x 10- 8

s- ' to 1.2 x 10 - 7 s- 1 , reflecting the strong influence of the imaginary part of the

effective feedback rate on the propagation of the advective mode. In addition, the

phase structure has changed from that of a standing mode to that dominated in the

interior by a single upward and eastward propagating mode. This occurs because,

according to (4.19), the sign of the imaginary part of the feedback parameter de-

pends on the sign of the vertical wavenumber. Because the eigenfrequency of the

advective mode is strongly influenced by the imaginary part of the effective feed-

back rate when perturbations in transmissivity are important, only one vertical

wavenumber is consistent with a given eigenfrequency. Standing modes are not,

therefore, consistent solutions in this case. The vertical structure of the phase is

dominated, at least in the interior, by that of the mode with vertical wavenumber

consistent with the eigenfrequency. Although it is unclear how a single mode can

satisfy the boundary conditions, it is equally unclear how two modes, both of which

propagate upward (which is the case for the advective mode when perturbations

in transmissivity are important), can also satisfy the boundary conditions.



According to the local analysis, the Rossby mode growth rate for negative

radiative-dynamical feedback is greatest for intermediate vertical scales. Figure 6.5

shows the most rapidly amplifying solution for an absorber distribution that yields

a uniform feedback rate of -1.4 x 10-6 s - I , and zonal and meridional wavelengths

of 3000 km. Vertical shear, damping, and perturbations in the transmissivity have

again all been neglected. The growth rate for the numerical solution is 5.3 x 10- T

s-1 ; the frequency is -1.6 x 10- 6 s-1, comparable to the feedback rate, but greater

than the growth rate. The vertical wavelength is evidently about 15 km, with

negligible vertical variations in the phase except at the nodes of the amplitude.

According to local theory, the growth rate and frequency of the Rossby mode with

these spatial scales are 5.5 x 10- 7 and -1.6 x 10-6 s-1, respectively, in excellent

agreement with the numerical solution. Consistent with local theory, vertical ab-

sorber transport is downward (i.e., down the basic-state absorber gradient), while

potential temperature transport is upward for release of potential energy. Because

the optical depth through one vertical wavelength of this mode is small, the most

unstable solution that accounts for perturbations in the transmissivity is nearly

identical to that illustrated in Figure 6.5. For zonal and meridional scales that

yield most rapidly amplifying solutions that are optically thick, accounting for the

transmissivity reduces the vertical scale of the fastest growing mode. Although

the local analysis of Chapter 4 concludes that under certain conditions the growth

rate of the downward-propagating mode can be enhanced by perturbations in the

transmissivity, the growth rate of the corresponding upward-propagating mode is

reduced; because solutions satisfying the boundary conditions must include both

an upward- and a downward-propagating mode, the growth rate of solutions with

the same vertical scale is generally reduced by perturbations in the transmissivity.

Now that we have some confidence in the ability of the model to reproduce

the results of the local theory when the coefficients of the problem are constant



with altitude, we shall apply the model to problems in which the coefficients, in

particular the radiative-dynamical feedback rate, are nonuniform.

One plausible vertical distribution of absorber is the exponential profile, in

which the absorber mixing ratio decreases exponentially with scale height h. As

an example of a case in which the feedback rate is strong enough to compete with

baroclinic instability, but is largely confined to the lower atmosphere, Figure 6.6

shows the radiative-dynamical feedback rate as a function of altitude, calculated

(neglecting perturbations in transmissivity) from an absorber distribution with a

surface maximum of 10-6 and a scale height of 10 km. The usual values for the

solar constant, etc., have been adopted. Perturbations in the transmissivity are

accounted for. The maximum feedback rate is about 7 x 10-6 s- 1, and occurs at

an altitude of about 15 km. Consistent with the analysis of Chapter 1, this is the

altitude at which the absorption optical depth equals the cosine of the solar zenith

angle. The distribution is seen to be quite broad, with a half-width of about 15

km. Figure 6.7 shows the numerical solution of the most rapidly amplifying eigen-

mode for the exponential absorber distribution used for Figure 6.6 and for a zonal

wavelength of 10,000 km and a meridional wavelength of 1000 km [these spatial

scales are chosen to minimize the Rossby wave frequency, and hence maximize the

vertical scale selectivity of the solution-see the discussion regarding (3.23)]. The

growth rate for this mode is 3.9 x 10- 6 s- 1, corresponding to an e-folding time

of about 3 days. The absorber amplitude is evidently modulated by the feedback

distribution, while the phase structure is very similar to the constant feedback

solution (see Figure 6.4).

For steeper gradients in the basic state absorber distribution, the maximum

feedback rate is larger, but the strong feedback is confined to a narrower region.

Figure 6.8 shows the feedback rate for a surface absorber mixing ratio of 3 x 10-6

and an absorber scale height of only 3 km. The maximum feedback rate is now



2.2 x 10-5 s - 1, but the half-width of the feedback distribution is less than 10 km.

The most rapidly amplifying modes must therefore be quite shallow. Because the

maximum feedback rate is much larger than the Rossby frequency for planetary-

scale perturbations, the growth rate of such shallow planetary-scale modes must

be, according to the local analysis, much less than the maximum feedback rate.

Thus, the growth rate of the most rapidly growing mode with zonal wavelength

10,000 km and meridional wavelength 1000 km is only 6.4 x 10-6 s- 1, much less

than the maximum feedback rate of 2.2 x 10- 5 s- 1. However, for perturbations

with sufficiently small zonal and meridional scales, k a k2 even for shallow modes.

The growth rate for such short, shallow modes can therefore be comparable to the

maximum feedback rate. For example, Figure 6.9 shows the numerical solution of

the most rapidly amplifying mode corresponding to the feedback rate illustrated in

Figure 6.8 and zonal and meridional wavelengths of 100 km. The growth rate for

this mode is 2.0 x 10- 5 s- 1, corresponding to an e-folding time of about 15 hours,

and nearly equal to the maximum feedback rate. The phase has little vertical

structure near the boundaries where the absorber amplitude is small, but increases

rapidly with height at altitudes near the maximum amplitude.

As discussed in Chapter 4, unless the imaginary part of the effective feedback

rate is comparable to the external Rossby wave frequency, the growth rate de-

pends only on the real part of the effective feedback rate, while the sign of the

eigenfrequency of the advective mode depends on the sign of the imaginary part

of the effective feedback rate. Because the sign of the imaginary part of the ef-

fective feedback rate depends on the sign of the vertical wavenumber, eigenmodes

dominated by vertical wavenumbers of opposite sign will have eigenfrequencies of

opposite sign. To illustrate this point, Figure 6.10 shows the solution for the sec-

ond most rapidly amplifying mode for the same conditions as in Figure 6.9. For

these parameter values the imaginary part of the effective feedback rate dominates



the external Rossby wave frequency, so that (4.20) is not satisfied for either pos-

itive or negative vertical wavenumber. The growth rate of this mode is nearly as

large as that of the most rapidly growing mode, but the frequency is of opposite

sign. The phase structure is similar to that illustrated in Figure 6.9, except that

at levels of large amplitude the phase decreases rather than increases rapidly with

height. Thus, the second most rapidly amplifying solution is dominated by a verti-

cal wavenumber of sign opposite to that of the most rapidly growing solution. The

sign of the frequency of these solutions is therefore opposite, while the growth rate

is nearly identical. Both modes are characterized by upward phase propagation;

one solution propagates westward, while the other propagates eastward.

A second plausible absorber distribution is the Gaussian, which has a local

maximum mixing ratio and hence yields regions of positive and negative radiative-

dynamical feedback. Such a distribution approximates the distribution of strato-

spheric ozone mixing ratio, and might apply to injections of aerosols from volcanoes

or fires. As an example which yields strong negative and positive feedback confined

to the interior of the model atmosphere, Figure 6.11 shows the feedback distribution

for a Gaussian absorber distribution with maximum mixing ratio 10- 7 at 15 km

and a standard deviation of 5 km. The usual values of the solar constant, etc., have

been used. The feedback is seen to be quite weak near the boundaries. Because

of the reduction of the mean transmissivity with depth, the feedback maximum

(5.6 x 10-6 s- 1) is somewhat larger in magnitude than the feedback mimimum

(-4.0 x 10 - 6 s-1).

Given such a feedback distribution, an obvious question is the following: do

unstable modes exist for each region of the atmosphere, or do the regions with pos-

itive and negative feedback cancel? Figure 6.12 shows the most rapidly amplifying

solution for the feedback distribution of Figure 6.11 and zonal and meridional wave-

lengths of 1000 km. The amplitudes in the region with positive feedback dominate



those in the region with negative feedback. Absorber transport is upward where

the absorber mixing ratio decreases with altitude, and weakly downward where the

mixing ratio increases with altitude. Consistent with these features, the growth

rate (4.3 x 10-6 s- 1) dominates the frequency (1.5 x 10- 7 s-l), indicative of an

essentially advective mode instability.

Other modes can be characterized as Rossby modes. Figure 6.13 shows the

vertical structure of the 1 5th (of 61) most rapidly amplifying solution for the same

case as in Figure 6.12. The amplitudes are largest in the region with negative

radiative-dynamical feedback. Absorber transport is primarily downward. Consis-

tent with the Rossby mode of instability, propagation is westerly, with a frequency

ar = -7 x 10- 7 s- 1, while the growth rate is smaller, oai = 3.1 x 10- 7 s- '. The

phase structure is suggestive of energy propagation away from the energy source,

i.e., the region of instability. Thus, we conclude that unstable modes exist in

both regions, with the structure of each mode consistent with the sign of the local

radiative-dynamical feedback.

In summary, while we have found plausible absorber distributions that yield

constant feedback rates, these distributions cannot possibly apply to all situations.

However, we have found that many of the features of numerical solutions for more

general absorber distributions can be explained on the basis of the theory developed

for uniform feedback. Thus, the local theory has proven to be a valuable tool in

understanding more complex problems involving radiative-dynamical interactions.
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Figure 6.9. Vertical structure of the most rapidly amplifying eigenmode for zonal
and meridional wavelengths of 100 km and the exponential absorber distribution
used in Figure 6.8. Perturbations in transmissivity are accounted for. Otherwise,
as in Figure 6.3.
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Figure 6.10. Vertical structure of the second most rapidly amplifying eigenmode
for zonal and meridional wavelengths of 100 km and the exponential absorber dis-
tribution used in Figure 6.8. Perturbations in transmissivity are accounted for.
Otherwise, as in Figure 6.3.
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Figure 6.11. Radiative-dynamical feedback rate a0 as a function of altitude for a
Gaussian absorber distribution with a maximum mixing ratio of 10 - 7 at 15 km and
a standard deviation of 5 km. Otherwise as in Figure 6.6.
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Figure 6.12. Vertical structure of the most rapidly amplifying eigenmode for zonal
and meridional wavelengths of 1000 km and the Gaussian absorber distribution used
in Figure 6.11. Perturbations in transmissivity are accounted for. Otherwise, as in
Figure 6.3.
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Figure 6.13. Vertical structure of the 15th most rapidly amplifying eigenmode
for zonal and meridional wavelengths of 1000 km and the Gaussian absorber dis-
tribution used in Figure 6.11. Perturbations in transmissivity are accounted for.
Otherwise, as in Figure 6.3.
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7. Effect of Vertical Shear

One of the assumptions made in the basic analysis of Chapter 3 is that vari-

ations in the basic state zonal flow can be neglected. This simplified the analysis

considerably. In fact, such an assumption is a poor approximation unless the

radiative-dynamical feedback is strong and vertical shear is weak. In this chapter

we shall consider the effects of relaxing that constraint, first in the case of weak

shear, and then for strong shear. For weak shear we expect to find a reduction in

the growth rate due to a disruption of the vertical structure of unstable modes.

For sufficiently strong shear baroclinic instability plays a role. In fact, we shall

find that while for sufficiently strong vertical shear the growth rate is enhanced

as the shear is increased, for weak shear the growth rate can either increase or

decrease with increasing shear. The dependence of the growth rate on the shear

is apparently quite complex. Moreover, the growth rate of unstable modes in the

presence of both strong vertical shear and strong radiative-dynamical feedback can

in some cases exceed that estimated in the absence of either shear or feedback.

Because vertical shear greatly complicates the analysis, we shall restrict the

problem to the quasi-geostrophic case (inertia-gravity waves, which are filtered

by the quasi-geostrophic approximation, have much larger phase speeds than any

realistic zonal velocities, and hence are relatively unaffected by realistic values

of the vertical shear). Then the linearized quasi-geostrophic potential vorticity

equation

f Po2 PozDv2, + ,0, + oD  z o 8z
fo Rq Z
po 8z c,N 2 RQ (7.1)

can be combined with the absorber balance and the relation between the heating

and the absorber concentration, to yield the following partial differential equation
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for the streamfunction o,

(D - a)2 (DV20 (D) + (D - a) )D D POz)]

f- af (Dizz - Ezdzz) = 0 (7.2)
N

2

where D = -ici + U(z)ik. To make further progress with this difficult problem,

Lindzen (1966c) resorted to the two-level model. We take the alternate approach

of restricting the analysis to the case in which vertical shear is weak while feedback

is strong; the effect of vertical shear is then considered as a perturbation to the

solution in the absence of shear. For simplicity, we also assume as in the Eady

(1949) problem of baroclinic instability that the atmosphere is finite with uniform

density, and neglect the meridional gradient of the Coriolis parameter. Then (7.2)

reduces to

f(D ) D2 & 
N 2  - a) D z 2 + (D - a) 2 DV 2 ?k- a (DG z -Uzzz) = 0 (7.3)

with boundary conditions

D'#, = iz z = O,H (7.4)

at the surface and at the top, H. Expanding D and 0& in powers of the expansion

parameter
z -

(7.5)
am

(7.3) and (7.4) become, to zeroeth order,

(Do - a) D o + (Do - a)2 DoV270o = 0 (7.6)

and

Do -o = 0 z = 0,H (7.7)
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Assuming normal modes in x, y, z and t, the streamfunction satisfying the

boundary conditions is

o = ao cos mz (7.8)

where the vertical wavenumber m is constrained by the boundary conditions, m =

nr/H, n = 1,2...

The solution Do = a is a spurious solution, while Do = 0 represents the Rossby

mode on an f-plane. The solution

k 2
Do = a (7.9)

3

is the familiar advective mode, which is unstable for positive a. This is the solution

about which we shall expand for weak vertical shear.

The first order expansions of (7.3) and (7.4) are

- (Do - a) D a z1 + (Do - a) 2 DoV 24 1k

oi 2  f 2

=-aDoDi - 2 m 2 a Doao sin mz (7.10)
N2  -N

2

and

D o  + D O = iam bo z = 0,H . (7.11)
8z az

Because the right-hand side of (7.10) is independent of 01, (7.10) can be regarded

as an inhomogeneous equation for ?1. D 1 is evaluated through the application of

the boundary conditions. The general solution of (7.10) can be written

01 = al cos mz + bl sin mz + kp (7.12)

where al and bl are arbitrary constants determined by the boundary conditions,

and ip is the particular solution of (7.10). Note that although there only two

boundary conditions, and hence two constraints to the first-order problem, there

are three unknowns, namely al, bl and the complex frequency al. However, the
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coefficient al can be arbitrarily set equal to zero with no loss of generality, be-

cause cos mz is proportional to o0 . The boundary conditions can then be used to

determine bl and the complex frequency, once the particular solution is known.

Expressing D 1 = -iolI + a imz, the particular solution of (7.10) can be written

iaoa (Imz 3a am 2 z2  amz
p = - s m sin mz - - sin mz - - sin mz + - cos mz .

Do (Do - a) 2 8 4 4
(7.13)

Application of the boundary condition at the surface determines bl, namely

b iaoa 1 + (7.14)
Do 8 (Do - a)

which is proportional to the amplitude of the zeroeth order solution, as it should be.

Application of the boundary condition at the top yields the first order perturbation

to the complex frequency

uzkH;u = (7.15)
2

Because aIl is pure real, the first-order effect of vertical shear is to alter the phase

speed but not the growth rate.

For modifications to the growth rate, the second-order problem

2 (Do - a) D + (Do - a) DoV2 2

_mf02 2
N2  z2

-aDoD i'm -o+D ( fom 2 ) o

+ L2 2im -D + i -aimo) (7.16)

and

Do + D + D2  = iamil z = 0, H (7.17)

must be considered. Rather than solve the full eigenvalue problem, we instead

invoke the solvability condition. Multiplying (7.16) by io, integrating over the
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depth of the atmosphere, and applying the boundary conditions (7.17), we can solve

for the second-order perturbation to the growth rate without explicitly solving for

b2 . Although we shall not present the derivation (which is quite complicated), the

solution for the perturbation to the growth rate can be written

- iik 2 N [ k fO m - 37k2 35f 24k (7.18)
16Dofm 2  4 N 2  m 2  N 2  m 2 k]

Note that because the growth rate depends on the square of the vertical shear, the

sensitivity to shear is the same for positive and negative shear. From numerical

solutions we shall find that this holds for strong shear as well as weak shear. For

deep waves (i.e., m = r/H), (7.18) reduces to

iu22 lN 2 H2 F 1 37 24k22 f
e2 02- H k2  + f (35 _ .2)] (7.19)

16Dof2r 2  4 2 2k N2

For waves much shorter than the deformation radius, k .~ k and Im(a2) is by

(7.19) negative, so that the total growth rate Im(uo + eug + E2 2) is less than

Im(oo), and weak vertical shear reduces the growth rate. For waves much longer

than the deformation radius, k < k2 and Im(a2) is positive, so that weak vertical

shear enhances the growth rate. For horizontal wavelengths comparable to the

deformation radius, k2 , 1 Q and a2 is very nearly zero. Thus, weak vertical shear

will reduce the growth rate if

fk' > _ om (7.20)2 N2H2 N 2

i.e., for waves shorter than the deformation radius, and enhance the growth rate

for longer waves. For an atmospheric depth of 9 km, (7.20) predicts the transition

to occur at a horizontal wavelength of about 2500 km. For waves shorter than this,

vertical shear reduces the growth rate, while for longer waves shear increases the

growth rate. However, for such long waves the variation of the Coriolis parameter

with latitude cannot be neglected. Moreover, the assumption of a finite atmo-

sphere with constant density is too restrictive to permit application to a realistic
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atmosphere. To make further progress, we therefore turn to numerical solutions of

the eigenvalue problem.

To extend the above analysis to stronger vertical shears, and to permit the

use of a semi-infinite, quasi-Boussinesq atmosphere on a a-plane rather than a

finite, Boussinesq atmosphere on an f-plane, we resort to numerical solutions of

the eigenvalue problem. In Chapter 6 a one-dimensional numerical model of the

quasi-geostrophic radiative-dynamical system is developed. Here we apply that

model to the case in which vertical shear is present in the basic state zonal flow. For

comparison with the above analysis, we shall first consider the case with uniform

feedback for a Boussinesq atmosphere on an f-plane.

Table 7.1 lists the growth rate of the most rapidly amplifying mode determined

numerically for various values of the vertical shear and the horizontal scale. The

same assumptions adopted in the foregoing analysis, namely a finite atmosphere (9

km top) with constant density on an f-plane, have been employed in the numerical

calculations. The basic state absorber distribution has been chosen such that the

feedback rate is a constant 3.2 x 10-6 s- 1, with perturbations in the transmissivity

neglected.

For sufficiently short perturbations, vertical shear has little effect on the insta-

bility. Baroclinic instability is not a factor for such waves and, because the growth

rate in the absence of shear is insensitive to the vertical scale of short perturbations,

shallow modes become increasingly more important as the shear is increased, but

the largest growth rate changes little.

For synoptic-scale perturbations (wavelength 1000 km), the growth rate is ev-

idently reduced by small amounts of shear. For stronger shear, the growth rate is

enhanced by the shear as baroclinic instability becomes increasingly more impor-

tant. For comparison, Table 7.2 lists the largest growth rate for the same cases

as Table 7.1, but in the absence of any radiative-dynamical feedback. Consistent
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with the Eady (1949) model of baroclinic instability, short waves are stable while

long waves are unstable, with growth rates proportional to the vertical shear. For

synoptic-scale waves, baroclinic effects enhance the radiative-dynamical instability

even though such waves are neutral under adiabatic conditions (in the Eady model

of baroclinic instability, the horizontal scale at which instability begins depends

on the atmospheric depth; for a 9 km atmosphere, the transition occurs at about

3500 km). The amount of vertical shear required to enhance rather than suppress

the instability depends on the strength of the radiative-dynamical feedback; for

stronger feedback, stronger shear is required. Note that weak feedback can desta-

bilize waves that under adiabatic conditions would be neutral. The growth rate

of the synoptic-scale waves for strong shear is larger than that in the absence of

either shear or radiative-dynamical feedback.

For planetary-scale perturbations (wavelength 10,000 km), the growth rate is

enhanced by the vertical shear for all vertical shears. This is to be expected on

the basis of (7.20). Indeed, (7.20) predicts the transition from suppression of the

growth rate to enhancement at horizontal wavelength 2500 km (for a model with a

top at 9 km), while numerical calculations indicate the transition occurs at about

2000 km. Because of this agreement, we can have some confidence in both the

analysis and the numerical calculations.

The problem becomes more complicated when the Boussinesq approximation

is relaxed, and variations in the Coriolis parameter and perturbations in the trans-

missivity are accounted for. Table 7.3 lists the growth rate of the most rapidly am-

plifying mode for various values of the vertical shear and horizontal wavelengths,

and a basic-state absorber distribution such that the feedback rate is a uniform

2.3 x 10-6 s- 1 in a 30 km atmosphere.

In the absence of vertical shear the maximum growth rates for each horizontal

scale are similar to those of Table 7.1, except for the planetary scale waves, for
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which the / term enhances the instability (recall that if the feedback rate is much

less than the Rossby frequency the growth rate equals the feedback rate, whereas

if the feedback rate dominates the Rossby frequency the growth rate is much less

than the feedback rate for long shallow waves).

Consistent with the results on the f-plane, the growth rate of the short waves

is insensitive to vertical shear. However, the vertical scale of the most rapidly

growing mode is restricted under strong shear.

For synoptic-scale waves, we find again that weak shear reduces the growth

rate, while strong shear enhances the growth rate. For comparison, Table 7.4 lists

the growth rate of the most rapidly amplifying modes in the absence of radiative-

dynamical feedback. There is a strong correspondence between those cases in which

vertical shear enhances the growth rate of the radiative-dynamical interaction and

those cases in which the shear exceeds the adiabatic threshold for instability. For

strong shear the growth rate with feedback is stronger than either that without

feedback or without shear, indicating that relatively weak feedback can enhance

the growth rate of synoptic-scale baroclinic waves. In all cases the growth rate

does not exceed the sum of the feedback rate and the adiabatic growth rate.

For planetary-scale waves we find that, contrary to the analysis on the f-plane,

weak shear suppresses the radiative-dynamical instability. For sufficiently strong

shear, the growth rate increases, but does not exceed that associated with adiabatic

baroclinic instability.

In summary, vertical shear is found to have little effect on the growth of

radiative-dynamical modes that are both neutral with respect to adiabatic baro-

clinic instability, and short enough so that the vertical scale can shift without re-

ducing the growth rate. For waves that are baroclinically unstable in the absence of

radiative-dynamical feedback, the feedback can, depending on the horizontal scale

of the wave, either enhance or reduce the growth rate. In either case the growth
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rate with both feedback and shear is less than the sum of the feedback rate and

the adiabatic growth rate.

Table 7.1. Vertical shear with uniform feedback on an f-plane.

Growth rate (s - 1) of the most rapidly amplifying mode, based on numerical
solutions of the eigenvalue problem for a Boussinesq atmosphere of depth 9 km on a
midlatitude f-plane, with a uniform radiative-dynamical feedback rate of 3.2 x 10-6
s- 1. Perturbations in transmissivity are neglected.

Vertical shear Horizontal wavelength (km)

(m s- 1 km - 1) 100 1000 10,000

0.0 3.266 x 10- 6  2.786 x 10 - 6  1.864 x 10 - 7

0.01 2.988 x 10-6 2.777 x 10-6 1.888 x 10- 7

0.1 2.751 x 10- 6  1.925 x 10-6 3.037 x 10- 7

1.0 4.024 x 10- 6  1.963 x 10 - 6  1.662 x 10- 6

10.0 4.430 x 10- 6  1.091 x 10- 5  1.519 x 10- 5

Table 7.2. Vertical shear without feedback on an f-plane.

As in Table 7.1, but without radiative-dynamical feedback. Equivalent to the
Eady (1949) problem of baroclinic instability.

Vertical shear Horizontal wavelength (km)

(m s- 1 km - 1) 100 1000 10,000

0.0 0.0 0.0 0.0
0.01 0.0 0.0 1.503 x 10-8
0.1 0.0 0.0 1.503 x 10-7
1.0 0.0 0.0 1.503 x 10-6

10.0 0.0 0.0 1.503 x 10- 5
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Table 7.3. Vertical shear with uniform feedback on a /-plane.

Growth rate (s - 1) of the most rapidly amplifying mode, based on numerical
solutions of the eigenvalue problem for a quasi-Boussinesq atmosphere of depth 30
km (1 km resolution) on a midlatitude /3-plane, with a uniform radiative-dynamical
feedback rate of 2.3 x 10-6 s- 1. Perturbations in transmissivity are accounted for.

Vertical shear Horizontal wavelength (km)

(m s- 1 km - 1) 100 1000 10,000
0.0 2.299 x 10-6 2.042 x 10-6 1.307 x 10-6
0.01 2.263 x 10-6 2.024 x 10-6 1.283 x 10- 6

0.1 2.338 x 10-6 1.199 x 10-6 1.325 x 10-6
1.0 2.381 x 10- 6  2.945 x 10-6 5.925 x 10- 7

10.0 2.382 x 10-6 9.924 x 10-6 2.303 x 10- s

Table 7.4. Vertical shear without feedback on a 3-plane.

As in Table 7.3, but without radiative-dynamical feedback. Equivalent to the
Charney (1947) problem of baroclinic instability.

Vertical shear Horizontal wavelength (km)
(m s- 1 km - 1) 100 1000 10,000

0.0 0.0 0.0 0.0
0.01 0.0 0.0 0.0
0.1 0.0 0.0 0.0
1.0 0.0 8.387 x 10- 1 6.453 x 10- 7

10.0 0.0 5.750 x 10-6 2.311 x 10- 5
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8. Effect of Scattering

Although absorbers of solar radiation such as ozone and water vapor do not

scatter significant amounts of sunlight, aerosols such as those associated with

Martian dust storms, volcanic eruptions, and the proposed "nuclear winter" phe-

nomenon typically scatter at least as much sunlight as they absorb (Pollack et al.,

1976, Pollack et al., 1979; NRC, 1985). Thus, for applications to aerosols, the

effects of scattering on the radiative-dynamical interaction should be considered.

Here we do so by generalizing the numerical model of the linear instability prob-

lem introduced in Chapter 6. We shall find that scattering can either increase

or decrease the radiative-dynamical instability, depending on whether the aerosols

scatter sunlight primarily to other particles or to space.

Within the context of a discrete linear model, the perturbation radiative heat-

ing can be more generally related to perturbations in absorber concentration ac-

cording to the Jacobian,

q' q - 4 = Jq' (8.1)

where the vector Q represents the radiative heating in a set of discrete model layers,

the vector q denotes the absorber mixing ratio at an equal number of discrete levels,

and

aqi*ii = (q = ) (8.2)

is the Jacobian of the heating rate with respect to the absorber distribution. In the

absence of scattering, the Jacobian can be defined analytically; the Jacobian is a

diagonal matrix if perturbations in the transmissivity are neglected. For the more

general case with scattering it is not possible to determine the Jacobian analytically;

we therefore resort to numerical means. In particular, we first determine the solar

heating rate for the basic state, using an appropriate solar radiation model [here

we shall use Wiscombe's (1977) delta-Eddington model, which is accurate even for
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scattering that is highly anisotropic]. The Jacobian is then evaluated by separately

adding a small amount of absorber in each model layer, calculating the heating in

all layers, and subtracting the basic-state heating.

Table 8.1 lists the growth rate of the most rapidly amplifying mode determined

in the above manner for several different single-scattering albedos (the ratio of the

scattering coefficient to the extinction coefficient) and solar zenith angles. The

exponential distribution has been assumed for the absorber mixing ratio, with

a surface mixing ratio of 10-6 and a scale height of 10 km. The same specific

absorption coefficient (1000 m 2 kg - 1) has been used in each case, with only the

specific scattering coefficient and solar zenith angle altered. Scattering is assumed

to be isotropic, and the surface is perfectly absorbing. The zonal and meridional

wavelengths have been assumed to be 1000 km.

When the sun is directly overhead (,u = 1), an increase in scattering increases

the maximum growth rate. This occurs because the scattering increases the path

length, and hence the number of aerosols a photon will encounter. Absorption

therefore increases, and the radiative-dynamical feedback is enhanced.

For a 600 solar zenith angle, scattering does not significantly increase the path

length. In this case another factor becomes important, namely the effective re-

duction in the solar constant due to the scattering of energy to space. Absorption

is reduced by scattering, and the maximum growth rate decreases with increasing

scattering.

Thus, two processes associated with scattering, namely increased path length

due to multiple reflections, and reduced insolation due to scattering to space,

compete to alter the radiative-dynamical interaction. Which process dominates

depends upon the solar zenith angle and the aerosol scattering angle (which in

two-stream models is expressed in terms of an asymmetry factor). When the single

120



scattering albedo of an aerosol is 0.98 (which is appropriate for dust), scattering

can either enhance or reduce the growth rate by some 30%.

The calculations of Table 8.1 assume scattering is isotropic. In fact, scattering

of sunlight by aerosols is primarily in the forward direction. An asymmetry factor

of at least 0.5 is more appropriate for most aerosols. Table 8.2 lists the maximum

growth rates for the same cases as in Table 8.1, except with an asymmetry fac-

tor of 0.5. In the absence of scattering, the growth rates are independent of the

asymmetry factor. When scattering becomes predominant, we find that the growth

rates are larger with forward scattering than with isotropic scattering. This reflects

the smaller fraction of sunlight that is reflected to space with forward scattering

than with isotropic scattering. Thus, with forward scattering the growth rate is

increased by scattering for a wider range in solar zenith angles than for isotropic

scattering.

The same technique used to treat the effects of scattering can also be applied

to infrared radiative processes. The perturbation longwave heating is determined

from the difference between numerical solutions of infrared heating for basic state

and perturbation temperature and absorber profiles. Unfortunately, we have found

that because of the presence of undamped computational modes associated with

the vertical interpolation of temperature, the growth rate of the most rapidly am-

plifying solution changes little when the effect of infrared heating associated with

either temperature perturbation or absorber perturbations is accounted for. Thus,

we have been unable to realistically determine the effects of longwave radiative

processes on the radiative-dynamical instability.
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Table 8.1. Isotropic scattering.

Growth rate (s- 1) of the most rapidly amplifying mode, based on numerical
solutions of the eigenvalue problem for a mid-latitude 3-plane. The basic state
absorber mixing ratio decays exponentially with scale height 10 km from a surface
mixing ratio of 10- 6. The absorption coefficient is 1000 m2 kg - 1 . Scattering is
isotropic, with no reflection from the surface. The zonal and meridional wave-
lengths are both 1000 km.

Single-scattering
albedo p -= 1 L = 0.5

0.0 6.35 x 10-6 4.67 x 10-6
0.5 7.20 x 10- 6  4.64 x 10-6
0.98 8.30 x 10-6 3.32 x 10-6

Table 8.2. Forward scattering.

As in Table 8.1, but with an asymmetry factor for scattering equal to 0.5.

Single-scattering
albedo =1 = 0.5

0.0 6.35 x 10-6 4.67 x 10-6
0.5 7.10 x 10-6 4.63 x 10-6
0.98 9.13 x 10-6 3.63 x 10-6
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9. Application to Smoke Lofting

Simulations of the so-called "nuclear winter" by GCMs have indicated substantial

lofting of smoke caused by the absorption of sunlight and consequent warming. This result

is consistent with the upward absorber transport by the advective mode of instability in

the present theory of radiative-dynamical instability. There are however, several reasons

to believe that the lofting mechanism simulated in the GCM experiments may not be the

same as the theoretical advective mode.

First, the vertical gradient of smoke mixing ratio in the simulations is large only for

a very limited range in altitude, so that the range of strong radiative-dynamical feedback

is quite narrow. The most unstable modes would therefore, according to the theory, also

be quite shallow. Also according to the theory, the growth rate is largest for waves for

which the three-dimensional and two-dimensional wavenumbers squared are similar, i.e.,

for waves that are short and deep. Because waves must be shallow to experience maximum

feedback, they must also be extremely short to amplify rapidly. It is therefore unlikely that

the GCM simulations, with horizontal grid sizes of typically 500-1000 km, are resolving

much of the lofting predicted by theory.

Because the GCM simulations do in fact exhibit substantial lofting, the natural ques-

tion to ask is, by what mechanism? Why does the theory of radiative-dynamical instability

fail to predict rapid lofting on the large scales evident in the GCM simulations? Although

the theory in its present form has several shortcomings, the outstanding deficiency is its

reliance on the assumption of a horizontally uniform basic state. In all GCM simulations

of "nuclear winter," the initial smoke distribution is confined to one or several continental-

scale regions. The heating gradients that develop from such inhomogeneous conditions

produce pressure gradients that drive convergence beneath the smoke plume and lofting

of the smoke to higher altitudes. Thus, the lofting occurs primarily as a result of the

initial horizontal gradients in the smoke distribution (variations in the solar zenith angle
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higher altitudes. Thus, the lofting occurs primarily as a result of the initial hori-

zontal gradients in the smoke distribution (variations in the solar zenith angle also

contribute to the differential heating). The lofting is not an unstable normal mode

of the radiative-dynamical system because advection of the smoke is not necessary

for the vertical motion to occur. Thus, even if the theory of radiative-dynamical

instability were generalized to treat horizontal inhomogeneities in the initial smoke

distribution, it would still fail to predict the smoke lofting mechanism exhibited in

the GCM simulations because such lofting is not a modal instability (i.e., growth

is not exponential). In this sense the GCM-simulated nonmodal smoke lofting

resembles the nonmodal form of baroclinic instability discussed by Farrell (1984).

The remaining question is whether, if the horizontal resolution of a numerical

model was fine enough, the small-scale modal form of smoke lofting predicted by

the present theory would be evident in simulations initialized with smoke patches.

If the initial smoke distribution fills the horizontal domain, then nonmodal loft-

ing would not occur and smoke lofting would be dominated by short horizontal

scales as predicted by theory (if the variation of the solar zenith angle is accounted

for, nonmodal lofting would occur on planetary scales even for a uniform smoke

distribution; we shall neglect this effect as it can be approximated by a planetary-

scale smoke patch with a uniform solar zenith angle). If the initial smoke patches

are the same size as the dominant unstable modes predicted by theory, then the

modal lofting would coincide with the nonmodal lofting; it would be difficult to

distinguish the two lofting mechanisms in this case. If the initial smoke patches

covered a fraction of the domain but were much larger in horizontal scale than those

that amplify as unstable modes, then nonmodal lofting would dominate early in

the simulation, but at later times the exponentially growing modes would amplify

sufficiently to be observable in the simulations. Thus, it seems that for smoke
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patches that are sufficiently small, the modal lofting would probably be indistin-

guishable from the nonmodal lofting, while for larger smoke patches the small-scale

modal lofting would, in the absence of nonlinear effects, eventually dominate the

large-scale nonmodal lofting.

It is not obvious for which smoke patch sizes the small-scale lofting predicted by

the present theory would be distinguishable from that associated with the lofting

of the smoke patches themselves. Moreover, other instabilities (i.e., convective, in-

ertial, or inertio-convective) could be induced as a result of the nonmodal response

to the smoke. In order to address this question, numerical simulations of smoke

lofting are necessary, using a model with a horizontal grid size sufficiently small to

resolve the unstable modes predicted by theory. By varying the horizontal scale

of the smoke patch, the patch size separating the modal and nonmodal forms of

lofting can be determined.

To properly address these issues a three-dimensional numerical model on a 3-

plane or preferably on a sphere should be used. But the cost of such a model with

fine horizontal resolution would greatly limit the number of experiments that could

be performed. However, if one is not concerned with the effect of the differential

rate of horizontal advection by vertical shear, and if one considers only horizontal

scales which are short enough that the radiative-dynamical feedback rate is much

larger than the Rossby wave frequency, then a two-dimensional model should be

capable of addressing the issue of the competition between modal and nonmodal

lofting, at a small fraction of the cost. Thus, although we recognize that a three-

dimensional global model may ultimately be required, we choose to first treat the

problem with a two-dimensional slab-symmetric primitive equation model on an

f-plane.

For simplicity we shall use a dry model, i.e., a model in which clouds are ne-

glected and water vapor is not a prognostic variable. To treat the stabilizing effects
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of water vapor on the lapse rate we shall convectively adjust the lapse rate to that of

a moist adiabat if the lapse rate exceeds that of a moist adiabat. Moreover, to treat

the additional stabilizing effects of other processes such as baroclinic instability, we

also adjust the lapse rate such that the potential temperature always increases with

altitude at a rate exceeding 3 K km - 1 . (This adjustment was implemented mainly

to produce a realistic initial state; for the absorber injections considered here the

radiative-dynamical feedback is largest in the stratosphere, so that the adjustment

does not directly affect the development of the instability). For the radiative ef-

fects of water vapor in the atmosphere we assume a constant absolute humidity as

a function of height only, using the AFGL midlatitude summer profile. Longwave

radiative cooling is treated using the Harshvardhan et al. (1987) broad-band param-

eterization. Solar heating is simulated with the Wiscombe (1977) delta-Eddington

model used in Chapter 8, with a uniform solar zenith angle. Radiative constituents

are water vapor, carbon dioxide, ozone and (optionally) smoke for the longwave,

and ozone and smoke for the short wave. The surface temperature is prescribed

as for an ocean-covered planet, with simple drag laws for the exchange of heat

and momentum at the surface. Sub-grid scale horizontal mixing is represented by

a Smagorinsky (1963) type parameterization. Details of the numerical model are

given in Appendix C.

This simple treatment neglects many aspects of the "nuclear winter" hypothe-

sis. It is not, however, our intention to try to simulate all aspects of the proposed

phenomenon. Rather, we are primarily concerned with the possibility that the

GCM simulations have not properly resolved the smoke lofting and, implicit in

the vertical distributions of the initial smoke concentration, may have neglected

substantial smoke lofting that might occur on meso-scales during the first days

before the smoke spreads to the scales resolved by the GCMs. Although such
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model features as a spatially varying solar zenith angle and treatments of pre-

cipitation scavenging and horizontal spreading associated with vertical shear are

undoubtedly important in determining the climatic consequences of a nuclear war,

they are not necessary to address, in an approximate manner, the specific issue of

lofting on small scales. If it is found that the GCM simulations have in fact un-

derestimated smoke lofting, or used inappropriate initial smoke distributions, then

further investigation using sophisticated three-dimensional models with relatively

fine horizontal resolution is warranted.

The initial conditions for all experiments consist of the appropriate smoke in-

jection plus the radiative-convective equilibrium solution for a uniform distribution

of surface temperature. The initial state is therefore at rest, with the vertical dis-

tribution of potential temperature illustrated in Figure 9.1. In all experiments

the atmosphere is represented by an infinite slab with a total of 30 levels spaced

equally in height between the surface and 30 km. To evaluate the effect of varying

the horizontal resolution and the smoke patch size, the horizontal domain and the

horizontal grid spacing are altered for some experiments.

To simplify comparisons, the same vertical distribution of smoke is chosen

for all experiments. This consists of a Gaussian distribution with altitude. The

maximum smoke mixing ratio is 10-6 at 10 km. The standard deviation is 5

km. The vertically integrated absorber concentration for such a distribution is

comparable to concentrations typically employed as initial conditions for global

simulations of "nuclear winter" (Covey et al., 1984). The height dependence is

similar to that of typical smoke mixing ratio profiles calculated in simulations of

the smoke plume that might develop over burning cities (Penner et al., 1986). The

resulting distribution of the radiative-dynamical feedback rate is shown in Figure

9.2. To crudely account for the diurnal cycle the solar zenith angle is 600, which

represents the appropriate average for the illuminated half of the globe, while
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the solar constant has been reduced by a factor of two, to 680 Wm - 2 . This same

treatment is employed in the numerical simulations. The usual value for the specific

absorption, 103 m2 kg - 1, is used; although the specific absorption of soot can be

as large as ten times this value, it is the product of the absorption coefficient and

the smoke mixing ratio that matters, so that the same feedback distribution results

for a larger absorption coefficient and a smaller smoke concentration. The Briint-

Vaisala frequency is chosen to be 1.6 x 10-2 s- 1, which is larger than the value

used previously, but is more appropriate for the stratosphere where, according to

Figure 9.2, the feedback rate is largest. The maximum feedback rate is nearly 8 x

10-6 s- 1 at about 17 km. Below 10 km the feedback rate is of course negative, but

is quite weak due to low transmission of sunlight through the smoke patch.

The first issue which must be addressed is the manifestation of the instability

in optimal conditions, i.e., those for which the radiative-dynamical instability is

resolved, but nonmodal lofting is prohibited. Figure 9.3 shows the absorber mixing

ratio after 20 days of integration following initialization with a uniform horizontal

distribution of absorber mixing ratio. The horizontal domain is 1000 km, with a

10 km resolution. Deep rising plumes of high absorber concentration are evident

on horizontal scales that are quite short, typically 100 km, but are nonetheless well

resolved by the model.

To compare with the theory of radiative-dynamical instability, Figures 9.4 and

9.5 show vertical profiles of absorber transport from the above simulation at 20 days

and from the most rapidly amplifying eigenmode calculated for a 100 km horizon-

tal wavelength and the feedback distribution illustrated in Figure 9.2. The theory

evidently predicts the altitude of maximum upward absorber transport fairly ac-

curately, but the simulated absorber transport is much broader, with respect to

altitude, than the first eigenmode; additional eigenmodes probably also contribute
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to the upward absorber transport. Consistent with the analysis of Chapter 6, ab-

sorber transport is downward in the simulation below 10 km, the level of maximum

absorber mixing ratio; while such transport might be interpreted as being due to

unstable propagating modes (in this case inertia-gravity waves), it is more likely

that the downward transport is due to numerical diffusion associated with noise

on the shortest scales resolved by the model.

We shall now consider smoke patches that are substantially smaller than the

model domain. Such a treatment is appropriate even for smoke distributions that

are globally uniform because insolation varies on the planetary scale. As discussed

above, lofting due to the radiative-dynamical instability can be distinguished from

nonmodal lofting only if the smoke patch size is much larger than the horizontal

scales expected to be important for the radiative-dynamical instability. Because

the plume scales evident in Figure 9.3 are much shorter than the model domain,

it may be possible to isolate the two modes of lofting within a 1000 km model

domain. Figure 9.6 shows the absorber mixing ratio 10 days following a Gaussian

injection with a standard deviation of 300 kmin, shorter than the model domain,

but longer than the horizontal scales expected for radiative-dynamical instability.

Rapid nonmodal lofting is evident, such that after 10 days significant absorber

mass has reached the 30 km model top, and the experiment must be terminated.

No evidence exists of absorber transport on scales other than that of the absorber

injection. Although the radiative-dynamical instability might conceivably emerge

upon further integration with a larger model domain, other processes are likely to

interfere with the interpretation of the simulation results. In particular, Figure 9.7

shows the Ertel potential vorticity (the product of the absolute vorticity with the

vertical gradient of potential temperature) 10 days following the absorber injec-

tion. A region of negative potential vorticity has developed in the vicinity of a jet

formed by the circulation. Slantwise convection (Emanuel, 1983) is likely to arise
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in this region. The narrow scale of such circulations could easily be confused with

that associated with radiative-dynamical instability. It is therefore unlikely that

radiative-dynamical instability can be identified for absorber injections as narrow

as 300 km.

For broader absorber injections the likelihood of isolating the radiative-dynamical

instability increases. Figure 9.8 shows the absorber mixing ratio 30 days after a

Gaussian injection with a 3000 km standard deviation. The model domain has been

extended to 10,000 km, while the grid spacing has been increased to 33 km. In

this case nonmodal lofting is greatly reduced due to the broad absorber injection.

Modal lofting associated with radiative-dynamical instability is clearly evident,

with mesoscale perturbations in absorber concentration protruding upward from

the top of the absorber patch. Although the potential vorticity at 30 days is re-

duced nearly to zero in pockets within the vicinity of the mesoscale circulations,

the circulations develop before the low potential vorticity arises, so that the low

potential vorticity is more likely a result than a cause of the mesoscale circulations.

The horizontal scale of the mesoscale circulations, about 500 km, is somewhat

shorter than the deformation radius but certainly not as short as might be ex-

pected on the basis of the modal theory. The shorter scales have been damped

by horizontal mixing parameterized in the model to prevent the accumulation of

energy on the shortest resolved scales. Without such mixing inertial instabilities

develop before the circulations are strong enough to transport a significant amount

of absorber upward.

To compare the modal versus nonmodal lofting, Figure 9.9 shows vertical pro-

files of the absorber transport at days 10 and 30 following the injection. At day 10

the mesoscale circulations have not yet developed, so that the absorber transport

is principally of the nonmodal type. Note the strong correspondence between the

vertical profile of the absorber transport at day 10 and the vertical distribution of
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the absorber. This is due to the deep vertical scale of the nonmodal circulation,

which arises as a result of convective mixing of the radiative heating through-

out the troposphere. The fact that the transport is greatest near the altitude of

maximum absorber mixing ratio, where the radiative-dynamical feedback rate is

zero, is unmistakable evidence that the transport at day 10 is not associated with

the modal instability. By day 30 the absorber transport in the troposphere has

decreased somewhat, probably due in part to spurious numerical diffusion of ab-

sorber mass below the level of maximum absorber mixing ratio. Absorber transport

at higher altitudes has increased substantially. Because the absorber distribution

has actually shifted very little in 30 days, it is unlikely that this increase in ab-

sorber transport is due to nonmodal lofting. Rather, we can ascribe the increase

in transport to the modal form associated with radiative-dynamical instability. It

is evidently comparable to the nonmodal transport which dominates early in the

simulation.

The final question is the effect of model resolution on the absorber transport. If

the transport is dominated by the modal type, which is most rapid on mesoscales,

then we expect the total transport to be reduced in a model with much coarser

horizontal resolution. Figure 9.10 shows vertical profiles of the absorber transport

30 days following the same absorber injection (the 3000 km Gaussian distribution)

and model domain (10,000 km) but for two different horizontal resolutions, namely

33 km and 330 km. The absorber transport 30 days post injection is, as expected,

significantly greater for the high resolution experiment, with a factor of two dif-

ference in the maximum transport rate (nonmodal transport limits the effect of

model resolution on total transport). It should be noted, however, that this result

is dependent upon the treatment of horizontal mixing. In these experiments the

horizontal mixing length for the coarse resolution model is, following Smagorinsky

(1963), 10 times as large as that for the fine resolution model. If, instead, the
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same mixing length used for the fine resolution model (10 km) is also used for the

coarse model, the absorber transport for the two experiments is quite comparable.

This occurs because the strong mixing of the shortest scales in the fine resolution

model damps all scales shorter than 500 km (see Figure 9.8), so that the vertical

transport is accomplished by the same scales in each experiment. Because such

scales are not as small as those expected to dominate in the radiative-dynamical

instability, we would expect the absorber transport associated with the instability

to be greater yet in a model with sufficiently fine resolution that the mesoscales

need not be subjected to mixing. Such a model is, however, impractical for such a

large domain even for two-dimensional flow.

To understand the parametric dependence of these results, let us compare the

nonmodal vertical velocity with the modal vertical velocity. Neglecting the P term,

the Rossby wave equation (3.9) for perturbations of the form (3.14) reduces to

k2 RQW = 2 (9.1)
3Q cPoN2 H

Here k and k are the squared wavenumbers consistent with the spatial scales

of the heating. Note that vertical motion for a given heating rate is greatest for

heating with horizontal scales much less than the internal deformation radius, with

the adiabatic cooling of ascent exactly balancing the diabatic heating. For larger

horizontal scales some of the diabatic heating is used to change the temperature

distribution, so that vertical motions are less vigorous. We shall now apply (9.1)

to both the modal and nonmodal circulations.

For the nonmodal circulation, Q = SoapoqT and (9.1) becomes

S= RSoaqT (9.2)
k cpN 2 H

Here the squared wavenumbers k and 1Q and the absorber mixing ratio q and

transmissivity T are taken to be consistent with the spatial scales and density of

the absorber patch.
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For modal circulations we assume that an initial mesoscale perturbation ab-

sorber mixing ratio q'(O) almost immediately produces a perturbation vertical ve-

locity which amplifies exponentially with time,

- RSoaTq'(O) eit (9.3)
cN 2 H

Here q'(0) can be taken as the projection of the initial smoke patch onto horizontal

modes much smaller than the internal deformation radius (i.e., k2 ).

Comparing (9.2) and (9.3), we find that the ratio

W q(O) eit  (9.4)
w k

is initially small provided the horizontal scale of the absorber patch is comparable

to or smaller than the internal deformation radius (i.e., k2 - kI) and provided the

initial mesoscale absorber perturbation is much smaller than the absorber mixing

ratio at the level of maximum heating. Under such conditions the modal circula-

tion will not be evident until the instability has amplified sufficiently. Even then

it will be difficult to identify modal circulations unless their horizonal scales are

much shorter than that of the absorber patch. However, for absorber patches

much broader than the internal deformation radius (k2 <« k2) the modal circula-

tion, though perhaps initially weaker than the nonmodal flow, will rather quickly

overcome the relatively weak nonmodal circulation. At this point the linearization

probably breaks down, and the amplification no longer continues exponentially.

To summarize, we have been able to distinguish between modal and non-

modal forms of smoke lofting when the smoke patch scale is much larger than

the mesoscales expected to dominate modal lofting. In this case the nonmodal

lofting dominates initially, but modal lofting eventually exceeds the nonmodal loft-

ing. If the smoke patch size is comparable to the mesoscale then it is unlikely that

the modal and nonmodal forms of lofting can be distinguished.

133



The fact that we have only been able to identify the modal form of lofting in

simulations in which absorber transport is actually quite slow does not necessarily

imply that the radiative-dynamical instability is of minor importance. We have

assumed quiescent initial conditions in all of our simulations, whereas in reality

ambient perturbations associated with orographic and convective forcing would

accelerate the emergence of the mesoscale radiative-dynamical instability. The

growth rates predicted by the theory are quite rapid for the absorber profile chosen

in the above experiments (the e-folding time for the mode illustrated in Figure

9.5 is about 2 days), so that the delay in the emergence of the modal lofting

is mainly due to the weakness of mesoscale absorber perturbations in the initial

conditions (small perturbations associated with the projection of the mesoscale

modes onto the initial absorber distribution are probably what eventually emerge as

the modal instability). If we had chosen to initialize the experiments with arbitrary

mesoscale perturbations of absorber and vertical velocity the radiative-dynamical

instability might have become evident more rapidly, but the results would have

been dependent on the magnitude of the initial perturbations. We have chosen the

more conservative quiescent initial state to avoid such ambiguities.
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Figure 9.1. Vertical distribution of potential temperature at radiative-convective
equilibrium for a uniform surface temperature of 300 K and midlatitude summer
profiles of water vapor and ozone.
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Figure 9.2. Vertical distribution of radiative-dynamical feedback corresponding to
a Gaussian absorber distribution with a maximum absorber mixing ratio of 10- 6

at 10 km and a standard deviation of 5 km. The solar zenith angle is 600, the
solar constant 680 W m - 2 , the static stability N = 1.6 x 10-2s -1 , and the specific
absorption is 103 m2 kg- 1 .
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Figure 9.3. Absorber mixing ratio (mg/kg) 20 days following a horizontally uniform
injection of absorber with the vertical distribution given by that used for Figure
9.2. The model resolution is indicated by the tic marks.
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Figure 9.4. Vertical distribution of horizontal mean upward absorber transport
20 days following a horizontally uniform injection of absorber with the vertical
distribution given by that used for Figure 9.2.
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Figure 9.5. Vertical distribution of upward absorber transport for the most rapidly
amplifying eigenmode corresponding to zonal and meridional wavelengths of 100
km and the feedback distribution illustrated in Figure 9.2. Based on numerical
solution of the eigenvalue problem as described in Chapter 6 and Appendix B.
Perturbations in transmissivity are accounted for; the P term is not.
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Figure 9.6. Absorber mixing ratio (mg/kg) 10 days following an absorber injection
with a Gaussian horizontal distribution (standard deviation 300 km) and the vertical
distribution given by that used for Figure 9.2.
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Figure 9.7. Ertel potential vorticity (K m-1 s-1), defined as the product of the ab-
solute vorticity and the vertical gradient of potential temperature, 10 days following
the absorber injection described for Figure 9.6.
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Figure 9.8. Absorber mixing ratio (mg/kg) 30 days following an absorber injection
with a Gaussian horizontal distribution (standard deviation 3000 km) and the ver-

tical distribution given by that used for Figure 9.2. The model domain is 10,000
km, with a horizontal grid spacing of 33 km.
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Figure 9.9.
(solid line)
Figure 9.8.

Vertical distribution of horizontal mean upward absorber transport 10
and 30 (dashed line) days following the absorber injection described for
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Figure 9.10. Vertical distribution of horizontal mean upward absorber transport
30 days following the absorber injection described for Figure 9.8, for a 33 km
model resolution (solid line) and a 330 km resolution (dashed line). The horizontal
mixing lengths ft the finffn d coarse resolution models are 10 km and 100 km,
respectively.
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10. Applicatibo to Morton-Taylor-Turner Theory

One of the underlying ass mptions of the preceding chapters is the hydrostatic

approximation, which is vali1 for perturbations in which the horizontal scale is

much larger than the verticel scale. Such an approximation is not a necessary

condition for unstable radiat ve-dynamical interactions to occur. In this chapter

we consider the application of radiative heating to a classic theory of nonhydrostatic

thermal convection, namely he similarity theory of Morton, Taylor, and Turner

(1956, hereafter referred to as MTT). We shall find unstable radiative-dynamical

interactions, but by a compl tely different mechanism.

The MTT theory of con vection makes three basic assumptions, namely, (i)

"that the rate of entrainme4t at the edge of the plume or cloud is proportional

to some characteristic veloci y at that height," (ii) "that the profiles of mean ver-

tical velocity and mean buoyancy force in horizontal sections are of similar form

at all heights," and (iii) "that the largest local variations of density in the field of

motion are small in compari on with some chosen reference of density, this refer-

ence being taken as the dens ty of the ambient fluid at the level of the (buoyancy)

source." As originally form lated, the theory also relies on the Boussinesq ap-

proximation, which permits application to problems of all kinds of gravitational

convection. Because we are 4oncerned here only with thermal convection, we shall

cast the problem somewhat differently. To retain accuracy for problems involv-

ing ascent through several sqale heights, the Boussinesq approximation is replaced

by the quasi-Boussinesq approximation. Thus, assumption (iii) is replaced by the

assumption that the tempe ature difference between the plume or cloud and the

ambient atmosphere is sm compared with the ambient temperature.

The MTT theory consi ers two cases, namely, (i) that of the equilibrium re-

sponse to a maintained buo ancy source, and (ii) that of the transient response to
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an instantaneous buoyancy source. In the former case the response is characterized

as a conical plume, whereas in the latter case the response is described as a spher-

ical cloud, or thermal. We are concerned here with the latter case, in which all of

the absorber is contained within the cloud. Because the absorption of sunlight is

the buoyancy source, we shall drop the instantaneous buoyancy source of MTT.

Consider a sphere of radius r and potential temperature 8 rising at velocity w

through an ambient atmosphere of potential temperature Go(z). Then the mass,

momentum, heat and absorber balances for the sphere can be written

dM
SSE (10.1)

dt

dw
M d = Mb - SwE (10.2)

dt

Mdb -M N 2 w - - SbE (10.3)
dt cpp oH

M = -SqE (10.4)
dt

where
4

M = 7rpor 3  mass
3

S = 47por2  surface area

E = e w I  entrainment velocity

b (T - To) buoyancy
To

N=  g dOo
Oo dz

Defining the total momentum, buoyancy and absorber mass of the cloud as

W = Mw, B = Mb, and A = Mq, respectively, (10.1)-(10.4) can be rewritten

d M = 4e IWI (10.5)
dt 3

dW
= B (10.6)

dt

dB _ RMQ (10.7)
dt cppoH
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dAdA= 0 (10.8)
dt

The radiative heating Q is determined from Beer's Law. Noting that absorption

by a sphere with uniform absorber mixing ratio is independent of solar zenith angle,

the transmission of the solar beam through the sphere is

T = e-7 coS (10.9)

where

7 = 2apoqr (10.10)

is the optical depth across the diameter of the sphere, and W is the angle between

the solar beam and the radial position vector. Then the total heating of the sphere

is

MQ = por2 so /2 (1 - e- cos ) cos W sin Wdo dA

2 2(1 + 7)_
= porr 'So 1- + 2(1) e . (10.11)

Consider two limiting cases. If r > 1 then MQ po7rr 2 So, so that total heating

increases as the cloud grows by entrainment and adiabatic expansion. This might

occur in the initial stages of the problem, when the absorber concentration is very

high. Eventually, however, the absorber concentration becomes sufficiently dilluted

that 7 < 1. In this case MQ , SoapoA. Because the total absorber mass A is

conserved, the total heating of the cloud is constant, independent of cloud diameter.

The behavior of solutions for these two limiting cases is quite different. Rather

than immediately using the full expression (10.11) for the heating, we shall first

consider the two limiting cases. This should help in understanding the behavior of

solutions of the general case (10.11).

Suppose first the cloud is optically thick (7 > 1), so that the heat balance

becomes

dB Rr 2So RrSo M2W (10.12)

dt cpH cpH 1rpo
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Then the non-dimensional form of the equations is

dM*/ dM 3  6W* 
(10.13)

dt*

dW*
= B* (10.14)dt*

dB* =-W* + M* 2'/ (10.15)

dt*

where

6 (4,) 2/3 eR So (10.16)
3 3c poH3 N3

M* = M/ (poH3) (10.17)

W* RSH W (10.18)
7RSo H

B* = B (10.19)
7rRSoH

t* = Nt . (10.20)

The system of equations (10.13)-(10.15) is linearly unstable. To see this, linearize

the equations about M* = Mo. Then for solutions of the form exp (A*t*) the

characteristic equation is (assuming W* > 0)

A*(A* 2 + 1) = 1M 2/36 . (10.21)

2

The sum of the roots of the characteristic equation is zero, indicating that if any

modes are damped, at least one amplifies. Using e ~ 0.3 from MTT and typical

terrestrial values for R, cp, So,po,H and N yields 6 ~ 10 - 4 . Thus, unless M2/ 3 is

extremely small we can conclude that A* s6M 2 / or in dimensional terms

4r 2/3 R So poH 3 2/310-s- (10.22)
3 6cp poH 3N 2  M 10s 1  (10.22)

which yields e-folding times of a few minutes for H/r - 100. Note that the factor

RSo/(cppoN 2 H3 ) also appears in the modal instability theory (see (1.6)).
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The physical mechanism of the instability is quite simple. The cloud grows

through entrainment. Because the cloud is optically thick, the larger surface area

of the cloud increases energy absorption, which increases buoyancy, and hence total

momentum, and hence entrainment. Thus, it appears that entrainment (e > 0)

is necessary for the instability. However, because the cloud surface area can also

increase through adiabatic expansion, instability is also possible in the absence of

entrainment. To see this, consider the mass balance in terms of the cloud volume V,

dV dM W
Po +  - (10.23)dt dt H

where V = irr 3 . In the absence of entrainment the total mass is conserved, so

that (10.23) reduces to
dV W

dt PoH

which is similar in form to (10.5). When the optical depth of the cloud is large,

the resulting non-dimensional set of equations is similar to (10.13)-(10.15), with

the parameter 6 defined

= ( )-2/3 rRS(10.25)3 pCpN3 3  (10.25)

which differs only slightly from (10.16) with e order unity. The dimensional growth

rate is approximately

1 RS H 2 x 10-s - 1 (10.26)
2 pocpH3 N 2 r r

which is considerably slower than the growth rate due to entrainment if the cloud

radius is much less than the scale height H.

The underlying assumption here is that all of the absorber is lofted with the

cloud. However, such an assumption is probably unreasonable in the optically thick

case. Much of the absorber mass would be shielded from sunlight, and hence could

absorb no solar energy. Unless there is compelling evidence that the cloud would
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remain well mixed, it is more likely to expect only the upper optical depth unity

of the absorber mass to be lofted.

The remaining roots of the characteristic equation are approximately A i N

provided M~/3 is much larger than 6, which for terrestrial conditions is satisfied if

r is much larger than about 50 m. These roots correspond to damped buoyancy

oscillations, with the non-dimensional damping rate equal to the growth rate of

the amplifying mode, i.e. 1/2S6M 2/ 3, which for sufficiently large clouds is much

smaller than the oscillation frequency. However, for sufficiently small clouds the

damping rate may be as large as the buoyancy oscillation frequency.

For the optically thin cloud (7 < 1), the heat balance becomes

dB RSoaA
S= -N2W + c (10.27)

dt cpH

From (10.27) and the momentum equation (10.6) we find the particular solution

Bp = 0, Wp = RSoaA/(cpHN2 ), which represents an exact balance between the

constant radiative heating and the steady adiabatic cooling. However, because the

cloud mass continues to grow through entrainment the vertical velocity w = W/M

steadily decreases with time.

The homogeneous solution of (10.27) oscillates at the Briint-Vaisala frequency.

Thus, full solutions are characterized by oscillations in buoyancy and vertical ve-

locity which decay to zero.

The general case in which the cloud begins optically thick but becomes optically

thin through dilution by entrainment is illustrated in Figure 10.1, which shows

time series of the buoyancy, vertical velocity, cloud radius, cloud altitude, cloud

optical depth and total momentum Mw determined numerically for a cloud of

initial radius 1 km and initial mass 105 kg [which is typical of urban fire simulations

for a nuclear war (Penner et al., 1986)]. The usual values for the solar constant,
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specific absorption and Briint-Vaisala frequency have been adopted. For simplicity,

we have assumed that all of the absorber mass remains within the cloud.

Initially the cloud is optically thick, so that the total momentum grows expo-

nentially with time. Because the initial cloud radius is much larger than 50 m,

oscillations in the vertical velocity and buoyancy are evident in the numerical solu-

tions (integrations initialized with optically thick clouds of radius much less than

50 m do not exhibit such oscillations).

After about one day (of sunlight) the cloud is sufficiently diluted that it is no

longer optically thick. The instability mechanism is no longer operative, and the

total momentum of the cloud approaches the value of the particular solution Wp.

However the cloud continues to grow, with the radius exceeding 7 km after one day.

The oscillations in buoyancy and vertical velocity decay, and the vertical velocity

steadily decreases as the cloud mass increases.

As discussed previously, it is probably unreasonable to expect all of the absorber

mass to remain within the cloud when it is optically thick. Even in the case of the

optical thin cloud, however, we find that substantial lofting occurs. For example,

for a 1 km cloud containing only 103 kg absorber mass, the absorption optical depth

is initially only 0.5, but the cloud is lofted to 3 km within one day (of sunlight).
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Figure 10.1. Evolution of vertical velocity o, buoyancy T - To, total vertical
momentum W, cloud radius r, cloud altitude z, and cloud optical thickness r for 10 5

s following the injection of 105 kg of absorber mass into a spherical cloud of radius
1 km. The solar constant is 1360 Wm- 2 , the specific absorption 10 m2 kg-', and
the Briint-Vaisala frequency is 10- s-. The entrainment parameter e is 0.3, and
all absorber mass is assumed to remain in the cloud. Rapid buoyancy oscillations
are evident in the time series of vertical velocity and buoyancy. Based on the
application of radiative heating to the Morton-Taylor-Turner theory of thermal
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11. Application to Planetary Atmospheres

The simplicity of the expression (1.1) for the radiative-dynamical feedback rate

invites application of the theory to planetary atmospheres. None of the planetary

atmospheres are perfectly transparent to solar radiation, so that one might expect

the possibility of a feedback between the dynamical circulation and the radiative

heating associated with solar absorption. Although scattering dominates absorp-

tion for most of the aerosols in planetary atmospheres, we shall assume that the

absorption optical depth of each planetary atmosphere exceeds unity at least in

certain circumstances. In addition, we shall assume that the longwave radiative

effects of such aerosols are less important than the effects of solar absorption (we

present arguments in this chapter in support of such an assumption).

For the Venus atmosphere potential absorbers are haze particles at altitudes

of 70-90 km and cloud droplets at altitudes between 50 km and 70 km. The layer

of haze particles is optically quite thin, with an extinction optical depth of 0.2-

1 at 0.6 pm (Esposito, et al., 1983); the absorption optical depth is presumably

much smaller. The layer of sulfuric acid clouds is optically thick, with an extinction

optical depth of about 40. Moreover, the cloud droplets are much smaller than those

on Earth, with mode radii of typically 1 pm. The infrared radiative properties of

such aerosols are therefore no more important than the solar properties. Indeed,

because the Venus atmosphere is composed primarily of CO2, clouds have little

direct effect on the infrared heating rates. It should be noted, however, that because

the cloud droplets primarily scatter solar radiation, the absorption optical depth

of clouds on Venus is quite low in spite of the large extinction optical depth.

For the Earth atmosphere extinction optical depths due to aerosols are usually

quite small. However, on occasion forest fires, volcanic eruptions, dust storms or

perhaps asteroid collisions can generate enough aerosol mass to produce large local
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extinction optical depths. The absorption optical depths of all but the most spec-

ulative scenarios is usually quite small. A more plausible (but hopefully unlikely)

source of strong absorption is smoke generated by urban fires resulting from a nu-

clear war. In this scenario hemispheric mean absorption optical depths of about

one have been projected. Moreover, the infrared absorptivity of such aerosols is

typically much less than the solar absorptivity, and scattering is typically of less

importance than absorption, so that smoke particles are the ideal aerosol for gen-

erating a shortwave radiative-dynamical instability.

The Martian atmosphere is usually free of solar absorbers, but periodically

becomes polluted by dust storms that occasionally spread to cover the entire globe.

These storms are an excellent test of the radiative-dynamical instability mechanism.

In the absence of atmospheric probes, present knowledge of aerosols in the

Jupiter atmosphere is somewhat speculative. The evidence seems to suggest the

presence of a layer of small particles in the upper troposphere, with a visible ex-

tinction optical depth of several, above an optically thicker layer of larger particles

(West, et al., 1986). Whereas the upper layer is believed to be largely transparent

in the infrared, the lower layer is not. Given the dominance of scattering over ab-

sorption for liquid NH3 particles it is unlikely that the upper cloud layer absorbs

much sunlight. Radiative heating rates in the lower cloud layer may be dominated

by longwave component. Moreover, latent heat release in such clouds is likely to be

important. Thus, solar absorption cannot be easily isolated from other processes

in the Jupiter atmosphere.

Models of the Saturn atmosphere are even more speculative, with little agree-

ment among researchers on the suggested presence of a stratospheric haze layer or

on the vertical extent or optical properties of the visible tropospheric cloud layer.

The Titan atmosphere is characterized by a photochemical haze in the stratosphere

(Hunten et al., 1984), with particles of radius 0.1 jum. The possible presence of
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tropospheric methane clouds is speculative at present because of the obscuration

of the troposphere by the stratospheric smog.

Considering how little is known regarding the presence of solar absorbers in the

planetary atmospheres it might appear premature to speculate on the possibility

of strong radiative-dynamical interactions. Speculation, however, has played an

important role in the study of planetary atmospheres. Moreover, the radiative-

dynamical theory developed here does not require the specific details of solar ab-

sorption for comparison of the feedback in the planetary atmospheres. We shall

take a general approach by evaluating the potential for radiative-dynamical feed-

back for each atmosphere. Whether each atmosphere contains sufficient strong

solar absorbers to realize the potential remains to be seen, but an inter-planetary

comparison of the potential for strong radiative-dynamical interaction should be

of some interest.

For the purpose of comparison consider again the exponential absorber distri-

bution. Neglecting perturbations in transmissivity, the maximum feedback rate

for such a distribution occurs at the altitude where the absorption optical depth

equals the cosine of the solar zenith angle, and is given by the expression

ama = 0.37 ao - 1 + -) (11.1)

where
RSo

ao =c (11.2)
cppoN2H3

is a nominal feedback rate. For a given absorber mixing ratio scale height h, ao

controls the magnitude of the maximum feedback rate (provided the optical depth

exceeds p, the cosine of the solar zenith angle). The radiative-dynamical feedback

rate for planetary atmospheres can therefore be readily compared by evaluating

cao for each planet. Values of So, po, N 2 , H, and ao for Venus, Earth, Mars,
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Jupiter, Saturn, and Titan are listed in Table 11.1 (the thermodynamic ratio R/cp

is approximated as 0.286 for each planet).

Note first that the insolation values represent the solar constant at the top of the

planetary atmosphere. Scattering of sunlight either by the surface, the absorber, or

by other atmospheric constituents has been neglected. This tends to overestimate

the amount of solar radiation available if the absorber lies below the top of the

clouds, and underestimate solar radiation above the top of the clouds. However,

the difference between the solar constants of the various planets is typically larger

than the bias introduced by such a treatment.

Note also that, because of the strong dependence of atmospheric density po

and static stability N2 on altitude, the value of ao for each planetary atmosphere

depends strongly on altitude. Indeed, ao generally increases with altitude as the

density decreases. However, at increasingly high altitudes the tenuous atmosphere

is incapable of supporting absorption optical depths of order unity, so that the

actual feedback rate would be considerably less than ama. To compare single

values of ao for each planet, care is therefore required in selecting reference levels

that are consistent. For the purpose of comparison, we have chosen to evaluate

ao at reference levels near the planetary tropopause. This choice is based on the

premise that the tropopause marks the transition between the troposphere, where

strictly dynamical processes dominate radiative processes, and the stratosphere,

where radiative processes dominate dynamical processes. Expressed in terms of

time scales, we expect the dynamical time scale to be shorter than the radiative

relaxation time in the troposphere, but longer in the stratosphere. The importance

of the radiative-dynamical feedback is evaluated by comparing the feedback time

a -1 to the purely dynamical (advective) and purely radiative (infrared) relaxation

times at the tropopause. The tropopause pressure for each planet is also listed in
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Table 1. To evaluate the static stability we have, in the face of considerable uncer-

tainty in the observations, resorted to the simple assumption that the atmosphere

is locally isothermal. Those cases in which the static stability is known with some

confidence will be considered separately.

From Table 1 we find that the tropopause value of ao for the terrestrial planets

is generally much larger than that for the Jovian planets (including the satellite

Titan). The most obvious explanation for this is the much weaker insolation for

the Jovian planets. Additionally, the density scale height for the Jovian planets

is typically somewhat larger, due to their different composition (for Jupiter and

Saturn) or lower gravitational constant (for Titan).

Atmospheric density plays an important role in determining the value of ao

for the terrestrial planets, with the nominal feedback rate more than two orders

of magnitude stronger for Mars than for Earth, mainly because of lower density of

the Martian atmosphere. This does not, however, imply that radiative-dynamical

feedback is necessarily more important for Mars than for Earth. The Martian

atmosphere above the 0.3 mb level may not be thick enough to sustain an absorp-

tion optical depth of unity (against, say, gravitational settling), so that the actual

feedback rate for an exponential absorber distribution may be less than amax.

Moreover, radiative relaxation for the thin Martian atmosphere is also much more

rapid than for the Earth tropopause. However, we shall now demonstrate that,

except under certain conditions, radiative-dynamical feedback can dominate ra-

diative relaxation, independent of atmospheric density. To see this, consider the

standard definition of the radiative relaxation time (Leovy, 1985)

CP pHtr= R H (11.3)
R eaT4

where o- is the Stefan-Boltzmann constant and e is the thermal emissivity. Accord-

ing to (11.3), the radiative relaxation time is proportional to density, and hence
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should be much less for Mars than for Earth (assuming comparable thermal emis-

sivities). Comparing the radiative relaxation time with ao, we find that the product

can be expressed

pH3 N2 eoT4  H O0
(ao*r,) = pHN2 4  (11.4)

pHSo 0 (z

which is less than unity except in the presence of an inversion (for an isothermal

atmosphere (11.4) reduces to R/cp = 2/7). Thus, the radiative-dynamical feed-

back time can be much shorter than the thermal relaxation time; equivalently,

radiative-dynamical feedback for an exponential absorber mixing ratio profile can

dominate infrared radiative damping, the only constraints being that (a) the solar

zenith angle is small, (b) an inversion not exist, (c), the absorber mixing ratio

scale height be less than or comparable to the density scale height, and (d) the

absorption optical depth from the top of the atmosphere be comparable to the co-

sine of the solar zenith angle, i.e., unity. Thus, the more rapid radiative relaxation

of the Martian atmosphere will not necessarily dominate the radiative-dynamical

feedback, so that radiative-dynamical feedback is potentially as important on Mars

as on Earth, and is certainly faster.

If the radiative-dynamical feedback is to be important in an atmosphere the

nominal feedback time aol
1 must be at least as fast as the dynamical time scale. For

Venus and Earth the nominal (assuming the absorber scale height is comparable to

the density scale height) feedback time is comparable to the dynamical time scale

-rd= L/U (11.5)

which is about 105 s for both planets at the tropopause. For Mars the nominal

feedback time at the tropopause is much shorter than the dynamical time scale

(also about 105 s). However, at the surface of Mars, where the atmospheric density

is much larger than at the tropopause level (an effect on the feedback rate that

dominates the weaker static stability of the Martian troposphere) the nominal
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feedback time is comparable to the dynamical time. The nominal feedback time

at the surface of Earth is somewhat longer than at the tropopause because the

effect of the larger density and the larger density scale height combine to exceed

the effect of the weaker static stability.

For the Jovian planets, the nominal radiative-dynamical feedback time is, as

we have demonstrated, shorter than the radiative relaxation time, but at the

tropopause is clearly much longer than the dynamical time scale. However, within

the troposphere of both Jupiter and Saturn the static stability is thought to be

quite small, so that radiative-dynamical feedback in the troposphere of Jupiter

and Saturn may be much faster than that indicated in Table 1, perhaps as fast as

the dynamical time scale. In that case, the radiative-dynamical interaction must

compete with other energy release mechanisms, which also develop faster with de-

creasing static stability. In the lower troposphere of these planets the atmospheric

density is probably large enough to eliminate the feedback as an important process.

To summarize, we have found that as might be expected the potential for

radiative-dynamical feedback is strongest for those planets closest to the sun. We

have shown that the feedback can dominate infrared radiative relaxation for all

planets, but that purely dynamical processes in the Jovian atmospheres are prob-

ably of greater importance than the feedback. Mars, with its tenuous atmosphere,

is probably the most likely candidate for radiative-dynamical instabilities. The

potential feedback in the Venus atmosphere is also quite rapid which, given the

horizontal uniformity of Venus clouds (a necessary assumption of the present the-

ory), suggests that Venus is also a strong candidate for further application of the

instability theory.
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Table 11.1. Radiative-dynamical feedback parameters for planetary atmospheres.

So(Wm - 2 ) ptrop(mb) po(kg m - 3) H(m) N 2 (s- 2 ) ao(s - 1 )

Venus 2600. 130. 0.25 5 x 103 4 x 10- 4  6 x 10- 5

Earth 1360. 200. 0.3 6 x 103  5 x 10- 4  1 x 10- 5

Mars 600. 0.3 0.001 10 x 103  1 x 10- 4  2 x 10- 3

Jupiter 50. 100. 0.02 20 x 103  3 x 10- 4  3 x 10- 7

Saturn 15. 100. 0.02 40 x 103 8 x 10- 5  4 x 10-8

Titan 15. 100. 0.4 20 x 103 2 x 10- 5 7 x 10-8
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12. Summary

The theory developed here demonstrates the potential for unstable radiative-

dynamical interactions that are strong enough to compete with other purely dy-

namical instability mechanisms and with nonmodal forms of absorber transport.

Two distinct modes have been identified, described as advective and propagating

modes, respectively.

In the advective mode, an instability typically arises when the absorber mixing

ratio decreases with altitude. Perturbations in absorber concentration, shortwave

radiative heating, vertical motion and temperature are all in phase. Propagation

with respect to the mean flow is weak. Amplification is most rapid for modes

which are short and deep, i.e., for modes with horizontal scales much less than the

internal deformation radius.

Propagating modes such as Rossby and inertia-gravity waves become unstable

when the absorber mixing ratio increases with altitude. High absorber concentra-

tions and strong heating lag downward motion by about one quarter cycle; warm

temperatures lag the heating by one quarter cycle, and hence are in phase with

upward motion. Because strong propagation is necessary to maintain the proper

phase relationships for energy release, the growth rate of propagating modes is

typically much less than the frequency of oscillation. This constraint limits the

growth rate of the slowly propagating Rossby waves.

The fundamental parameter that emerges is the rate of radiative-dynamical

feedback, defined as
RSoaT 8y
a RSo Oz (12.1)
cN 2 H 8z

The growth rate of unstable disturbances has been found in most instances to be

bounded by the magnitude of the feedback rate, so that a characterizes the growth

rate.
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This basic theory has been extended to account for a number of complicating

factors, including the effects of perturbations in transmissivity (associated with ab-

sorber perturbations at higher altitudes), dissipative processes, basic state vertical

shear, and scattering.

Perturbations in transmissivity can either enhance or suppress the radiative-

dynamical instability. In all cases such perturbations alter the phase relationship

between the radiative heating and the absorber concentration. For absorber per-

turbations with vertical wavelengths exceeding the density scale height, perturba-

tions in transmissivity can actually reverse the sign of the correlation between the

local heating and absorber concentration. This changes the sign of the effective

radiative-dynamical feedback rate, so that the propagating modes become unstable

when the absorber mixing ratio decreases with altitude, and the advective mode

becomes unstable when the absorber mixing ratio increases with altitude. For

shallow absorber perturbations, the magnitude of the correlation between the local

absorber concentration and heating rate decreases when perturbations in trans-

missivity are important. In this case the effect on the growth rate depends on the

direction of phase propagation. Growth of downward-propagating Rossby waves is

enhanced by perturbations in the transmissivity, but the growth rate never exceeds

the effective feedback rate, defined by (3.13).

Dissipative processes generally reduce or eliminate the instability. Absorber

damping (due to gravitational settling, precipitation scavenging, or photochemical

processes) is most effective in suppressing the growth of the advective mode, with

the instability eliminated when the absorber damping rate exceeds the radiative-

dynamical feedback rate. Mechanical damping suppresses the growth of the inertia-

gravity modes, but can actually enhance the amplification of the advective mode.

Thermal dissipation reduces the growth rate of all modes when the dissipation rate

exceeds the magnitude of the feedback rate.
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Vertical shear in the basic state zonal wind can either enhance or reduce the

growth rate of the most rapidly amplifying modes. Weak shear suppresses the

instability for all but the shortest modes (i.e., those for which the growth rate in

the absence of shear is insensitive to vertical wavelength). Strong shear, however,

introduces baroclinic instability, so that growth rates eventually increase with in-

creasing shear. In some instances the growth rate of the most unstable mode (for

a given horizontal wavelength) is actually greater than both the feedback rate and

the adiabatic baroclinic growth rate, but never exceeds the sum of the two rates.

Scattering of sunlight also either enhances or suppresses the growth of unstable

modes, depending on the solar zenith angle. If the sun is overhead (small solar

zenith angle) scattering increases the path length of photons, thereby enhancing

absorption and hence the radiative-dynamical feedback rate; the growth rate is

enhanced by scattering in this case. Because some photons are scattered to space,

reducing the available sunlight, scattering tends to reduce the growth rate for large

solar zenith angles; in this case the path length of the direct beam is already long,

so that scattering only serves to reduce the effective solar constant, and hence the

absorption of sunlight.

The effect of relaxing the assumption of horizontal uniformity in the basic

state has also been addressed. When the initial absorber distribution is inho-

mogeneous, nonmodal forms of absorber transport become potentially important.

Indeed, in numerical simulations nonmodal transport dominates early in the in-

tegration, but for sufficiently broad absorber distributions the modal instability

eventually emerges as a significant absorber transport mechanism. This suggests

that previous simulations of Martian dust storms and the "nuclear winter" smoke

lofting phenomenon, using relatively coarse mesh models, may have underestimated

the absorber transport.

163



In a brief digression, radiative feedback is applied to the Morton-Taylor-Turner

theory of thermal convection. Assuming that all of an initial absorber injection is

retained by a rising spherical cloud, it is shown that normal mode instabilities arise

due to the increase in energy absorption as the cloud grows through entrainment

and adiabatic expansion. The increased energy absorption raises the buoyancy,

thereby accelerating the rise of the cloud, which in turn increases the rate of en-

trainment. The cloud eventually becomes optically thin, with the total vertical

momentum of the cloud stabilizing at a value determined by the balance between

the constant solar heating of the cloud and the adiabatic cooling associated with

ascent.

Finally, application of the basic radiative-dynamical instability theory to plan-

etary atmospheres demonstrates the obvious result that the feedback is potentially

more important for those planets closest to the sun. One significant conclusion from

the analysis is that thermal radiative relaxation must, under certain conditions, be

weaker than the solar feedback, independent of atmospheric density. This suggests

that Mars is a prime candidate for radiative-dynamical interaction, in spite of its

short radiative relaxation time.

In conclusion, interactions among solar absorption, dynamical circulations, and

inhomogeneous absorber distributions yield a variety of instability mechanisms.

Amplification of disturbances can be quite rapid, with growth rates in some cases

competitive with those associated with baroclinic instability. Further work is re-

quired to determine whether such interactions play an essential or auxiliary role in

any geophysical phenomenon.
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APPENDIX A. Notation

t time
X zonal distance
y meridional distance
z vertical distance
p pressure
u zonal velocity
v meridional velocity
w vertical velocity
( vorticity, - OU

horizontal streamfunction
geopotential

0 potential temperature
q absorber mixing ratio
Po atmospheric density
H density scale height

cp specific heat at constant pressure
R gas constant
K thermodynamic ratio R/cp
N Briint-Vaisala frequency
p cosine of solar zenith angle
So solar constant
a specific absorption coefficient
A wavelength
Q radiative heating rate
T transmissivity from top of atmosphere

f Coriolis parameter
0 meridional gradient of f
k zonal wavenumber
I meridional wavenumber
m vertical wavenumber
n vertical wavenumber, n 2  2 + (4H2)-

A2 k2c + 1 2

k 1k2 + f 2n 2/N 2

a radiative-dynamical feedback rate
a wave frequency (complex)
D advective operator
e damping rate or expansion parameter for weak shear
(-) basic state

small perturbation from basic state
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Appendix B. Numerical Solution of the Eigenvalue Problem

Consider a staggered uniform grid, in which q and ?k are carried at even and

odd values, respectively, of the vertical index n. Then (6.20) and (6.21) can be

written in the discrete form

-1Pn -+kN -k 2  2 2pn z7 LNn + N2 (f1

-[ ('- ,l)] n.=1,3,2 ... ,2-n-v¢_ * I
ik~b PnI (n+2 ;ff) -PnJ

+ e ) (On+2 -'On)

S- Un-2)]

2 Pn+1

(B.1)

(ik~iz + Eq )qn _ Az
n + e ) (qn+l- qn-1) (ik~n + eT) (In+ 1 - , n1)

iC fo '

+ 2NAzo (n+l -_qn-) (;n+1 - .n-1 )(On+ 1 + kn-1)2Nn A z2

RQ (
+ cppHN2Azn+- -)

= ioqn iNA z (qn+l n-1) ('On+ - On-1) n = 0,2,4,...,2N(B.2)

where

N

Qn = SoTinanpnAzqn - So (Tn+2 - Tn) E a2m P2m q2m . (B.3)

Note that the second term on the right hand side of (B.3) is neglected if pertur-

bations in transmissivity are not accounted for. The dependence of the heating on

the perturbation absorber concentration can also be evaluated from general radia-

tive transfer models as the Jacobian of the heating with respect to the absorber

concentration, evaluated numerically for the basic state absorber distribution. The
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excellent agreement between (B.3) and a delta-Eddington model with no scattering

supports the use of (B.3) in the absence of scattering.

To complete the formulation of the eigenvalue problem the boundary conditions

are expressed

T) -foik

fo (ik eT ) (n-+1 - n-1) - 2 (n+1 - n-1) ('n+i + n- 1)

RQAz- Q = foia(n+1 - n-1) n = 0,2N . (B.4)
cppnH

Using (B.1)-(B.4) as stencils, the problem reduces to the matrix form

Ax = o- Bx (B.5)

where

f q n = 0,2, 4,...,2N (B.6)
x na- n = -1, 1,3,...,2N + 1

Although software is available to solve the general problem (B.5), more reliable

solutions can be found by taking advantage of the fact that, for this particular

problem, B is nonsingular (even in the absence of a basic state absorber). The

general problem (B.5) can therefore be transformed to the standard form

A*x = a. x (B.7)

where A* = B - 1A. For eigenvalue problems of the form (B.7), software is available

from the Numerical Algorithms Group (NAG) library which first "balances" the

matrix A* (reduces its norm), solves the resulting eigenvalue problem, and then

transforms the eigenvectors back to those of A*. The balancing procedure is partic-

ularly important for cases with strong vertical shear and strong radiative-dynamical

feedback in the basic state, which produces large differences in the magnitudes of

the elements of A*.
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Appendix C. Two-Dimensional Model Description

The dynamical model is formulated using the hybrid vertical coordinate (Arakawa

and Lamb, 1977)

p - p (C.1)

where pi is a constant interface pressure and

7r 7r -pI-PT , p_ PI (C.2)
7rL PS -PI, P > PI (

Thus, 7ru represents the (constant) pressure thickness between the interface pres-

sure and the model top PT, while irL represents the (variable) pressure thickness

between the interface pressure and the surface pressure p.. For p < pi, surfaces of

constant a are also surfaces of constant pressure. The constant interface pressure

must be chosen to be less than the lowest anticipated surface pressure.

The dynamical equations are formulated for either zonally-symmetric flow on

a sphere, axially-symmetric flow in a cylinder, or flow through an infinite slab. For

all cases the primitive equations can be written

DuDu f*v = E + Du (C.3a)
Dt

Dv 84 ROE Or
t+ f*u +  +  - = E, + D, (C.3b)

Dt by p 9y
DO
D-- = Eo + De + Q/(Ecppo) (C.3c)

Br 18 Ow
+ (vrc) + = 0 (C.3d)

-E = -c,0 . (C.3e)

Here y = aWp for flow on a sphere and y = r for flow in a cylinder, and

D 0 0 wtO
- - +v + (C.4)

Dt - O y rB

171



where

dyS=d (C.5)
di

W = do (C.6)
dt

The metric term c = cosp for a sphere, c = r for a cylinder, and c = 1 for a slab.

The Coriolis term is f* = 2 11 sino + u/a tanp for a sphere, f* = fo - u/r for a

cylinder, and f* = fo for slab.

The eddy terms Eu, E, and E0 represent the effects of transport due to asym-

metric motions. On a sphere they are

Eu = - a [jv*u*] C) a [w*u*] (C.7a)c2 49 7r c"

1 1 8 tanp (C.7b)E, ([V*v*] C) - - [w*v*] - [,*,,*] (C.7b)
c y 7 B a

1a 18
Ee= ([**c) - [w*O* . (C.7c)

c y 7r 8b

These can be prescribed, parameterized or neglected.

The terms Du, D, and Do represent the effects of sub-grid scale turbulent eddy

transport which are parameterized to prevent the accumulation of energy on the

smallest resolved scales.

In applying the model to mesoscale circulations, the lateral boundary condi-

tions may require special consideration. If the simple boundary condition of no

normal flow is applied to the lateral boundaries, gravity waves excited during the

geostrophic adjustment process will be reflected back toward the fluid interior,

degrading the simulation. Although such reflections are a serious concern in simu-

lations in which latent heat release or orographic forcing are important sources of

ageostrophic kinetic energy, they may not be a problem for simulations that neglect

those processes. For present purposes, in which latent heat release and orographic

forcing are neglected, most of the kinetic energy will be in the geostrophically bal-

anced, rather than inertia gravity mode (provided the radiative heating evolves
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on sufficiently long time scales). The only remaining concern with regard to the

boundary conditions is that the boundaries be sufficiently far from the sources of

kinetic energy that the circulation is unaffected by the rigid boundaries.

C.1. Time Discretization

Time integration of (C.3) is accomplished using the leapfrog scheme with a

temporal filter applied to damp the separation of the computational modes. To

permit the use of long time steps, many terms are treated implicitly. These include

the gravity wave terms, the Coriolis terms, and the vertical diffusion terms. To

do so, the equations are linearized about a mean state, which is redefined every

few time steps (we do not redefine the basic state every time step because the

implicit solution procedure requires that a linear operator be inverted, an expensive

procedure; redefining the basic state every, say, ten time steps permits some of the

local structure to be treated implicitly).

Upon linearization, the primitive equations become

au a 1 0p2K Ou
SN - v +f v +- (C.9a)

at ay ;W ac- H (o a.

ev N J' ROE 8c9r 1 8 y 2K v (Cb)
= - f - - 9- o - (C.9b)

80 w ao 1 a 2K a80
= No - + (C.9c)

0Br 1 0 Owl- = Nr (rvc) - (C.9d)
tc ay 4r

Here Nu, N,, N9 , N, represent those terms not accounted for by the linear terms,

i.e., they are calculated as the total terms minus the linear terms. The perturbation

geopotential represents that part of the geopotential which depends linearly on 0

and 7r. The perturbation vertical velocity is calculated from

-, - ff d -c do, -1 < < (

= 1 ', Tvc da -a _1 fvdr 0 < a < 1
-f-' f-
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Note that the mean state assumes T = V = 0.

Upon vertical discretization, equations (C.9) become

Ou
= N, + L,,v + K u (C.11a)at

Ov 8 81
=v N, + L,u - L - L, + K v (C.11b)at ay Tap

22 = No + Lo, (vc) + Ke (C.11c)
at c ay

L T 1 (vc)
= N, + L . ()VC . (C.lld)at T c ay

Here the column fields have been represented as vectors. The linear matrix oper-

ators L.,, L,,, Lo., Lj 9 , LI, L,, and K are defined later, when the details of

spatial differencing are discussed.

Treating the linear terms implicitly, the time-differenced form of (C.11) be-

comes

n+ = u " - + 2At N + 1 n +n- +K u

Sn+= n - + 2t [N + ,, + (C.12a)

1 Le (81+1+ (-1) - Lr1 (7n+1 +n-1) + K V+ (C.12b)

+1 = n-[ + 2At Nn + Lv (v n+'c + vn-1c) + K03+] (C.12c)

7"  = - + 2At [N + L + v Oc(V . (C.12d)

Note that backward implicit differencing is used for the vertical diffusion terms,

but centered implicit differencing is applied to the remaining linear terms.

Reducing the four time-differenced equations to a single equation for vn+l,

equations (C.12) become

(IK - At2L..)n+1 = (I+ At2L.) v-1

+ a
Byr By
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+ LIlK'1 un- + 2AtN) - L IK (n-i + 2AtN)]

- Lr (n-1 + 2AtN17 ) (C.13)

where

L,,(v) LvuIk'L v - L 4l1 a Ov (V1c)
- K -0c

Lt- v L 1 a(vc) (C.14)
8y C Iy

and

IK=I-2AtK . (C.15)

The solution of (C.13) for v "+i, (C.12a) for un+i, (C.12c) for 0 "n+, and (C.12d)

for xrn+ is accomplished by standard Gaussian elimination techniques, given ap-

propriate spatial discretization. Finally, to prevent the spurious amplification of

the computation mode arising from the leapfrog scheme, a weak time filter (Asselin,

1972) is applied each time step.

C.2. Spatial Discretization

A staggered grid is employed, with the prognostic variables utj, Olj, and 7rj

carried on the primary grid, vii+1/2 carried at intermediate horizontal points, and

wL+1/2j carried at intermediate levels. Vertical finite differencing follows Arakawa

and Suarez (1983); horizontal differencing employs the C grid treatment of Arakawa

and Lamb (1977). In the usual implementation of the model, levels above the

interface pressure pi are spaced equally in log pressure, whereas levels below pi

are spaced equally in pressure. This treatment permits the resolution of shallow

processes in the lower troposphere while retaining the preferred equal spacing with

height in the stratosphere.

Whereas the details of the spatial finite difference treatment of the full dynam-

ical terms can be found in Arakawa and Lamb (1977) and Arakawa and Suarez
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(1983), the linear operators L,,, Lu, Loa, L 0 , L~,, L,,, and K, required for the

implicit time integration scheme, remain to be defined. These defintions are given

below.

(Luv)j = LI(j)vi+ 1/2 + L-(j)vj-1/2 (C.16a)

where

L+(, k, j)= 61k

L- (1, k, j) = 61k

(C.16b)

(C.16c)

2 2AYj+1/2 1

1 V11 -Lj-I1
- 2 yi-1/2

and 6tk is the Kronecker delta.

(L,u)i+1/a = L+ (j + 1/2) uj+ + L (j + 1/2) ui

where

L+(, k, j + 1/2) = -61k c ji+y++
ciAyj + ci+Ayj+ i+

L-(L, k, j + 1/2) = -k cjAyJ f
ciAyj + ci+=Ayi+I

Lo, = LowL,

where

Leqo,(, k,j) =

Lw,(I, k) =

Le(1,k) = CpI

LA

k=1-1

k=I{kAfk k < <
o k>t A<
(1 - )t+1/2kAgk k c £ I <

k k > I
0 £=L

E, - EL
E, - E - EL_1/2 - EL-I

Ek-1/2 - Ek-1 + Ek+1 - Ek+1/2

Ek+1 - Ek+1/2
0

Lo,(£) = L,(£I + 1) + cpO9+l/ 2

(C.17a)

(C.17b)

(C.17c)

(C.18a)

(C.18b)

I<
:I

~£<L= . < I

I = k = L
I < k = L
I < k < L

= k < L
k<£<L

(C.18c)

(C.19)

(dE dE7r
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L1,(L) = cpL [(dE _dE (C.20b)

L,,(£) = iAo-, (C.21)

K +/2+2 1 < £ < L (C.22a)
(Pl+1/2 - P1-1/2) Ht+1 / 2  +1- p)

-1/2KI-1/2
K =,- 1=1/ 2 < I< L (C.22b)

£+1/2 - P1-1/2) H1-1/ 2  1 1-1)

K, 1 = -K,l+l - K,1_1 1 < < L . (C.22c)

It should be noted here that because the vertical diffusion term depends on the

surface value O,, the term (KLL + KLL-1) i, must be treated as a forcing term in

the equations.

C.3. Source Terms

In addition to the background vertical diffusion, source terms consist of solar

and longwave radiative heating, several convective adjustments, an inertial adjust-

ment, a slantwise adjustment, and a treatment of mixing based on horizontal and

vertical shear.

Solar heating is treated using Wiscombe's delta-Eddington model. For simplic-

ity the only absorbers are ozone and smoke. Although scattering is the forte of the

delta-Eddington method, it is neglected in the experiments discussed in Chapter

9. To treat ozone absorption, which is nongrey, the absorption of the direct beam

is matched with the total absorption given by the formulae of Lacis and Hansen

(1974), i.e.,

1 - exp(-r/p) = A(u/A) (C.23)

where 7 is the optical depth from the top of the atmosphere, u is the ozone vertical

path length from the top of the atmosphere, and A is the Lacis and Hansen total

177



absorption. The optical depth of any layer is then the difference between the optical

depths to the bottom and top of the layer.

Longwave radiative heating is calculated by the Harshvardhan et al. (1987)

model, which treats absorption by water vapor, CO2, and ozone. In addition,

the capability to treat the longwave absorption by smoke has been added. The

water vapor and ozone distributions are taken from the AFGL midlatitude summer

profiles.

Convective adjustments include adjustments to a dry adiabat, a moist adiabat,

and a stable stratification in which potential temperature increases with altitude

at the rate 3 K km - 1. In each case heat is conserved under the adjustment. A

somewhat different algorithm than the traditional Manabe scheme has been devel-

oped which is considerably more efficient when many levels are adjusted. Rather

than adjust temperatures to the average temperature of adjacent layers,

0 = (w10 + W202)/(wI + W2) (C.24)

where wl and w2 are weights depending on layer thickness, the Exner function,

etc., the average temperature involves multiple layers. If, for example, two adjacent

levels are found to be supercritical, 8 is defined to be the weighted average of the

two levels, as above. The levels adjacent to these two levels (above and below the

convecting region) are then tested for stability, not on the basis of the value of 0 at

the adjacent levels, but on the basis of #. The weighted average is then redefined

to account for these new convecting layers,

= t (C.25)

and the procedure moves on to the next pair of adjacent levels above and below the

convecting region. The significant difference from the traditional scheme is that 0

in each layer is not reset to # until the limits of convection have been determined.
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The net result is identical to the traditional solution (to within the accuracy of the

iterative solution technique), but at a fraction of the cost.

In the same spirit of convective adjustments, the zonal velocity (i.e., the velocity

component perpendicular to the plane of symmetry) is adjusted horizontally when

the conditions for inertial instability are satisfied. Following Holton (1983), the

zonal windfield is adjusted toward constant angular momentum when the sign of

the absolute vorticity differs from the sign of the Coriolis parameter. Angular

momentum is conserved under the adjustment.

In some circumstances the atmosphere can be convectively and inertially stable,

yet unstable with respect to slantwise convection (Emanuel, 1983). A slantwise

adjustment has therefore been added, which adjusts potential temperature along

lines of constant angular momentum when the slope of isentropes exceeds that of

lines of constant angular momentum. The adjustment could in principle instead

consist of a transport of angular momentum along the isentropes, the difference

between the two methods being absorbed by geostrophic adjustment. In practice

the geostrophic adjustment process is not well represented by the long time steps

of the model, and unsatisfactory circulations develop. This problem has been

circumvented for the time being by avoiding circumstances in which slope of the

isentropes exceeds that of the line of constant angular momentum, i.e., cases in

which the Ertel potential vorticity becomes negative.

Horizontal and vertical mixing due to shears in the zonal and meridional wind is

represented following Rotunno and Emanuel (1987). The horizontal mixing length

is chosen to be 10 km, while the vertical mixing length is 200 m.

Finally, advection of the absorber mixing ratio is accomplished using the Smo-

larkiewicz (1984) algorithm (kindly written by K. E. Taylor), which minimizes

numerical diffusion while maintaining positive mixing ratio concentrations.
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Parameter values for the experiments described in Chapter 9 include Coriolis

parameter 10 - 4 s- 1, time step 3600 s, internal vertical diffusivity 5 m2 s- 1, and

surface diffusivity 20 m 2 s- 1.
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