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ABSTRACT

A simple statistical-dynamical model relating synoptic
scale changes in the meridional temperature gradient to
changes in the meridional eddy sensible heat flux is
developed. The model solution is compared with observations
relating the flux to the stability parameter for the two
layer model which, assuming the variance of the critical
shear in the two layer model is negligible, is equivalent to
the meridional temperature gradient. The comparison suggests
that a diabatic time scale of about one day is appropriate
for perturbations due to changes in the flux, and that
roughly one half of the variance of the temperature gradient
can be ascribed to processes with time scales much less than
the synoptic time scale. The possibility that variations in
the critical shear are important is discussed.

Feedback of the temperature gradient on the flux is
added to the model. Three model parameters emerge which, if
properly tuned, could yield significantly better results
than the model without feedback. Although this provides
supporting evidence for the presence of feedback, other more
justifiable mechanisms yield similar results.

Thesis Supervisor: Peter Hunter Stone

Professor of MeteorologyTitle:



TABLE OF CONTENTS

page

I INTRODUCTION 4

II OBSERVATIONS 6

III MODEL EQUATIONS 12

IV BASIC MODEL SOLUTION 27

V BASIC MODEL RESULTS 30

VI FEEDBACK MODEL 44

VII CONCLUSIONS 53

APPENDIX 55

ACKNOWLEDGEMENTS 62

REFERENCES 63



I INTRODUCTION

Modelling studies of the relationship between the

meridional eddy sensible heat flux and the meridional

temperature gradient have in the past concentrated on their

time mean relationship. Ensemble averaging of at least as

long as the time scale of the transporting eddies is

implicit in mixing length parameterizations of the heat flux

in terms of the temperature gradient (Green, 1970; Stone,

1972). An examination of the time dependent (synoptic scale)

relationship between the heat flux and the temperature

gradient is also warranted. Such a study should reveal

something about the processes which maintain the time mean

relationship. Recently Stone et al., (1981, hereafter

denoted by S) have shown how the order of the equations

governing the behavior of the heat flux and the temperature

gradient can be estimated by examining their respective

autocorrelation functions, i.e., their time dependent

behavior. This information is then used to test the results

of finite amplitude calculations of baroclinic instability

(Pedlosky, 1979).

Modelling the observed correlation functions can also

be fruitful. In particular, modelling the cross correlation

function for the heat flux and the temperature gradient can

reveal specific details about the processes relating the two

variables. Model parameters can be tuned to match the

observations, thus allowing one to measure both the relative

importance of different processes and their respective time
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scales. Although the physics involved in such modelling is

included in general circulation models, no attempt has

previously been made to explicitly model the synoptic scale

relationship between the meridional eddy sensible heat flux

and the meridional temperature gradient as seen in their

cross correlation function.

In this paper simple linearized models of the temporal

relationship between the heat flux and the temperature

gradient are developed. The emphasis is on reproducing the

observed auto and cross correlation functions, although some

attention is devoted to modelling variance. In section II

the observed correlation functions are described. The model

equations are developed in section III, while in section IV

the basic model solution is presented. These solutions are

discussed in section V. The possibility of feedback of the

temperature gradient on the flux is considered in section

VI. Conclusions are presented in section VII.



II OBSERVATIONS

The data used in this study is that used in S,

consisting of twice daily observations for three consecutive

Januaries (1973, 1974, 1975) of the total tropospheric mean

eddy sensible heat flux across selected midlatitude circles

Zal '01 C0.5 SPdPoJ (o IV T dp

and the stability parameter for the two layer model

11.2 (,t) = [ L 2

where a is the earth's radius, cp is the specific heat at

constant pressure, g is the gravitational acceleration, 0 is

the latitude, po and p. are the surface and tropopause

pressures, respectively, u and v are the zonal and

meridional velocities, respectively, T is the temperature

and

11.3 U (e, - )

is the critical shear for the two layer model, where f is

the coriolis parameter, 1  is the meridional gradient of f, R

is the ideal gas constant for dry air and 8 is the potential

temperature. Square brackets denote the zonal mean,

asterisks deviations from the zonal mean. The subscripts one

and two denote the mass weighted upper and 'lower

tropospheric mean, respectively. The shear u,- u2 is

related to the meridional temperature gradient by the

thermal wind relation for the two layer model



where z is the geopotential height and pM is the

mid- tropospheric pressure. Because per cent variations of

the thickness z,- z. are less than those of the

temperature gradient we will often refer to the shear as the

temperature gradient and the critical shear as the static

stability, with the appropriate scaling factors implied.

S calculated the auto and cross correlation functions

for the flux and the stability parameter, averaging the

respective functions over the three Januaries and latitudes

46N, 50N and 54N. For the cross correlation function (figure

1) lag is defined such that the stability parameter lags the

flux for positive lags. The most notable feature is the

significant correlation for lags of zero, one half and one

day. A cubic spline fit to the cross correlations indicates

the strongest negative correlation occurs at a lag of about

one half day. Note also that for no lag is the cross

correlation significantly positive (the 95% confidence level

correlation is 0.22). The auto correlation functions for

the flux and the stability parameter are shown in figures 2

and 3, respectively. Also shown are auto correlation

functions corresponding to first order Markov processes (red

noise) with time scales of one and one and a half days,

respectively. As discussed by S, although the auto

correlation function for the flux is best fit by a second

order Markov process, a first order process is still a good

fit.

We may consider variations in the stability parameter
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Figure 1. Cross correlation averaged over three Januaries

and latitudes 46N, 50N and 54N between the flux c-(t) and

the stability parameter j (t + -) as a function of the

lag (in days). Dashed line is a cubic spline fit to the

data points. The 95% confidence level correlation

(two-sided) is 0.22.
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Figure 2. Auto correlation averaged over three Januaries

and latitudes 46N, 50N and 54N of the flux as a function of

the lag i . Dashed line is the auto correlation for a red

noise with a time scale of one day.
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Figure 3. Auto correlation averaged over three Januaries

and latitudes 46N, 50N and 54N of the stability parameter as

a function of the lag t. Dashed line is the auto

correlation for a red noise with a time scale of one and a

half days.



to be due to variations in the meridional temperature

gradient provided the variance of the critical shear is

negligible compared to the variance of the shear. According

to S, the root variance of the stability parameter is about

-I
1.7 m s , comparable to the mean value. Since the January

-'1

mean shear in midlatitudes (50N) is about 10 m s , if all of

the variance of the stability parameter was due to changes

in the shear the rms deviation of the shear, or temperature

gradient, would be no more than 20% of the January mean

value. Since the January mean critical shear in midlatitudes

is also about 10 m s an rms deviation of the static

stability &,-E, of only 20% of the January mean value is

enough for variations in the critical shear to be important.

Such synoptic variations are certainly conceivable, but have

never been studied. Although a modelling study of the

temporal relationship between the flux and the stability

parameter would be illuminating in its own right and was the

original motivation for this study, we shall tentatively

assume that the variance of the critical shear is

negligible, so that variations in the stability parameter

are due to variations in the temperature gradient. The above

observations are then relevant to the problem at hand, and

we proceed with the modelling.



III MODEL EQUATIONS

This study examines the temporal relationship on the

synoptic time scale of two variables: the zonal and vertical

mean meridional eddy sensible heat flux and temperature

gradient. Consequently,

equations are required to

Although the form

relating changes in the

the flux is not new (Ston

derivation is presented

limitations of the model,

model parameters and 3)

be modified to yield more

at least two time dependent

model such a relationship.

of the model equation (111.8)

temperature gradient to changes in

e, 1972; Lorenz, 1979), a complete

here to 1) point out some of the

2) provide first estimates of

suggest which approximations should

realistic results.

Assuming only that the atmosphere is a hydrostatic

ideal gas in a thin shell, its kinetic energy negligible

compared with its static energy, the zonal mean equation of

energy conservation may be written in the form (Hantel,

1976)

III.1 j[cpT 4 Lc] ± 0  [v cosd

where L is the latent heat of vaporization, q is the

specific humidity, h = cpT + gz + Lq is the moist static

energy and F, is the net downward radiative flux.

Decomposing the fields into their zonal mean and eddy

components yields

111.2 +I C4 LJ C4



To be useful a model equation derived from this energy

equation must include both the meridional eddy sensible heat

flux and the time change of the sensible heat. All terms

larger than these must be retained, while all terms much

smaller may be neglected. The results of Hantel (1976)

indicate the dominant energy balance in the atmosphere to be

between radiative flux divergence and vertical eddy moist

static energy flux convergence. The remaining difference in

midlatitudes is balanced largely by meridional eddy moist

static energy flux convergence which, according to Oort

(1971), is dominated in winter by meridional eddy sensible

heat flux convergence. Radiative flux divergence and

vertical eddy moist static energy flux convergence must the

be retained, while meridional eddy latent heat (in winter)

and geopotential (all seasons) flux convergence may be

neglected. In summer meridional eddy latent flux

convergence may not be neglected, but its effects can be

incorporated by assuming the latent heat flux to be

proportional to the meridional eddy sensible heat flux.

Although advection of moist static energy by the

meridional circulation is generally smaller in midlatitudes

than meridional eddy heat flux convergence, it may not be

negligible (Newell et al., 1974). This is especially so

when considering temporal variations because, as a

consequence of thermal wind balance, the meridional

circulation in midlatitudes is forced by friction, diabatics

and eddy fluxes of heat and momentun, all of which have



significant temporal variance. Although the effect of the

meridibnal circulation forced by diabatics and eddy heat

flux can be incorporated within the model, the effects of

forcing by friction and eddy momentum flux can not.

Therefore, the effects of the meridional circulation are

tentatively neglected, but are discussed further in section

V.

Neglecting spherical effects, the energy equation may

now be written

111.3 +- fq.[c kK+

c+ E 11F, = 0.

Integrating from the top of the surface layer to the top of

the atmosphere yields

4-LCF, Co ( - cojI o

where ( > 1 c~.

Temporal changes in the vertical mean latent heat may be

neglected provided the water precipitates immediately upon

convection from the surface. This is never strictly true of

course; a certain time lag is involved. If this lag is much

shorter than the synoptic time scale, the lag is negligible.

Since convective clouds typically develop over time scales

of a few hours, such an approximation is valid provided

precipitation is convective in origin and moist convection

within the troposphere begins immediately after surface



convection. According to the GFDL climate model (Miyakoda et

al., 1969), approximately half of the precipitation is

subgrid scale. Unfortunately, since precipitation is such an

important part of the moist static energy balance, the grid

scale precipitation and its associated synoptic time scale

can not be neglected. Whereas moist convection of an

arbitrary lag can be treated as a white noise (and will be

included later in the modelling), the synoptic scale

precipitation can not. Although this suggests we consider

the dry static energy budget to deal with latent heat

release explicitly, we shall continue with the moist static

energy budget because it affords us an a priori estimate of

the diabatic time scale. Therefore, we assume all

precipitation is convective, and that a significant amount

of it follows immediately after convection from the surface

(we can relax this constraint if we integrate only from the

top of the mixed layer rather than from the surface layer).

The remaining assumptions are all directed at relating

the diabatics, i.e., the surface convective fluxes and the

radiative flux divergence, to the vertical mean temperature.

Newtonian cooling after Spiegel (1957) models the radiative

flux divergence:

III.5 EL F, P.) - F, (o)]----7)

where ?-,is the radiative cooling time and Tr is the

radiative equilibrium temperature consistent with the

observed surface temperature. Appropriate values for ? will



be discussed later in this section. Simple drag laws model

the convective fluxes of sensible and latent heat at the top

of the surface layer:

I I
-, - I

111.6

where 2 = lis the convective time scale, H = is the

scale height, cD is the drag coefficient and 1u.1 is a

typical wind speed at the top of the surface layer. The

subscripts g and o denote values at the ground and at the

top of the surface layer, respectively. Note that ensemble

averaging longer than the time scale of the eddies within

the surface layer but much shorter than the synoptic time

scale is implicit in the mixing length expressions. The

appropriate specific humidity at the ground is just the

saturation specific humidity at the ground temperature

qs(T ). Assuming the relative humidity r at the top of the

surface layer is constant and neglecting spatial variations

in the radiative cooling and convective time scales, the

energy equation differentiated with respect to y = a

becomes

111.7 <to) o] #<TrT>

The only remaining problem is to relate the temperature

at the top of the surface layer to the vertical mean

temperature. As a first approximation, we shall assume



perturbations about the time mean temperature to be

independent of height, so that the required relation is

straightforward. In fact, temperature perturbations can be

quite shallow. Since the model results are quite sensitive

to this condition, the possibility of shallow perturbations

is discussed in more detail in section V.

With these approximations the energy equation reduces

to

111.8 a JN a ,: T -:7<V 'V-r f Te - 7 >

where S= _ is the diabatic time scale.

ZTe> is a sort of radiative-convective equilibrium

temperature consistent with the observed ground temoperature

and assumed constant (note here that we consider only

unforced time scales, i.e., short enough so that the

seasonal cycle in Te) is not resolved). Such an assumption

can be justified for the synoptic time scale over the ocean

as follows. The heat capacity of an infinite column of dry

air is equivalent to that of a two meter column of water.

Te over the ocean can be considered constant if the

temperature of this layer is constant for the time scale of

interest, i.e., one day. This is true if the time scale in

which this layer mixes with a much deeper layer is much less

than one day. According to Ekman layer theory, the dynamical

time scale of the entire mixed layer (N~100 meters) in

midlatitudes is about one day, so that the mixing time of a

ten meter layer (much deeper than two meters) is one tenth



of a day, clearly negligible. Te may then be considered

constant over the ocean for the synoptic time scale. Because

land generally has a much smaller heat capacity than oceans

for the synoptic time scale, T. cannot be considered

constant over land. However, the oceans comprise the greater

part of the zonal mean surface, so that Te in the zonal mean

is approximately constant. The actual value of TE) is not

important in the time dependent calculations; it need only

be consistent with the time mean flux and temperature.

With only one additional assumption the observed

negative correlation at zero lag between the eddy sensible

heat flux and the temperature gradient may be' derived from

the energy equation, in the same manner as Lorenz (1979).

This assumption is that the flux is well correlated in time

with the laplacian of the flux. This is not altogether

obvious because variations of the flux occur in general on a

spectrum of spatial scales. If the temporal variance of the

flux as a function of meridional scale decreased only slowly

with decreasing meridional scale, the variance of the

laplacian of the flux, which accentuates smaller scales,

would peak at a scale well removed from that of the flux.

One would then expect significant correlations between the

flux and the flux laplacian only if fluxes of widely

different scales were well correlated in time, an unlikely

proposition. In fact, when we correlate the flux with the

finite difference equivalent of the flux laplacian using the

data of S, we find significant negative correlations at all



latitudes (figure 4 ). One can argue that since the finite

difference equivalent of the flux laplacian at a given

latitude is heavily weighted by the flux at that latitude,

if the data were in the noise level one should expect

significant, non-physical correlations. However, calculation

of the standard deviation of the finite difference

equivalent of the flux laplacian from the same data (figure

5) indicates that the variance is sufficient to yield

physically significant correlations. One must then come to

the conclusion tha

meridional scales

remarkable result),

a narrow band of

assume that the var

meridional scale

with the laplacian

The perturbati

constant times

perturbation energy

t, unless fluxes of widely different

are significantly correlated (a truly

the variance of the flux is confined to

meridional scales. We will henceforth

iance of the flux is dominated by one

, so that the flux correlates perfectly

of the flux.

on flux laplacian then equals a negative

the perturbation flux. The resulting

equation becomes

where primes denote deviations from the time mean. Note that

the constant of proportionality between the perturbation

flux and the perturbation flux laplacian is not necessarily

the same as that corresponding to the time mean. Whereas

the constant of proportionality for the time mean

corresponds to the planetary scale (Stone, 1978), the proper
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Correlation averaged over three Januaries between

S ( ,t) and the finite difference equivalent

of the flux laplacian ( d -t ,t) - 2 9( d ,t) +

g ( + a ,t) as a function of the latitude c , for

& = 80 latitude. The 95% confidence level correlation

(two-sided) is 0.22.

I I I I

I i a a
'" * -- 50.r - - 62

-

8



21

12

O

O
w

I-

0

0 I I I I I

38 50 62
LATITUDE

Figure 5. Standard deviation averaged over three Januaries

of the finite difference equivalent of the flux laplacian as
-, 0

a function of latitude. Units are m s C, assuming a

tropospheric depth of (generously) 1000 mb. The noise level

is approximately four m s C.



22

value for the constant for perturbations is not well known.

Although theoretical studies have considered the meridional

scale of these perturbations (Stone, 1974; Simmons, 1974;

Pedlosky,1975a), the value for D used in our modelling will

be empirically determined.

Multiplying equation 111.9 by the perturbation

temperature gradient and averaging in time yields

III.10 D (V 7 V> 49T>' > o

where overbars denote the time mean. The heat flux and the

magnitude of the temperature gradient must be negatively

correlated, independent of whatever equation governs the

behavior of the flux. Note that the negative correlation

depends on the presence of diabatics.

According to S, the flux can be modelled as a first

order Markov process. Although the flux is best fit in

winter by a second order process, a first order process, or

red noise, is also a good fit. Figure 2 shows that the auto

correlation function for the flux in winter resembles that

of a red noise with a time scale of about one day.

Theoretical justification for the red noise hypothesis

derives from Pedlosky (1979), in which he considers finite

amplitude dynamics of a weakly unstable baroclinic wave in a

continuous atmosphere on a 3 -plane, with both Ekman

friction at the surface and internal damping. Pedlosky

derives an equation for the wave amplitude of the form

III.11 d



where V is the growth rate from linear theory and A.-is the

equilibrium amplitude. Since the flux is second order in the

wave amplitude, the flux is governed by

111.12 2. Fe

where F < vMT >. Linearization about the mean

F = F,+ F'. yields

III.13 / V -

According to S, the rms deviation of the flux in winter is

about 35% of the mean value. One expects this value to

increase in the summer, when stationary eddy heat flux is

relatively small. Linearization of the flux about the mean

is then justified in winter but perhaps not in summer. The

time scale of the flux can be identified with one half the

inverse growth rate which, according to Eady's model, yields

a value in midlatitudes in winter of about a day and a half.

This is in approximate agreement with the observed time

scale of about one day. One expects the time scale in summer

to be larger because of the weaker temperature gradient.

Adding white noise forcing to both the equation for the

flux and the equation for the temperature gradient, the

model equations may be written

dF' 

weF G GT 4 -a
11.14 d
where G=jCT- , 2V i5 is the time scale of the flux, and

E; and Eg are white noises. The source of the white noise



forcing of the temperature gradient was discussed earlier;

the white noise forcing of the flux might be due to resonant

triad interactions of baroclinic waves (Loesch, 1974).

Introducing the non-dimensional quantities

-'- F'/Fe

111.15 =

yields the non-dimensional model equations

III.16

where

111.17

Although the interpretation of " is obvious, that

of S is not. In the case of the mixing length

parameterization of the flux from Eady's model (Stone,

1972), 9 is equivalent to an order one constant times the

ratio squared of the deformation radius to the meridional

scale of the flux. The scale of the flux may be found from

L r -LF!
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where L4 is the half-wavelength of the variance weighted

scale of the flux. The value of D is found empirically by

computing the ratio of the rms deviation of the flux

laplacian to the rms deviation of the flux. For the data of
-IT -Z

S, D is found to be 1.8X10 m . The corresponding

half-wavelength is about 2300 km.

To calculate the diabatic time scale we must estimate

the convective and radiative time scales. Hicks (1972)
-3

provides an average value for c, of about 1.4x10 but
-

finds values ranging from 4x10 to 4Y10 , depending on the

stability of the surface layer. Typical 10 meter wind speeds

are 5 m s , so that a first estimate of the convective time

scale is about ten days. The radiative time scale varies

widely, depending upon the height and vertical scale of the

temperature perturbations, and the nature of the surface

below. Prinn (1977) calculated values ranging from one half

day for shallow perturbations immediately above a conducting

surface to one month for deep perturbations well removed

from the surface. Since we have assumed temperature

perturbations to be independent of height we shall take the

largest value, one month, as a first estimate of the

radiative time scale. For a relative humidity of 90% the

value of r - is 0.7 at 0 C, appropriate for the

January mean. The corresponding diabatic time scale is then

5 days.

Although we could use the results from Eady's model to

find 9 , there really is no point in doing so since the



value of the meridional scale is empirically determined.

Therefore we use the observed values for January of
-, 0

F = 20 m s C

G = 4Y10 C m

t-,= 1 day

to yield

= 0.2

S= 0.8.

With these first estimates of the model parameters we shall

proceed to solve for the correlation functions.
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IV BASIC MODEL SOLUTION

Although one could just as easily solve the finite

difference equivalent of the model equations, we present the

solution of the continuous system. This is reasonable

provided the time scale of the white noise forcing is small

but finite. The model equations are again (dropping primes)

IV.1 d-f - + 6

IV.2 -+- e

The auto covariance function for the flux is found by

multiplying equation IV.1 evaluated at time t + '" (~)>0) by

the flux at time t and averaging in time, yielding

or

IV.3

where

To find the cross correlation, multiply equation IV.2

evaluated at time t + Z (anyZ ) by the flux at time t and

average, yielding

Substituting (f,f,- ) from equation IV.3 into the general

solution

-

,

~~C £cS J 3 'a~-j
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yields

ce - (-,o et

Matching solutions at = 0 yields

Matching solutions at"Z:= 0 yields

IV.4 T *C O) 4

The auto covariance function for the temperature gradient is

found by multiplying equation IV.2 evaluated at time t + 1-

(1 ,O) by the temperature gradient at time t and averaging,

yielding

Substituting -(g,f,"Z) from equation IV.4 into the general

solution

, c - e (,-&>i-eJI

yields

IV.5

To close the problem we need an expression relating the

variance of the temperature gradient to that of the flux.

In the special case 6 = 0 the variance of the

temperature gradient may be related to the variance of the

tfF
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flux by multiplying equation IV.2 by the temperature

gradient and averaging, yielding

IV. 6

The auto

n0 ) -or a fnctons) ten becom

and cross correlation functions then become

- e-

IV. 7

IV.8

(If \e

irI-

jZ2Q

T2 / 2) e2t

( I

where P KY ) -- T/x , 1(, 0),o

Note that these solutions depend only on .

(

IV. 9

YfsI

~ic

Zf= /

'0 -r,51 a)

,,



V BASIC MODEL RESULTS

Solutions of the auto correlation function for the

temperature gradient and the cross correlation function for

the flux and the temperature gradient are shown in figures 6

and 7, respectively, for different values of . Since the

non-dimensional time has been scaled by the time scale of

the flux, which is about one day, values of the

non-dimensional lag may be thought of in terms of days.

Comparison with the observed correlation functions reveals

significant differences, given the first estimate

of i 0.2. The modelled temperature gradient is much more

persistent than is observed, while the modelled lag of

maximum negative correlation between the flux and the

temperature gradient is much later than observed. Either

some other process must be included in the model or larger

values of X must be justified.

We therefore include the white noise forcing of the

temperature gradient in the model. This adds additional

variance . (g,g,O) to the temperature gradient which depends

on both the magnitude and time scale of the forcing. The

total variance of the temperature gradient is then

V.1 _

where -a ~3 is the ratio of the variance of the

temperature gradient due to direct white noise forcing to

the variance due to forcing by the flux. Although the flux

auto covariance function and the cross covariance function
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Model auto correlation for the temperature

gradient as a function of the non-dimensional lag for ' =-0

and different values of ( .
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Figure 7. Model cross correlation for the flux and the

temperature gradient as a function of the non-dimensional

lag for = 0 and different values of .



are independent of .4(g,g,O) and hence 9 , the structure of

the auto covariance function and the magnitude of the cross

covariance function will be altered by white noise forcing

of the temperature gradient. As I increases, the magnitude

of the cross correlation function decreases, and auto

corrlation function for the temperature gradient becomes

more like that of a red noise. In the limit '-. the cross

correlation function becomes zero while the auto correlation

function for the temperature gradient is that of a red noise

with time scale 2t. Since the observed auto correlation

function for the temperature gradient is similar to that of

red noise with a time scale of one and a half days, our

estimate of the diabatic time scale is clearly too large.

The diabatic time scale must be at least as small as one and

a half days and is probably smaller to allow for reasonable

values of S .

Although other processes may still be important we

shall for the moment assume they are not. Since the

structure of the cross correlation function is fully

determined by X, the observed lag of the strongest negative

correlation can be used to estimate . From equation IV.9

we find that this lag is given by

V.2

This function is shown in figure 8. Since the observed lag

is one half day, we estimate that Y is about one. Because
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Figure 8. Non-dimensional lag of strongest correlation

between the flux and the temperature gradient as a function

of 9 .
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Figure 9. Dimensional lag of strongest correlation as a

function of the time scale of the flux, for different values

of the diabatic time scale. Units are in days.
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there is some flexibility concerning the proper choice for

the time scale of the flux we should check the effects of

different b on the dimensional lag of strongest

correlation o, ~z, . Figure 9 shows 2o as a function

of ?'bfor different values of the diabatic time scale. For

flux time scales greater than or order the diabatic time

scale ( 0(1)) the lag of strongest correlation is nearly

independent of the flux time scale and is given

approximately by one half the diabatic time scale.

We can then be fairly confident that the diabatic time

scale for perturbations in the atmosphere in midlatitudes in

winter is about one day. This is considerably shorter than

our first estimate of the diabatic time scale (five days).

We consider two possible explanations. First, variations in

the critical shear may not be negligible compared to

variations in the shear. By definition we expect the

diabatic time scale for the critical shear to be at least as

small as one half that appropriate for the entire

atmospheric depth. Furthermore, moist convection within the

troposphere can be an extremely efficient source of

diabatics. Although we have no way of a priori estimating

the diabatic time scale associated with moist convection, a

value of one day is certainly reasonable. The alternate

explanation is that perturbations in the meridional

temperature gradient associated with the flux are quite

shallow. For perturbations which decay exponentially with a

scale height h the convective time scale is reduced by the



factor H/(h+H) from the time scale assuming vertical

homogeneity. Observations of the zonal mean transient eddy

heat flux from Oort & Rasmussen (1971) show that the heat

flux in midlatitudes in winter decays exponentially from 850

mb with a scale height somewhat less than H. Therefore, a

convective time scale of less than five days seems

reasonable. In addition, the radiative time scale for

shallow perturbations is also shorter. Prinn (1977) found a

radiative time scale of about a day and a half for

perturbations well removed from the surface with a vertical

wavelength of 3 km (admittedly shallow). The corresponding

diabatic time scale becomes about one day.

With the value of 5 of about one well established and

justified, we return to our discussion of 3 . Figure 10

shows the model auto correlation function of the temperature

gradient for " equal to one and different values of 1 .

Comparison with the observed auto correlation function

indicates that S of order unity is appropriate. We can

independently estimate " by comparing the magnitudes of

the observed vs. the modelled cross correlation functions.

Since the modelled cross correlation function for K = 1.0

is about twice the magnitude of the observed function, we

expect 1 to be about three, in reasonable agreement with

the previous estimate of ' .

Such a value seems large for random forcing of the

temperature gradient, suggesting that we should consider

variations in the critical shear as well as the shear.



Z
0

I 

-J
0

0 LAG

Figure 10. Model auto correlation for the temperature

gradient as a function of the non-dimensional lag for Y = 1

and different values of " .
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Random moist convection is often well organized in the

vertical but poorly organized over the meridional scales of

interest. However, it need not be well organized. Consider a

random change A e, in the temperature of the upper

troposphere at a given latitude, corresponding to a change

in the vertical mean temperature of 8G1/2. The maximum

scale L over which the change in the shear will be

comparable to the change in the critical shear is given by

which in midlatitudes is about 2400 km. Since this is

comparable to the observed scale of the flux we conclude

that random moist convection affects the shear as well as

the critical shear for the meridional scales of interest.

The model has reproduced the observed auto and cross

correlation functions for winter fairly well with reasonable

parameter values. We can with some confidence make some

predictions for summer as well. We expect the diabatic time

scale to be smaller in summer than in winter because latent

heat convection is more efficient at the higher temperatures

associated with summer. The lag of strongest correlation

should then be smaller than it is in winter. Because of the

weaker mean temperature gradient in summer we also expect

the time scale of the flux to be larger than in winter, so

that X should be much larger than in winter (perhaps 2).

This alone suggests the cross correlations should be

stronger in summer. However, we also expect 'S to be



larger, so that the correlations may in fact be weaker.

Another test of the model is how well the observed

relative variances of the flux and temperature gradient

agree with the relation expressed in equation V.1. If we

assume all of the variance of the t

due to forcing by the flux ( S =

empirically established values for &

respectively, the root variance of

temperature gradient should be

non-dimensional flux. The observed

variance of the flux was found to be

the variance of the stability par

variations in the temperature grad

emperature gradient

0) then, using

and f of 0.8 and 1

the non-dimensio

0.6 that of

non-dimensional r

0.35

ameter

is

the

.0,

nal

the

oot

while, assuming

is due only to

ient, the observed

root variance

was found to be less than 0.2, or

agreement is only valid for S =

predicts a non-dimensional root

gradient of 0.8 that of the flux.

predicts a value of 1.2. The mod

the effectiveness of the flux in

gradient. The obvious solution

empirically determined value for

level, although smaller than

laplacian, is not negligible.

of the temperature gradient

0.6 that of the flux. The

0; for S = 1 the model

variance of the temperature

For I = 3 the model

el apparently overestimates

forcing the temperature

to the problem is that our

D is too large. The noise

the variance of the flux

If the noise level

negligible compared with the variance of the flux the proper

value for

determined

D could be as small as one half our empirically

value.

non-dimensional
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Another possible explanation is that we must include

the effects of the meridional circulation forced by the heat

flux. This could significantly decrease the effectiveness of

the flux in forcing the temperature gradient. We can roughly

estimate this effect as follows. The zonally averaged zonal

momentum and thermodynamic equations may be approximated by

V.3 L-V )( -- VC

V.4 T] + C

where F, is friction, Q

: - is a measure

Substituting equations V.3 and

equation

is diabatics and C (p)

of the static stability.

V.4 into the thermal wind

V.5

yields

v.6 E ] L
o~-~~J -a[ s-Y -r-Y ] 4 J -ALr~

Continuity is identically satisfied if the meridional

streamfunction (I is defined by

Ev-] J-= --(''3 Z7

Equation V.6 becomes

-t~~~ 43'h F L~ C~J ~ j~~

- -,~R 5EJ2 ~ TrI ] -i ~tp LQJ~3 .

dr ~-R --<4 FT~P L,' '~C~<D 'L3
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The effects of forcing by individual terms may be considered

separately. For an idealized heat flux

the equation for the meridional streamfunction is

Assuming CF is constant and p = /p. where it appears as a

coefficient yields

'TR 0'
0 VP . Z R.L~* L

The particular solution

satisfying the boundary conditions

(4 = O Q,=- )17/-L= co ITZ/?
I 1-z 4O S= ",

upon substitution yields

where

L~e F

,Lt Cif

8Ra;Po t~P~ / ~tZ igl oa
C >.O

N , is the Brunt-Vaisala frequency, L = is the

deformation radius and Lp = -- is the pole to equator

distance. The ratio of the resulting adiabatic

cooling cIJ to the eddy heat flux convergence is

- jc
-LZ fP Z

The effect of the meridional circulation forced by the heat

flux can be incorporated in the model by simply decreasing

V I-PP _

IC= 4L~0-1 /7 P~ i :; n 2)

0-AJ a
FO-



the value of g:

The observed half-wavelength of the flux corresponds to a

value of 1 between four and five. Since we have found the

flux to be shallow, a value for m of two or three is

probably more accurate than one. The effectiveness of the

flux should then be reduced by no more than 25%. Although

the effectiveness of the diabatics is also decreased by the

meridional circulation, this effect has already been

accounted for because the final value of was determined

by the model results. With this adjustment the model

predicts a non-dimensional root variance of the temperature

gradient of 0.45 that of the flux for = 0, 0.6 for . =

1, and 0.9 for I = 3. Since the best estimate of g is

three, both explanations are required to resolve the

difference. The proper value for S should then be 0.4.



VI FEEDBACK MODEL

How might we further improve the model? The fact that,

according to S, the flux is more accurately modelled as a

second order Markov process suggests we should include

feedback of the temperature gradient on the flux. In this

section we include such feedback, so that the equation for

the flux may be written

VI.1 r = - ; -4

where is a non-dimensional parameter presumed to be

positive. One possible interpretation of 7 arises if we

let the equilibrium flux F. depend on the instantaneous

rather than time mean value of the temperature gradient. In

particular, if the equilibrium flux as parameterized by

mixing length arguments is

we have, upon linearization of equation 111.12,

$F= 2V F =k FGE

which upon non-dimensionalization yields equation VI.1.

Clearly such an instantaneous dependence is not valid for

mixing length parameterizations which, as noted above,

assume ensemble averaging over intervals comparable to the

time scale of the flux. Although this leaves the

interpretation of /1 as the power of dependence of the

equilibrium flux on the temperature gradient in question, it

does not prohibit the possibility of some form of dependence



of the equilibrium flux on the instantaneous value of the

temperature gradient. Therefore, although the appropriate

value for nIY is not a priori known, we shall examine

solutions when / is non-zero.

To simplify the problem we shall neglect white noise

forcing of the temperature gradient. The model equations in

non-dimensional form are then

VI.2 = - + 4 fe

VI.3 O - -

Equations relating the covariance functions are

VI.5 - f )4a )

VI.6

VI.7 = -

Equations VI.4 - VI.7 form two sets of coupled equations for

the covariance functions. Solutions of the form

: e yield characteristic roots p =: -

These roots may be pure real and distinct, pure real and

identical, or complex conjugates. Each case is considered

separately in the appendix. The solutions are found to



depend only on ' and the product Kr 1 , so that a

parameter study is feasible.

We have already considered the case in which K equals

zero and Y is order unity, having established that

X equal to one is appropriate for the atmosphere. We now

consider the case in which ( equals one and K is order

unity. Figure 11 shows solutions of the cross correlation

function for & = 1.0 and different values of K( . Feedback

dramatically alters the form of the cross correlation

function. This is not surprising since the characteristic

roots for e = 1.0 are double roots for K = 0 and complex

roots for positive X, . Feedback does not significantly

alter the non-dimensional lag of strongest negative

correlation, suggesting that our choice of Y is

appropriate for whatever feedback might operate in the

atmosphere. Comparison with the observed cross correlation

function suggests a choice of K. near one would yield a

more realistic modelled cross correlation function.

Figure 12 shows the modelled auto correlation function

for the flux for Y = 1.0 and different values of K . For a

value of C near unity the model solution is similar in

form to the observed auto correlation function. However, the

apparent time scale of the flux is much shorter when

feedback is included (by apparent time scale we mean the lag

at which the auto correlation reaches a value of 1/e). This

suggests that our estimate of the time scale of the flux

from the observed auto correlation function is too short.

_
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Figure 11. Model cross correlation for the flux and the

temperature gradient as a function of the non-dimensional

lag for S = 0, Y = 1 and different values of K .
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Figure 12. Model auto correlation for the flux as a function

of the non-dimensional lag for Y = 0, = 1 and different

values of K.



Since feedback does not significantly affect the

non-dimensional lag of strongest negative correlation

between the flux and the temperature gradient we expect our

estimate of the diabatic time scale of one day to remain

valid. The appropriate value for ' should then be larger

than one. This then requires a larger value for K to get

complex characteristic roots. This suggests that a wide

range of values for K and the flux time scale should be

considered for comparison with observations. Rather than

carry out such a lengthy procedure we can go directly to the

observations for the time scale for the flux. For the flux

auto correlation function expressed in the form

where 2~* is the dimensional lag (in days), S found values

for

b = 1.316 day

= 1.189 day

= 0.865 radians

by fitting to the observed flux auto correlation at lags of

'/z and 1 day. Matching the form of the model solution with

the above form yields

or

2b - 1 d



50

For the above value for b and 2, = 1 day we have 1, = 0.61

days, actually less than our first estimate of one day.

Thus, whereas the apparent time scale of the modelled flux

underestimates the true time scale, the apparent time scale

of the observed flux overestimates the true time scale. To

resolve this problem we consider the phase V .

According to the model solution the phase may be

expressed as

where p :- I)- ] For X = 0.61 and K = 1.0 the model

yields 9 = 2.045 radians. This is a significantly different

phase from the observed phase of 0.865 radians, and explains

why the modelled and observed apparent time scales of the

flux relative to the true time scale are so different (note

that, unless X is much greater than one and X is small,

the modelled phase must be in the second or fourth quadrant,

whereas the observed phase is in the middle of the first or

third quadrant). We can not claim to have improved the

model by adding feedback unless we can model the phase

correctly. We can do this by including white noise forcing

of the temperature gradient.

Consider the phase $ of the auto correlation function

for the temperature gradient. Figure 13 shows this auto

correlation function for ' = 1.0 and different values of

S. The phase is given by
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Figure 13. Model auto correlation for the temperature

gradient as a function of the non-dimensional lag for

" = O, ? = 1 and different values of K .
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which for K = 1.0 and Y = 0.61 yields $ = 0.884 radians.

If the white noise forcing of the flux is very weak compared

with the white noise forcing of the temperature gradient, we

expect the auto correlation function for the flux to

resemble that of the temperature gradient shown in figure

13. Thus, including white noise forcing of the temperature

gradient will not only yield a more realistic auto

correlation function for the temperature gradient, but a

more realistic auto correlation function for the flux as

well, complete with phase.

Although by tuning the three model parameters X ,

and S one may find model solutions consistent with

observations, we do not conclude that feedback of the

temperature gradient on the flux operates in the atmosphere.

The finite amplitude calculations of baroclinic stability in

the absence of diabatics (Pedlosky, 1979) also yield second

order equations for the behavior of the flux.

Pfeffer et al. (1980) calculated cross correlation

functions for the flux and the temperature gradient in

thermally driven rotating annulus experiments. The modelled

cross correlation function (figure 11) for strong feedback

( K - 5) closely resembles the observed cross correlation

function in the geostrophic turbulence regime. Although

feedback may be stronger in the annulus experiments than in

the atmosphere, it is more likely that the internal damping

is too weak in the annulus experiments.



VII CONCLUSIONS

One can derive many of the model results from first

principles. The fact that the flux behaves approximately as

a red noise derives from Pedlosky (1979). The time scale

for the flux can be identified with one half the inverse

growth rate from baroclinic stability theory. Corrections to

the first estimate for the diabatic time scale due to the

vertical scale of perturbations follows from the vertical

scale of the most unstable wave in baroclinic stability

theory. One could roughly estimate the amount of white noise

forcing of the temperature gradient from the typical scales

of moist convection. The meridional scale of flux

perturbations has been considered theoretically by Stone

(1974), Simmons (1974) and Pedlosky(1975a). The only missing

element is a model of the white noise forcing of the flux.

Pedlosky (1975b) considered the amplitudes of interacting

triads in a baroclinic current but found that the results

depend on the initial conditions. Further work is clearly

needed on this difficult problem.

The diabatic time scale which the modelling suggests is

valid for perturbations due the eddy heat flux is

surprisingly short. Since the diabatic time scale chosen in

dynamical models is typically ten days or more, our results

suggest that a much shorter diabatic time scale is

appropriate. Since the diabatic time scale is comparable to

the advective time scale, the importance of properly

modelling diabatics in numerical models of atmospheric

I _L~1___~___ ~~~_ _I_~_*__~__ ~_II__^_X~ _~ ~~_~_al~~~_l~



motions is readily apparent. We stress this because there is

room for improvement in modelling diabatics at NMC.

Finally, although for the meridional scales of interest

we have shown that random forcing of the meridional

temperature gradient is as important as random forcing of

the static stability, we cannot neglect the variance of the

critical shear. One then has reason to question why the

modelling has been so successful. We suspect that an

equation very similar to that governing the behavior of the

temperature gradient also governs the behavior of the static

stability. According to baroclinic stability theory

vertical eddy flux of sensible heat associated with synoptic

disturbances must coincide with meridional eddy sensible

heat flux. In addition, diabatics should act to restore the

static stability, as well as the temperature gradient, to

its respective equilibrium value. However, the diabatic time

scale in the vertical may not correspond to the diabatic

time scale in the horizontal. Therefore, as long as the

variance of the critical shear cannot be neglected, our

determination of the diabatic time scale may not strictly

apply for meridional perturbations. Correlation functions

involving the temperature gradient and the static stability

individually should be examined to separate meridional from

vertical perturbations.



APPENDIX

The eight unknowns associated with the four general

solutions require eight constraints. Four constraints result

from the requirement that equations VI.4 - VI.7 hold for all

lags greater than or equal to zero, which is satisfied if

the equations hold for zero lag. Another results from the

requirement that the cross covariance functions . (f,g, )

and 1 (g,f, t ) match at zero lag. Two more constraints

follow from the requirement that

(which is independent of equations VI.4 - VI.7 and is valid

only when white noise forcing of the temperature gradient

does not exist) hold for all positive lags. The final

constraint is that the flux auto covariance function at zero

lag match the flux variance. All constants are then

expressed in terms of the flux variance.

A Real, Distinct Roots

For pure real and distinct characteristic roots p = p-

the general solutions are

if ) A, P -tt 4 +-

~I /-C, 1) a3  + 3 e33

d ~SrStl~eef 13 Y e .~
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The eight constraints

t4 +) 4,

( ptI±) , *f (1-f/') 133 -A4
+ S (o A+ 6) = o

+ ( F ) 8, - S4(Ay+8,)= o
/4 ,-t 6 , =

(s - v4 = d (A,

Az eg .z = F (F,

The constants in terms of 1-(f, f,o0)

i ( f(f)

131 + r, )B- -p -(e1o)
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56

are

(A,-' -i,)

are

I ',oj

_________I*~~~LYII__Y_ LI

+ E (A34 4,) =

P' I Pt- r~~

(pt-~~(pfpS~2)

p ( -- Y) I (r



C '- ) ( " +)

P-The correlation functions become<+ - (pt+ -) L.i i + '
The correlation functions become

I
'ii#~(pi~~- r) I+ ")' -g +pl~s 't

£ (fCF, ., )

P12

f~t 1' "4 Mje

- KF IP ) *&\l] e

-- pt f>E
-+ E +

4 / 2

f (t,-+~(i) 3
Qf-

4" "
/O(IS1hZ)

B Double Roots

For real double characteristic roots the

solutions are
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The eight constraints are
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The correlation functions are

pI
e

L cY4
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C Complex Roots

For complex characteristic roots p = Pr ip the general

solutions are

F ., - 7) Prz L 4
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