19 research outputs found

    Efficacy and safety of ipratropium bromide/albuterol compared with albuterol in patients with moderate-to-severe asthma: a randomized controlled trial

    Get PDF
    Abstract Background Many patients with asthma require frequent rescue medication for acute symptoms despite appropriate controller therapies. Thus, determining the most effective relief regimen is important in the management of more severe asthma. This study’s objective was to evaluate whether ipratropium bromide/albuterol metered-dose inhaler (CVT-MDI) provides more effective acute relief of bronchospasm in moderate-to-severe asthma than albuterol hydrofluoroalkaline (ALB-HFA) alone after 4 weeks. Methods In this double-blind, crossover study, patients who had been diagnosed with asthma for ≥1 year were randomized to two sequences of study medication “as needed” for symptom relief (1–7 day washout before second 4-week treatment period): CVT-MDI/ALB-HFA or ALB-HFA/CVT-MDI. On days 1 and 29 of each sequence, 6-hour serial spirometry was performed after administration of the study drug. Co-primary endpoints were FEV 1 area under the curve (AUC 0–6 ) and peak (post-dose) forced expiratory volume in 1 s (FEV 1 ) response (change from test day baseline) after 4 weeks. The effects of “as needed” treatment with ALB-HFA/CVT-MDI were analyzed using mixed effect model repeated measures (MMRM). Results A total of 226 patients, ≥18 years old, with inadequately controlled, moderate-to-severe asthma were randomized. The study met both co-primary endpoints demonstrating a statistically significant treatment benefit of CVT-MDI versus ALB-HFA. FEV 1 AUC 0-6h response was 167 ml for ALB-HFA, 252 ml for CVT-MDI (p <0.0001); peak FEV 1 response was 357 ml for ALB-HFA, 434 ml for CVT-MDI (p <0.0001). Adverse events were comparable across groups. Conclusions CVT-MDI significantly improved acute bronchodilation over ALB-HFA alone after 4 weeks of “as-needed” use for symptom relief, with a similar safety profile. This suggests additive bronchodilator effects of β 2 -agonist and anticholinergic treatment in moderate-to-severe, symptomatic asthma. Trial registration ClinicalTrials.gov No.: NCT00818454; Registered November 16, 2009

    Nuclear Factor-Kappa B Family Member RelB Inhibits Human Immunodeficiency Virus-1 Tat-Induced Tumor Necrosis Factor-Alpha Production

    Get PDF
    Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorder (HAND) is likely neuroinflammatory in origin, believed to be triggered by inflammatory and oxidative stress responses to cytokines and HIV protein gene products such as the HIV transactivator of transcription (Tat). Here we demonstrate increased messenger RNA for nuclear factor-kappa B (NF-κB) family member, transcription factor RelB, in the brain of doxycycline-induced Tat transgenic mice, and increased RelB synthesis in Tat-exposed microglial cells. Since genetic ablation of RelB in mice leads to multi-organ inflammation, we hypothesized that Tat-induced, newly synthesized RelB inhibits cytokine production by microglial cells, possibly through the formation of transcriptionally inactive RelB/RelA complexes. Indeed, tumor necrosis factor-alpha (TNFα) production in monocytes isolated from RelB deficient mice was significantly higher than in monocytes isolated from RelB expressing controls. Moreover, RelB overexpression in microglial cells inhibited Tat-induced TNFα synthesis in a manner that involved transcriptional repression of the TNFα promoter, and increased phosphorylation of RelA at serine 276, a prerequisite for increased RelB/RelA protein interactions. The Rel-homology-domain within RelB was necessary for this interaction. Overexpression of RelA itself, in turn, significantly increased TNFα promoter activity, an effect that was completely blocked by RelB overexpression. We conclude that RelB regulates TNFα cytokine synthesis by competitive interference binding with RelA, which leads to downregulation of TNFα production. Moreover, because Tat activates both RelB and TNFα in microglia, and because Tat induces inflammatory TNFα synthesis via NF-κB, we posit that RelB serves as a cryoprotective, anti-inflammatory, counter-regulatory mechanism for pathogenic NF-κB activation. These findings identify a novel regulatory pathway for controlling HIV-induced microglial activation and cytokine production that may have important therapeutic implications for the management of HAND

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease
    corecore