52 research outputs found

    Functional biology of the Steel syndrome founder allele and evidence for clan genomics derivation of COL27A1 pathogenic alleles worldwide

    Get PDF
    © 2020, The Author(s). Previously we reported the identification of a homozygous COL27A1 (c.2089G\u3eC; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings auNorthwell Healthnt our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes

    Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder.

    Get PDF
    NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development

    Phenotypic expansion in DDX3X - a common cause of intellectual disability in females

    Get PDF
    De novo variants in DDX3X account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique DDX3X variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings. Rare or novel phenotypes observed include respiratory problems, congenital heart disease, skeletal muscle mitochondrial DNA depletion, and late-onset neurologic decline. Our findings expand the spectrum of DNA variants and phenotypes associated with DDX3X disorders

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics

    SUDDEN VISION LOSS IN A MUCOPOLYSACCHARIDOSIS I PATIENT RECEIVING ENZYME REPLACEMENT THERAPY

    No full text
    Sudden vision loss in a mucopolysaccharidosis I patient receiving enzyme replacement therapy: A 25-year-old female was referred for short stature and joint deformities. Except for previous corneal transplantation, her medical history was unremarkable. Initial physical examination revealed the presence of a coarse facies. short neck, kyphosis, restricted joint movements and deformities, and cardiac murmur besides a normal intellect. Urine glycosaminoglycan levels were high, and blood enzyme assay indicated significantly low alpha-L-iduronidase levels. Mucopolysaccharidosis I (MPS I) was diagnosed and prompted the onset of enzyme replacement therapy (ERT), which significantly improved articular complaints, while cardiac pathology remained stable. At the eighteenth month of ERT, sudden vision loss developed. She spontaneously recovered her vision in a month. MPS I is a progressive disease, in which tissue accummulation of heparan and dermatan sulphate result from defective activity or lack of alpha-L-iduronidase. ERT in MPS I usually presents favourable outcomes or at least stabilization of symptoms. This present case qualities as the first report of a NIPS I patient developing sudden vision loss under ERT. We suggest that further research studies are warranted for defining the efficiency and possible limitations of ERT

    Clinical and genetic spectrum from a prototype of ciliopathy: Joubert syndrome

    No full text
    © 2022 Elsevier B.V.Objective: Joubert syndrome is a neurodevelopmental disorder with a distinctive hindbrain malformation called molar tooth sign, causing motor and cognitive impairments. More than 40 genes have been associated with Joubert syndrome. We aim to describe a group of Joubert syndrome patients clinically and genetically emphasizing organ involvement. Methods: We retrospectively collected clinical information and molecular diagnosis data of 22 patients with Joubert syndrome from multiple facilities. Clinical exome or whole-exome sequencing were performed to identify causal variations in genes. Results: The most common variants were in the CPLANE1, CEP290, and TMEM67 genes, and other causative genes were AHI1, ARMC9, CEP41, CSPP1, HYLS1, KATNIP, KIAA0586, KIF7, RPGRIP1L, including some previously unreported variants in these genes. Multi-systemic organ involvement was observed in nine (40%) patients, with the eye being the most common, including Leber\"s congenital amaurosis, ptosis, and optic nerve coloboma. Portal hypertension and esophageal varices as liver and polycystic kidney disease and nephronophthisis as kidney involvement was encountered in our patients. The HYLS1 gene, which commonly causes hydrolethalus syndrome 1, was also associated with Joubert syndrome in one of our patients. A mild phenotype with hypophyseal hormone deficiencies without the classical molar tooth sign was observed with compound heterozygous and likely pathogenic variants not reported before in the KATNIP gene. Conclusion: Some rare variants that display prominent genetic heterogeneity with variable severity are first reported in our patients. In our study of 22 Joubert syndrome patients, CPLANE1 is the most affected gene, and Joubert syndrome as a ciliopathy is possible without a classical molar tooth sign, like in the KATNIP gene-affected patients
    corecore