6,295 research outputs found
Non-local modulation of the energy cascade in broad-band forced turbulence
Classically, large-scale forced turbulence is characterized by a transfer of
energy from large to small scales via nonlinear interactions. We have
investigated the changes in this energy transfer process in broad-band forced
turbulence where an additional perturbation of flow at smaller scales is
introduced. The modulation of the energy dynamics via the introduction of
forcing at smaller scales occurs not only in the forced region but also in a
broad range of length-scales outside the forced bands due to non-local triad
interactions. Broad-band forcing changes the energy distribution and energy
transfer function in a characteristic manner leading to a significant
modulation of the turbulence. We studied the changes in this transfer of energy
when changing the strength and location of the small-scale forcing support. The
energy content in the larger scales was observed to decrease, while the energy
transport power for scales in between the large and small scale forcing regions
was enhanced. This was investigated further in terms of the detailed transfer
function between the triad contributions and observing the long-time statistics
of the flow. The energy is transferred toward smaller scales not only by
wavenumbers of similar size as in the case of large-scale forced turbulence,
but by a much wider extent of scales that can be externally controlled.Comment: submitted to Phys. Rev. E, 15 pages, 18 figures, uses revtex4.cl
Three regularization models of the Navier-Stokes equations
We determine how the differences in the treatment of the subfilter-scale
physics affect the properties of the flow for three closely related
regularizations of Navier-Stokes. The consequences on the applicability of the
regularizations as SGS models are also shown by examining their effects on
superfilter-scale properties. Numerical solutions of the Clark-alpha model are
compared to two previously employed regularizations, LANS-alpha and Leray-alpha
(at Re ~ 3300, Taylor Re ~ 790) and to a DNS. We derive the Karman-Howarth
equation for both the Clark-alpha and Leray-alpha models. We confirm one of two
possible scalings resulting from this equation for Clark as well as its
associated k^(-1) energy spectrum. At sub-filter scales, Clark-alpha possesses
similar total dissipation and characteristic time to reach a statistical
turbulent steady-state as Navier-Stokes, but exhibits greater intermittency. As
a SGS model, Clark reproduces the energy spectrum and intermittency properties
of the DNS. For the Leray model, increasing the filter width decreases the
nonlinearity and the effective Re is substantially decreased. Even for the
smallest value of alpha studied, Leray-alpha was inadequate as a SGS model. The
LANS energy spectrum k^1, consistent with its so-called "rigid bodies,"
precludes a reproduction of the large-scale energy spectrum of the DNS at high
Re while achieving a large reduction in resolution. However, that this same
feature reduces its intermittency compared to Clark-alpha (which shares a
similar Karman-Howarth equation). Clark is found to be the best approximation
for reproducing the total dissipation rate and the energy spectrum at scales
larger than alpha, whereas high-order intermittency properties for larger
values of alpha are best reproduced by LANS-alpha.Comment: 21 pages, 8 figure
Highly turbulent solutions of LANS-alpha and their LES potential
We compute solutions of the Lagrangian-Averaged Navier-Stokes alpha-model
(LANS) for significantly higher Reynolds numbers (up to Re 8300) than have
previously been accomplished. This allows sufficient separation of scales to
observe a Navier-Stokes (NS) inertial range followed by a 2nd LANS inertial
range. The analysis of the third-order structure function scaling supports the
predicted l^3 scaling; it corresponds to a k^(-1) scaling of the energy
spectrum. The energy spectrum itself shows a different scaling which goes as
k^1. This latter spectrum is consistent with the absence of stretching in the
sub-filter scales due to the Taylor frozen-in hypothesis employed as a closure
in the derivation of LANS. These two scalings are conjectured to coexist in
different spatial portions of the flow. The l^3 (E(k) k^(-1)) scaling is
subdominant to k^1 in the energy spectrum, but the l^3 scaling is responsible
for the direct energy cascade, as no cascade can result from motions with no
internal degrees of freedom. We verify the prediction for the size of the LANS
attractor resulting from this scaling. From this, we give a methodology either
for arriving at grid-independent solutions for LANS, or for obtaining a
formulation of a LES optimal in the context of the alpha models. The fully
converged grid-independent LANS may not be the best approximation to a direct
numerical simulation of the NS equations since the minimum error is a balance
between truncation errors and the approximation error due to using LANS instead
of the primitive equations. Furthermore, the small-scale behavior of LANS
contributes to a reduction of flux at constant energy, leading to a shallower
energy spectrum for large alpha. These small-scale features, do not preclude
LANS to reproduce correctly the intermittency properties of high Re flow.Comment: 37 pages, 17 figure
Leray and LANS- modeling of turbulent mixing
Mathematical regularisation of the nonlinear terms in the Navier-Stokes
equations provides a systematic approach to deriving subgrid closures for
numerical simulations of turbulent flow. By construction, these subgrid
closures imply existence and uniqueness of strong solutions to the
corresponding modelled system of equations. We will consider the large eddy
interpretation of two such mathematical regularisation principles, i.e., Leray
and LANS regularisation. The Leray principle introduces a {\bfi
smoothed transport velocity} as part of the regularised convective
nonlinearity. The LANS principle extends the Leray formulation in a
natural way in which a {\bfi filtered Kelvin circulation theorem},
incorporating the smoothed transport velocity, is explicitly satisfied. These
regularisation principles give rise to implied subgrid closures which will be
applied in large eddy simulation of turbulent mixing. Comparison with filtered
direct numerical simulation data, and with predictions obtained from popular
dynamic eddy-viscosity modelling, shows that these mathematical regularisation
models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure
On the formulation of the dynamic mixed subgrid‐scale model
The dynamic mixed subgrid‐scale model of Zang et al. [Phys. Fluids A 5, 3186 (1993)] (DMM1) is modified with respect to the incorporation of the similarity model in order to remove a mathematical inconsistency. Compared to DMM1, the magnitude of the dynamic model coefficient of the modified model (DMM2) is increased considerably, while it is still significantly smaller than as occurs in the dynamic subgrid‐scale eddy‐viscosity model of Germano [J. Fluid Mech. 238, 325 (1992)] (DSM). Large eddy simulations(LES) for the weakly compressible mixing layer are conducted using these three models and results are compared with direct numerical simulation (DNS) data. LES based on DMM1 gives a significant improvement over LES using DSM, while even better agreement is achieved with DMM2
Recommended from our members
Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach
The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research
- …