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We compute solutions of the Lagrangian-averaged Navier-Stokes a- (LANS «) model for significantly
higher Reynolds numbers (up to Re=~8300) than have previously been accomplished. This allows sufficient
separation of scales to observe a Navier-Stokes inertial range followed by a second inertial range specific to the
LANS a model. Both fully helical and nonhelical flows are examined, up to Reynolds numbers of ~1300.
Analysis of the third-order structure function scaling supports the predicted /> scaling; it corresponds to a k™!
scaling of the energy spectrum for scales smaller than «. The energy spectrum itself shows a different scaling,
which goes as k'. This latter spectrum is consistent with the absence of stretching in the subfilter scales due to
the Taylor frozen-in hypothesis employed as a closure in the derivation of the LANS a model. These two
scalings are conjectured to coexist in different spatial portions of the flow. The I* [E(k) ~k™!] scaling is
subdominant to k' in the energy spectrum, but the I3 scaling is responsible for the direct energy cascade, as no
cascade can result from motions with no internal degrees of freedom. We demonstrate verification of the
prediction for the size of the LANS « attractor resulting from this scaling. From this, we give a methodology
either for arriving at grid-independent solutions for the LANS a model, or for obtaining a formulation of the
large eddy simulation optimal in the context of the a models. The fully converged grid-independent LANS «
model may not be the best approximation to a direct numerical simulation of the Navier-Stokes equations,
since the minimum error is a balance between truncation errors and the approximation error due to using the
LANS « instead of the primitive equations. Furthermore, the small-scale behavior of the LANS a model
contributes to a reduction of flux at constant energy, leading to a shallower energy spectrum for large «. These
small-scale features, however, do not preclude the LANS a model from reproducing correctly the intermittency

properties of the high-Reynolds-number flow.
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I. INTRODUCTION

Since the degrees of freedom for high-Reynolds-number
(Re) turbulence, such as can be encountered in geophysical
and astrophysical flows, can be very large, the implementa-
tion of their numerical modeling can easily exceed techno-
logical limits for computations. Furthermore, since trunca-
tion of the omitted scales removes important physics, e.g., of
multiscale interactions, the only approach to a numerical
study of such flows is to employ subgrid modeling of those
scales. This is frequently accomplished with large eddy
simulations (LESs); see [1-3] for recent reviews. This is of
importance for geophysical, astrophysical, and engineering
applications and can have consequences for meteorological
[4] and climate prediction simulations [5], for instance.
While realistic Reynolds numbers will remain out of reach
for the foreseeable future, subgrid modeling can be an ex-
tremely useful tool in the computation of simulations for
such applications.

The incompressible Lagrangian-averaged Navier-Stokes
equations (LANS «, @ model, or also the viscous Camassa-
Holm equation) [6—11] is one possible subgrid model. It can
be derived, for instance, by temporal averaging applied to
Hamilton’s principle (where Taylor’s frozen-in turbulence
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hypothesis is applied as the closure, and also as the only
approximation of the derivation) [12-14]. For this reason,
the momentum-conservation structure of the equations is re-
tained. For scales smaller than the filter width, the LANS «
model reduces the steepness of steep gradients of the La-
grangian mean velocity and limits how thin vortex tubes be-
come as they are transported (the effect on larger length
scales is negligible) [9]. The @ model may also be derived by
smoothing the transport velocity of a material loop in
Kelvin’s circulation theorem [11]. Consequently, there is no
attenuation of resolved circulation, which is important for
many engineering and geophysical flows where accurate pre-
diction of circulation is highly desirable. The LANS a model
has previously been compared to direct numerical simula-
tions (DNSs) of the Navier-Stokes equations at modest Tay-
lor Reynolds numbers (R, =72 [15], R,=~130 [9], and R,
~300 [16]). The LANS « model was compared to a dy-
namic eddy viscosity LES in three-dimensional (3D) isotro-
pic turbulence under two different forcing functions (R)
~80 and 115) and for decaying turbulence with initial con-
ditions peaked at a low wave number (R,=70) and at a
moderate wave number (Ry~220) [17]. In these compari-
sons, the LANS « model was preferable in that it demon-
strated correct alignment between eigenvectors of the sub-
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grid stress tensor and the eigenvectors of the resolved stress
tensor and vorticity vector. The LANS « and a related regu-
larization, the Leray model, were contrasted with a dynamic
mixed (similarity plus eddy viscosity) model in a turbulent
mixing shear layer (Re~50) [18,19]. The LANS « model,
with relatively high subfilter resolutions, was the most accu-
rate of these three LESs tested at this moderate Re, but it was
found that the effects of numerical contamination can be
strong enough to lose most of this potential. This could pose
some limitations on its practical use. Quantifying those limi-
tations is one of the goals of this present work. We will also
find in this study that, even with sufficient subfilter resolu-
tion, the LANS « model fails to represent all the neglected
physics in a more turbulent regime (higher Re).

The a model also describes an incompressible second-
grade non-Newtonian fluid (under a modified dissipation)
[11]. In this interpretation, « is a material parameter which
measures the elastic response of the fluid. Either from this
standpoint, from its status as a regularization of the Navier-
Stokes equations, or, independently of any physically moti-
vation, as a set of partial differential equations with proven
unique regular solutions, we may analyze the LANS a model
without any LES considerations. Analyzing inertial-range
scaling for the LANS « model for moderate and large a, as
well as identifying different scalings at scales larger and
smaller than «, is another of the goals of this work. In this
context we also study the numerical resolution requirements
to obtain well-resolved solutions of the LANS « model (i.e.,
grid-independent solutions) which lead to a verification of
the predictions of the size of the attractor in the LANS «
model [11,20]. Section II presents the LANS a model, our
numerical experiments, and technique. In Sec. III we analyze
inertial-range scaling for the LANS a model. In Sec. IV we
determine the numerical resolution requirements to obtain
well-resolved solutions of the LANS « model. In Sec. V we
address the LES potential of the LANS a model by compar-
ing a model simulations to a 256° DNS (Re=500, R,
~300), a 512° DNS (Re~ 670, R, ~350), a 512> DNS (Re
~ 1300, R, =490), a 1024 DNS (Re~3300, R, =790), and
a 2048 DNS (Re~ 8300, R, = 1300). (The Re~3300 simu-
lation has been previously described in a study of the imprint
of large-scale flows on local energy transfer [21,22].) In Sec.
VI, we compare and contrast in more detail LANS « solu-
tions with a DNS at Re=3300. Finally, in Sec. VII we sum-
marize our results, present our conclusion, and propose fu-
ture directions of investigation.

II. TECHNIQUE

We consider the incompressible Navier-Stokes equations
for a fluid with constant density,

ﬂ,vi + Uj(?jvi =—- (9,[7 + Vﬂjjvi + Fi’

=0, (1)

where v; denotes the component of the velocity field in the x;
direction, p the pressure divided by the density, v the kine-
matic viscosity, and F; an external force that drives the tur-
bulence (in all results, the time 7 is expressed in units of the
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eddy-turnover time). The LANS « equations [6-11] are
given by

O+ ujdv;+v;du;=— g+ vd;v; + Fi,

&l‘vi = L?ibti = O, (2)

where u; denotes the filtered component of the velocity field
and 7 the modified pressure. Filtering is accomplished by the

application of a normalized convolution filter L: f~>f where
f is any scalar or vector field. By convention, we define u;

Ev_i. We choose as our filter the inverse of a Helmholtz
operator, L=H"'=(1-a?dy)". Therefore, u=g,®v where
8o 1s the Green’s function for the Helmholtz operator,
g.(r)=exp(-r/a)/(4ma’r) (i.e., the well-known Yukawa po-
tential), or in Fourier space 6(k)=¥(k)/(1+a’k?).

We solve Egs. (1) and (2) using a parallel pseudospectral
code [23,24] in a three-dimensional cube with periodic
boundary conditions. In most of the runs, we employ a
Taylor-Green forcing [25],

sin kox cos kqy cos kyz
F =| — cos kgx sin kyy cos kyz (3)
0

(generally, with ky=2), and employ dynamic control [26] to
maintain a nearly constant energy with time. This expression
Eq. (3) is not a solution of Euler’s equations, and as a result
small scales are generated quickly when the fluid is stirred
with this forcing. The resulting flow models the fluid be-
tween counter-rotating cylinders [27] and has been widely
used to study turbulence, including studies in the context of
the generation of magnetic fields through dynamo instability
[28]. We also consider some runs with random and Arn’old-
Childress-Beltrami (ABC) [22] forcing. We define the Taylor
microscale as A=27(v*)/(w?), and the mean velocity fluc-
tuation as v,=[2/E(k)dk]"?. The Taylor microscale Rey-
nolds number is defined by R\=v,,A/v and the Reynolds
number based on a unit length is Re=v,,, X 1/v.

III. INERTIAL RANGE SCALING OF THE LANS « MODEL

A. I? scaling of third-order structure function derived
from the Karman-Howarth theorem for the LANS a model

For the LANS « model, the H ;(u) norm is the quadratic
invariant to be identified with the energy,

dE
—=-210,, (4)
dt

where

1 1 1 1
Ea:—f —(u—azvzu)-ud3x:—f —v-udx (5)
pJ,2 pJ,2

and
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1 1
Q,= —f - - @ dx. (6)
D2

As usual, we define the (omnidirectional) spectral energy
density E (k) from the relation

E,= f : 3@ E,(K)do dk = f ’ E,(k)dk, (7)
0

0

where $do represents integration over the surface of a
sphere. The @ model possesses a theorem corresponding to
the Karman-Howarth theorem [29] for the Navier-Stokes
equations and, as in the Navier-Stokes case, scaling of the
inertial range energy spectra may be derived from it [30]. We
summarize here the dimensional analysis argument for the
LANS « inertial range scaling that follows from this theo-
rem, beginning from Eq. (3.8) in Ref. [30]. We use the short
notation v, =v,(x), u; =u;(x’,7), and r=x'-x. In the statis-
tically isotropic and homogeneous case, without external
forces and with »=0, taking the dot product of Eq. (2) with
u;, we can obtain the equation

1%

The trace of this equation is the Fourier transform of the
detailed energy balance for the LANS « model.

Qij:<viu_; +Uj1/tl~,> (9)

is the second-order correlation tensor while

Th = (v +vu; +vu;+viu)u™) (10)
and
S = ()} + (Gpuidu)ul + (8, ® 7,")v;
+(ga® 7"V (11)

are the third-order correlation tensors for the LANS « model
and 7/ is the subfilter scale stress tensor. For a=0 this re-
duces to the well-known relation derived by Karman and
Howarth. The energy dissipation rate for the LANS a model,
&, satisfies £,%d,Q;;. By dimensional analysis in Eq. (8) we

arrive at
1 2 a? 3
Sa’V; vu + —u’ .

; (12)

For large scales such that [>> a, the second right-hand term
is ignored, u=v, g,~e¢, and we arrive at the scaling of the
four-fifths law ([v,(1)]*)~el [31]. Here, dv,(l)=[v(x+I)
—v(x)]-1/1 is the longitudinal increment of v. The four-fifths
law expresses that the third-order longitudinal structure func-
tion of v, S5=((&v))*), is given in the inertial range in terms
of the mean energy dissipation per unit mass & by

4
§5=-el. (13)

or, equivalently, that the flux of energy across scales in the
inertial range is constant. We also obtain the Kolmogorov
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FIG. 1. Third-order longitudinal structure function of the
smoothed velocity field u, S3, versus / for large @ in the LANS «
model (@=2m/3 indicated by the vertical dotted line). The scales
identified with an inertial range are marked by vertical dashed lines
and the scaling predicted by Eq. (15), I, is indicated by a solid line.
The fitted scaling exponent (% [Sf{(l)~l§g] is found to be §
=2.39+0.04. This is more consistent with the scaling given by Eq.
(15) than K41 scaling, I' Eq. (13), or other proposed LANS «
scalings (indicated by dotted lines, see text).

1941 [32-34] (K41) energy spectrum, E(k)k~v>~ 23?3,
or, equivalently,

E(k) ~ &Pk, (14)

For small scales such that /< a, however, v~ a2~ and
both right-hand terms are equivalent in Eq. (12), and our
scaling law becomes

St = ([ou()P) ~ eqa”2P. (15)

Note that this scaling differs in a substantial way from the
Kolmogorov scaling (~1). For our small-scale energy spec-
trum we then have

E (k)k ~ uv ~ 23 a??, (16)

where we used u~ a?[’v. The energy spectrum for scales
smaller than « is then

E (k) ~ 2P a®k7". (17)

This spectrum can also be derived from phenomenological
arguments originally introduced by Kraichnan [35], and it
differs from the Navier-Stokes spectrum due to the fact that
the fluid is advected by the smoothed velocity u, which does
not directly correspond to the conserved energy E,, [11].
We test this prediction for LANS « scaling at a resolution
of 256° (v=1.2X107*) by moving both the forcing (ky,=1)
and a (k,=2m/a=3) to large scales in order to increase the
number of resolved scales for which k&> 1. In so doing, we
are assuming that the scaling for large « is the same as for
small « and large k (for evidence to this effect, see [36]).
Confirmation as given by Eq. (15) is presented in Fig. 1
where we plot S% as a function of / [by convention, we plot
S4=(|ouy(D|*) to reduce cancellation in the statistics]. The
scales identified with an inertial range k € [6, 10] are marked
by vertical dashed lines and the predicted scaling, £, is indi-

cated by a solid line. We fit a scaling exponent [S5(/) ~l§§‘]
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and find £5=2.39+0.04. This is significantly steeper than the
classical Kolmogorov scaling given by Eq. (13); it can thus
be viewed as more consistent with the scaling given by Eq.
(15). It is also more consistent with /3 than with other pos-
sible LANS « scalings: under the assumption that the turn-
over time scale of eddies of size ~[ is determined by the
unsmoothed velocity v, we find S3(/) ~P, and if it is deter-
mined by yv-u, we find S5(I)~I* (see, e.g., Refs.
[16,36-38]). The observed scaling corresponds to none of
these cases, and is actually closer to an evaluation of the
turnover time #; at the scale / given by #,~[/u; [with S5(/)
~ 13]. Note that for the 2D LANS « model, however, it is the
case that the scaling is determined by the unsmoothed veloc-
ity v [36]. We note that this is one of many differences be-
tween the 2D and 3D cases (e.g., ideal invariants and cas-
cades). Another difference, which we shall show in Sec. VI,
is that in 2D vorticity structures decrease in scale as « in-
creases, while in 3D there is a change in aspect ratio with
structures getting both shorter and fatter. This may, in fact,
be related to the shallower LANS « energy spectrum for
ka>1, which we show in Sec. VI. While differences are
observed between the scaling shown in Fig. 1 and Eq. (15),
the error bars deny a K41 scaling (as well as the [* and I°
scalings) at scales smaller than a. We believe the discrep-
ancy between the observed and predicted scalings might be
due to lack of ability to resolve properly the inertial range at
subfilter scales. We have less than a decade of inertial range
and only 256° points for the statistics. As more computa-
tional resources become available, this scaling should be re-
examined.

B. Subdominance of the k™! energy spectrum
and rigid-body motions

As a consequence of the LANS «a model’s Taylor
frozen-in hypothesis closure, scales smaller than «a can
phase-lock into coherent structures and be swept along by
the larger scales (see, e.g., [30]). If we assume, formally, that
this “frozen-in turbulence” takes the form of “rigid bodies”
in the smoothed velocity field (no stretching), we arrive at a
much different spectrum than k~' [Eq. (17)]. All scales
smaller than « are subject to the frozen-in hypothesis and we
expect to find such rigid bodies at these scales. We note that
collections of rigid portions of the flow (rotating or nonro-
tating) reduce the total degrees of freedom (DOF) and make
physical sense with the LANS a model’s relation to second-
grade fluids: these rigid bodies can be envisioned as poly-
merized portions of the fluid. As a matter of fact, in such
structures all internal DOF are frozen. These rigid bodies
follow as well from the consideration of the LANS a model
as an initial value problem in Fourier space, for which we
have i(k)=V(k)/(1+a?k?). In the limit as a approaches in-
finity, all wave number (and spatial) dependence for Vv is
eliminated and the entire flow is advected by a uniform ve-
locity field (advection without internal degrees of freedom).

For a rigid body there can be no stretching and, therefore,
all the longitudinal velocity increments Ju; must be identi-
cally zero [Su(l)=Q X1 from basic mechanics with  the
rotation vector, and, hence, uy(/)=2du(l)-1//=0]. Note that
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107°F

FIG. 2. Spectral energy density E(k) versus wave number k for
large-a LANS « solution. Here forcing (kg=1) and «a (k,=27/a
=3, vertical dotted line) are set at the largest scales to increase the
number of scales for which ka>1. Spectra are plotted for three
norms: H'(u) norm (solid line), L*(u) norm (dotted line), and L*(v)
norm (dashed line). As these last two norms are not quadratic in-
variants of the LANS « model, we employ the H(II norm for all
following results. All three spectra correspond to that derived from
the assumption of rigid bodies in the smoothed velocity u, Eq. (19).
The vertical dashed lines are at the same scales as those in Fig. 1.

in the LANS « model, Eq. (2), the v;du; term contributes
only a rotation and not a stretching of u. Such polymeriza-
tion would have two consequences. First, since there is no
stretching, these rigid bodies would not contribute to the tur-
bulent energy cascade,

([ou (D) =0. (18)

Second, the energy spectrum from dimensional analysis [u?
~const; for large a/l, u=(1+a?/I?)"'v~Pv, and E(k)k
~uv~k*] is

E (k) ~ k. (19)

This is, in fact, the observed LANS «a spectrum for k> 1 as
is shown in Fig. 2. We verified that the spectrum is not the
result of under-resolved runs, as is the case, e.g., in the K2
spectrum observed in truncated Euler systems [39] or in ex-
tremely under-resolved spectral simulations of the Navier-
Stokes equations. Indeed, equipartition of the energy among
all modes in a truncated Euler a system should also lead to a
k> spectrum. Along with several experiments with different
viscosities and also with statistically homogeneous and iso-
tropic forcing (not shown here), these are assurances that the
observed spectrum is not a result of inadequate numerical
resolution. It should be noted that this is the same computa-
tion for which the third-order structure function is shown in
Fig. 1. The third-order structure function is consistent with
an [ scaling (corresponding to a k™! energy spectrum) while
the spectrum itself is k'. [Also shown in Fig. 2 are the
L*(u)=(u?)/2 and the L*(v)=(v?)/2 norms, which (through
u~ a?v/k?® for ka>>1) correspond to k~! and k> spectra, re-
spectively. Since the analytical properties of the LANS «
solution are based on the energy balance dE,/dt=-21(),, in
the H}x(u) norm, we employ this norm for all following re-
sults.] These two different scalings, I and k!, are consistent
with a picture where a fluid has both rigid-body portions at
scales smaller than « (wherein there is no turbulent cascade)
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FIG. 3. Two-dimensional slice of the cubed longitudinal incre-
ment [ Su;(27/10)]? for the LANS « model and [ dv,(27/10)]? for a
DNS. For all black pixels, the cubed longitudinal increment is less
than 1072 (approximately consistent with rigid bodies). On the top
is the large-a simulation (ky=1, k,=3, v=1.2X107%) where the
filling factor (computed over the entire 3D domain) is 0.67. On the
bottom is a DNS of Navier-Stokes (ky=2, v=3 X 107*) where the
filling factor is 0.26. Thus, a much greater portion of the flow is
consistent with collections of rigid bodies for the large-a
simulation.

and spatial regions between these where the cascade does
take place. For the structure functions, a noncascading rigid
body does not contribute to the scaling and consequently the
cascading contribution, Eq. (15), dominates. The energy
spectrum, however, for the limit of k very large, is dominated
by the k*!' term, and hence the k~! component is subdomi-
nant.

We further explore the validity of this picture by examin-
ing the spatial variation of the cubed longitudinal increment
[év,(D)]® in DNSs and [&u ()] in the LANS « model for
a/1>>1, which in each case is proportional to the energy flux
across a fixed scale [. (The presence of the hypothesized rigid
bodies should be evident as significant portions of the flow
where there is no energy flux.) In Fig. 3 we show visualiza-
tions of these quantities corresponding to [=27/10 (k=10)
for both the large-a LANS « simulation and a highly turbu-
lent DNS (ky=2, v=3 X 107*). The scale (k=10) is chosen as
it is in the inertial ranges of both flows. We note that, for the
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FIG. 4. PDFS of [év,(27/10)]® for DNS (N=1024, solid line),
and of [8u(27/10)]? for the LANS a model (N=256, dashed line),
and of the DNS downgraded to lower resolution (N=256, dotted
line). See Fig. 3 for simulation parameters. Note that both PDFs
have a slight positive asymmetry consistent with a positive dissipa-
tion rate g(,). The LANS a PDF is more strongly concentrated
around zero, consistent with the idea that portions of the flow (at
scales smaller than «) are acting as rigid bodies.

LANS « model, a significant portion of the flow is not con-
tributing to the flux of energy to smaller scales [the filling
factor for (Su(27/10))* <1072 is 0.67 as compared to 0.26
for the Navier-Stokes case]. These regions can be identified
as “polymerized” or “rigid bodies” in u and their locations
are found to be robust when the / used for [&u(1)]? is varied
over a factor of 2. Moreover, this is highlighted in the prob-
ability distribution functions (PDFs); see Fig. 4, where we
see that the LANS « PDF is more strongly concentrated
around zero than that of the DNS. This is consistent with the
idea that the internal DOF of large portions of the flow (at
scales smaller than «) are frozen. We point out that this
comparison is not a LES validation, but, rather, a comparison
between the dynamics of two different fluids at similar Rey-
nolds numbers. One flow is a well-resolved numerical solu-
tion of the Navier-Stokes equations, and the other is a well-
resolved solution of the LANS « equations with large «. For
this reason a reduced resolution (N=256) representation for
the DNS (for which N=1024) is not depicted in Fig. 3. We
have performed such a down-sampling, however, and find
the filling factor is reduced even more, to 0.14, and the tails
of the PDF increase over the full-resolution analysis (dotted
line in Fig. 4). No inverse Helmholtz filtering, H™', is ap-
plied to the DNS data. Note that this would amount to com-
puting [8u,())]® in the DNS, which has no meaning in the
dynamics of the Navier-Stokes equations (the energy flux is
proportional to [év,(1)]?).

We end this section with further evidence of coexistent
energy spectra, k~! and k', in separate spatial portions of the
flow. We mask out all portions of the flow that we identify
with rigid bodies ([ u (27/10)]* <1072, a 2D slice of which
is shown in Fig. 3). The energy spectrum of the remaining
portion of the flow is shown in Fig. 5 as a dashed line to be
compared with the spectrum of the entire flow shown as a
solid line. The operation of spatially filtering the flow before
computing the spectrum serves to “smear out” the energy
spectrum by convolving it with the spectrum of the filter.
Deconvolution in 3D with N=256 is intractable and we are,
therefore, unable to remove this smearing of the energy spec-
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FIG. 5. Spectral energy density E(k) versus wave number k for
large-a« LANS « solution. The solid line indicates the spectrum as
given in Fig. 2 but for a single snapshot (the same as selected for
Fig. 3). The dashed line indicates the spectrum wherein all portions
of the flow associated with rigid bodies (a 2D slice of which is
shown in Fig. 3) are removed. This provides further evidence that
the flow spatially in between the rigid bodies possesses a negative
power law energy spectrum (the predicted k~! power law is shown
as a solid line).

trum of the cascading portions of the flow. Nonetheless, after
conducting what tests we could with the filtering process (not
shown here), we conclude that the power law of the energy
spectrum of these portions is negative and, thus, distinctly
different from that of the rigid bodies.

IV. RESOLUTION REQUIREMENTS FOR GRID-
INDEPENDENT LANS a SOLUTIONS:
SIZE OF ATTRACTOR

It is useful to make a distinction between the quality of a
subgrid model and effects arising from nonlinear interactions
with discretization errors at marginal spatial resolutions
(which are more characteristic of the discretization employed
than of the subgrid model) [19,40,41]. Before doing this, we
require an estimate for the total degrees of freedom for the
LANS « attractor which as we show, unlike for the 2D case
(see [36]), for the 3D case is reduced compared to Navier-
Stokes. The subdominant /> scaling is associated with the
flux of energy to small scales and thus must be used to esti-
mate the degrees of freedom of the LANS « attractor,
Npor(e)- For dissipation, the large wave numbers dominate
and, therefore, combining the LANS « energy balance, Eq.
(4), with its subfilter scale energy spectrum, Eq. (17), allows
us to implicitly specify its dissipation wave number kf‘] by

fa _ f & ICE (k) dk ~ f “ 1262 e ~ &2 2B (k2.
14

(20)
Then we have
1/6
o SCY
ky~ 213 (21)

Using the fact that the linear numerical resolution N must be
proportional to the dissipation wave number (N= 3k;) and
that Re~ v~!, we arrive at
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N =CykPRe'?, (22)
or, equivalently,
G
NDOF(a) = %Rem, (23)

where C; is an unknown constant (for further details, see
[11]). We verify this prediction and determine the constant
C, through the use of a database stemming from studies in
which both the free parameter « (or, equivalently, k,) and the
linear resolution N for a set of DNS flows with Re =500,
670, 1300, and 3300 are varied. In so doing, we establish the
necessary numerical resolution for convergence to a grid-
independent solution.

Convergence to the grid-independent solution is deter-
mined by comparison of the energy spectrum E (k) between
runs with a constant filter and varying resolution. In Fig.
6(a), we make such a comparison for Re~500 (N=256 for
the DNS) and k,=14 (N=84, 96, 108, 128, and 192 for the
LANS a model). We plot energy spectra compensated by k>3
so that a K41 k=3 spectrum would be flat. We see, based on
comparing the energy spectra at wave numbers smaller than
k, to the 192° LANS « spectrum, that simulations at resolu-
tions of 96° and less are not converged while the one at 128°
is. That is, except for the very small scales at the end of the
dissipative range, there is very little difference between the
spectra at 1283 and at 1923 (i.e., the solution is “grid inde-
pendent”). Meanwhile, for resolutions of 963 and less the
spectra vary greatly with resolution (i.e., they are “unre-
solved”). In Fig. 6(b), we collect all the results of similar
studies (Re=500) in a plot of resolution N versus inverse
filter width k,. (We change N for a given a, then change «
and iterate.) Pluses correspond to grid-independent solutions,
X’s to under-resolved solutions, and squares to “undecided”
runs (i.e., those that are neither clearly resolved nor clearly
under-resolved). The dashed lines represent Eq. (22) with the
minimal and maximal choice of C (where Cy=CRe!??), that
agrees with our results (i.e., 43.2<C<50.2). In Fig. 7 we
conduct similar studies for Re=670. We find 49.5<C
<51.4 and again validate the predictive power of Eq. (22)
for the necessary numerical resolution for grid-independent
solutions.

The greatest utility of the prediction, however, is due to
the single constant C, which is independent of Reynolds
number. A determination of this constant can be achieved
cheaply repeating this process for several runs for low and
moderate Re, and determines the resolution requirement for
the highest Re attainable. The ranges of acceptable constants,
C=CyRe'?, for the four Reynolds number flows studied are
plotted versus Re in Fig. 8. A power law C=CyRe?” fits our
data with y=0.54+0.14, demonstrating the final validation of
the prediction, y=0.5, Eq. (22). The value of the constant is
found to be Cy=2.0+£0.2. We made one study for the maxi-
mally helical ABC forcing at Re= 1600 and a=27/25. It is
consistent with a value of Cy=1.8+0.1. We therefore con-
clude that the constant C; is not a strong function of the
forcing employed or of the scale at which the system is
forced. As a result, and unlike in the 2D LANS « model [36],
we verify that the size of the attractor in the 3D LANS «

056310-6



HIGHLY TURBULENT SOLUTIONS OF THE LAGRANGIAN-...

‘_(:l — ﬂ (a)
1.00 : oy 3
\_\».’
S Y.
%, 3
x :
& 0.10F 3
7} R
0.01 ¢ :
1 10
k
T+ + +
(b)
+
+ +,»/
+ + +/+”|:| -7
+ ,ﬁ,q,x’,x
Zz 100F v xTxx h
,',,"/,,’ X
,’// ,”/ X
50L" ] I
1 10

FIG. 6. (Color online) Plots for Re=500 simulations demon-
strating convergence to the grid-independent LANS « solution. (a)
Average energy spectra (t € [20,33], ¢ is time in units of eddy turn-
over time) compensated by K41 for LANS « simulations, k,=14:
1923 (black solid), 84% (red dotted), 96> (green dashed), 1083 (blue
dash-dotted), and 1283 (pink dash-triple-dotted). The vertical
dashed line denotes k,. Inset is a blowup near k, where conver-
gence can be clearly seen. The LANS « model at a linear resolution
of 1283 is approximately converged to the grid-independent solu-
tion while resolutions of 96° and less are clearly not. (b) The linear
resolution of & model simulations, N, is plotted versus k,. Simula-
tions with inadequate resolution are plotted as X’s, those with ap-
proximately grid-independent solutions as +’s, and experiments that
are neither clearly resolved nor clearly unresolved as boxes. The
dashed lines represent N= CkLB, indicating that a constant in the
range 43.2<<(C<50.2 agrees with our data. This partially confirms
the prediction of Eq. (22) and provides a reliable method to deter-
mine the needed resolution for a grid-independent LANS « solution
at a fixed Re.
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FIG. 7. As Fig. 6(b) but for Re=~ 670 simulations. The dashed
lines represent N=Ckl¥/3 , indicating that a constant in the range
49.5<(C<51.4 agrees with our data. Note also that any power law
N kP with 0.30< 8<0.46 also agrees with the data.
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FIG. 8. Acceptable choices of C=CyRe!?, versus Reynolds
number Re for grid-independent LANS « model. Error bars are not
confidence levels, but depict the range of values consistent with our
database (N= Ckl(/ 3) at the four Reynolds numbers we tested. The
dashed line depicts the least-squares fit with slope 0.54+0.14. This
completes the validation of Eq. (22), which predicts 0.5.

model is smaller than that in the Navier-Stokes equations,
which is a promising result if the LANS « equation is going
to be used as a LES. However, before doing this, an assess-
ment of the truncation errors introduced in discretized sys-
tems (as used to solve the equations numerically) and a study
of the optimal choice for a to capture the properties of a
DNS is needed. We consider these problems in the following
section.

V. CAN THE LANS @ MODEL BE CONSIDERED
AS A LARGE EDDY SIMULATION?

In this section, we consider the LANS « equations as a
means to an end, and consider the solutions to their dis-
cretized equations as approximations to the Navier-Stokes
solutions. We seek numerical approximations of the LANS «
equations that minimize the difference from a fully resolved
or direct numerical solution of the Navier-Stokes equations
(i.e., we analyze the behavior of LANS « solutions in the
LES framework, and call here the model a LANS « LES, or
in short @ LES). In the LES framework, the LANS a mod-
el’s turbulent stress tensor 7 is given by (see, e.g., [42])

7= H‘laz(o"kuié’kuj + Oy — gy . (24)

Previous studies have not made the distinction between the
grid-independent LANS « simulation and the LANS « LES,
though one did study convergence to grid-independent solu-
tions at moderate Re [19]. We find, however, a definite dif-
ference between the two approaches. We show in this section
that, in fact, the LANS « model combined with truncation
error yields a better fit to the DNS than the grid-independent
LANS a model. The resolution that yields an optimal o LES
(a terminology to be defined below) is also found to follow
Eq. (22). In Sec. V A, we then address the quality and us-
ability of the predictions of the LANS a model viewed as a
LES.

A remark about nomenclature may be in order at this
point. Traditionally, and for good reasons, LESs attempt to
capture the large-scale properties of a flow with a huge Rey-
nolds number, as found, e.g., in the atmosphere. In that case,
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FIG. 9. (Color online) Plot of Re=~670 simulations. Average
compensated energy spectra from DNS (solid black line) and LANS
a simulations, k,=41: N=162 (red dotted), 192 (green dashed), and
216 (blue dash-dotted). The LANS « solution at a linear resolution
of 192 is approximately converged to the grid-independent solution
while a resolution of 162 is not. N=162 does correspond, however,
more closely to the DNS spectrum. We observe, in general, that a
combination of LANS « and truncation error yields the optimal a
LES.

the wave number at which the DNS is truncated is, at best, in
the inertial range, and it might even be in the energy-
containing range, as for the atmospheric boundary layer with
a Taylor Reynolds number Ry ~ 10*. Of a different nature are
the modeling methods sometimes called quasi-DNSs. Here,
the idea is to model a flow at a given, moderate Reynolds
number but with an expense in computing resources less than
if performing a DNS. Under-resolved DNSs fall in that cat-
egory; in that case, the large scales are presumably well re-
produced but the small scales are noisy. It is in that spirit that
we now examine the properties of the LANS a model. We
thus qualify a model as optimal in the sense of being optimal
for the class of LANS a models examined herein; in order to
avoid repetition, we also use the terminology of optimal a.

In Fig. 9 with k,=41, we plot the Re~ 670 DNS spectrum
(solid black line) and LANS « spectra at three different reso-
lutions. We observe that, while the N=162 solution (dotted
line, red online) is not converged, it is a better approximation
to the DNS than the grid-independent LANS « solution. For
all simulations we studied, the grid-independent LANS «
solution is not the best approximation to the DNS. Another
example is given in Fig. 10 where we plot the mean square
spectral error normalized to make fair comparisons between
large- and small-k,, results,

- S B~ ER)F

E%(k) ’ 25)

M =k

where kg is the wave number for the forcing scale, E(k) is
the DNS spectrum [in the L?(v) norm], E (k) is the LANS «
spectrum [in the H;(u) norm], and n is the number of terms
in the sum. These errors are calculated for spectra averaged
over turbulent steady-state solutions: 7e€[16,19] for Re
~670. We see that, for a given filter or a given simulation
resolution, there is a local minimum in the error. This mini-
mum is a balance between truncation errors and the approxi-
mation error due to using the LANS a method instead of the

PHYSICAL REVIEW E 76, 056310 (2007)

0.10[ 7 ' ; &7
0.08F ]
0.06 ~ :'"-,_ *
oosf

0.02F L 1

o.00t . = ‘ ]

0.08F " ]
0.06F 1
0.04F 1

0.02F e

0.00¢L ) e S : E
10 15 20 o5 -

FIG. 10. Plots for Re~= 670 simulations. (a) Error [see Eq. (25)]
versus simulation resolution for k,=20. The optimal (grid-
dependent) LES is for a resolution of N=128 and has a much
smaller error compared to the DNS than the grid-independent
LANS « solution at higher resolution. (b) Error versus k, for N
=128. At a given resolution the optimal value for « is not zero but
occurs at a local minimal error. Any k, € [15,25] has an error near
the minimum, indicating that a LES solution may perform well for
a range of parameters near the optimal ones. A constant of C
=CyRe'>~47 in Eq. (22) is found to correspond with optimal «
LES approximations.

full Navier-Stokes equations. Due to these errors being, in
some sense, in opposition, the optimal a LES solution is
found at a lower resolution than the grid-independent solu-
tion. Indeed, we see by examining Fig. 10(a) that for a given
filter the combination of truncation error and the LANS «
solution is a better approximation to the DNS. For fixed reso-
lution, Fig. 10(b), the optimal value for « is not zero but has
some finite value. This local minimum error shown in the
figure keeps @ from going to zero (k,— %) in dynamical
models [15]. We also note, that the error is low for a finite
range of N and k, near the minimum, indicating that an «
LES solution may perform well for a range of parameters
near the optimal ones. We find the resolution for an optimal
a LES is also predicted by Eq. (22) (with C~47 for Re
~ 670, or Cy= 1.8). That is, the optimal « LES resolution is
just below that for grid-independent LANS « solutions. Hav-
ing demonstrated the predictability of the resolution for grid-
independent LANS « and of LANS « LES given a Reynolds
number and a filter, in the following section we seek to de-
termine sufficient conditions on the free parameter « for the
LANS o model to be a successful LES.

A. Free parameter « and quality of the @ LES

In this section, we make an analysis of the LES potential
of the LANS « simulation by considering only the grid-
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independent LANS « solutions identified using Eq. (22).
Note that, from the results discussed in the previous section,
we expect LANS « optimal grid-dependent o« LES approxi-
mations to have better performance. In the limit of a going
to zero, LANS «a Eq. (2) recovers the Navier-Stokes equa-
tions, Egs. (1), but the question we address now is how small
must a be for LANS « solutions to be good approximations
to Navier-Stokes solutions. There are several length scales
that « could be related to: the forcing scale I, the integral
scale L=2m [ E(k)k™'dk/ [{E(k)dk, the Taylor microscale \,
or the Kolmogorov dissipation scale 7. Plots of the mean
square spectral errors compared to DNS [see Eq. (25)] versus
these scales are shown in Fig. 11. While the general trend of
errors decreasing with « is apparent in all cases, in Fig. 11(a)
we see a large difference between errors at varying Reynolds
numbers and similar ratios of « to the forcing scale /. For a
linear least-squares fit, the goodness of fit, XZEE(E*;;t“"“
—Eig)z was found to be x*=6.2X 1072, The errors for Re
~3300 are much larger than for the same ratio /z/«a as re-
sults at both Re= 500 and Re=~670. This is also the case for
the integral scale. However, the quality of the & LES appears
to be closely tied to the ratio of « to the Kolmogorov dissi-
pation scale. In Fig. 11(b) the errors are plotted versus the
ratio of the dissipation scale 7 to a. We see a very strong
dependence (y*=2.5X 1072) between errors for several runs
with four different Reynolds numbers, indicating that the
quality of the LANS a LES approximation is a function of
the ratio of « to the dissipative scale. Finally, in Fig. 11(c)
the errors are plotted versus the ratio of the Taylor scale, A,
to a. We find x*>=3.1 X 1072 for a linear least-squares fit. We
note that a single experiment conducted at Re=~ 8300 (the
asterisk) confirms that the maximal value of « is tied to the
dissipation scale and not the Taylor scale. This is more
clearly demonstrated in Fig. 12 where we plot compensated
energy spectra for a nearly constant ratio N/« at three Rey-
nolds numbers. We see that the maximum deviation from the
DNS spectrum increases with Re. As A/« is the same in all
cases, the optimal « is not dependent on the Taylor scale.
These findings were not accessible at lower Reynolds
numbers due to inadequate separation of scales. For ex-
ample, we give in Fig. 13(a) spectral flux for DNS at Re
~500, 670, and 3300, respectively. We define the kinetic
energy transfer function 7(k) in Fourier space as T(k)=

—[v; (w/X_JdV, where () represents the Fourier transform.

For the LANS « model we have T,(k)=—[V, (0w Xu)dV
where w=V X v. The flux is defined as usual from the trans-
fer function as

k
T (k) = J T (k')dK' . (26)
0

Only Re~3300 (and Re=~ 8300 not pictured here) demon-
strates a range of nearly constant flux (a well-defined inertial
range) before the dissipation scales. Following the scaling
arguments in Ref. [11], one effect of the a model is to in-
crease the time scale for the cascade of energy to small
scales. This reduces the flux as « increases (k, decreases) as
do the hypothesized rigid bodies; this can be seen in Fig.
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FIG. 11. Plot of errors, Eq. (25), of grid-independent solutions
compared to DNS. Asterisks are for Re=~8300, squares for Re
~3300, triangles for Re=670, and diamonds for Re=500. The
single right-most triangle in all plots corresponds to a value of « in
the dissipative range (k,=60). The norm we employ to measure the
error, Eq. (25), is no longer a good norm when dissipative scales are
considered. (a) Errors versus [p/a. No clear correlation between
LES quality and the ratio of the forcing scale to a holds indepen-
dently of Reynolds numbers. (b) Errors versus ratio of dissipative
scale, 7k, to a. The quality of the LES appears to be closely tied to
this ratio. (c) Errors versus ratio of Taylor wave number \ to . The
Re =~ 8300 experiment (asterisk) indicates that the quality of the a
LES is not tied to the Taylor scale.

13(b). (Note that in a DNS at high resolution, 80% of the
flux is from local interactions, which are strongly suppressed
at scales smaller than « [21].) As dissipation dominates the
flux for low and moderate Reynolds number, the reduced
flux of the @ model has little consequence for these simula-
tions. With a substantial inertial range, however, this reduced
flux results in a pileup of energy for scales larger than the
dissipative scale and the spectrum approaches the k' spec-
trum discussed in Sec. III. As a consequence of the integral
conservation of energy (E,=/u-v) there is a corresponding
decrease of energy at large scales. Consequently, as the iner-
tial range increases, & must be moved to smaller and smaller
scales in order for the LANS « simulation not to alter scales
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FIG. 12. Compensated averaged grid-independent energy spec-
tra for DNS (solid) and LANS « results (dotted) holding the ratio of
Taylor scale N to a nearly constant. Vertical dotted lines indicate k,,.
(a) Re=670 and k,=35 (M/a=18). (b) Re~=~3300 and k,=70
(N a=17). (c) Re=8300 and k,=110 (A\/a@=17). We see that the
maximum deviation from the DNS increases with Re. This is due to
the greater distance between a and the dissipative scale 7. (Note
that scales larger than k=3 are affected by numerical truncation
issues.)

larger than «. In summary, the @ model’s reduced flux of
energy to small scales is more crucial when the dissipation
scale is farther away from a.

B. Numerical savings from employing the LANS a model

If o must be directly proportional to the Kolmogorov dis-
sipation scale, we can estimate the LES computational sav-
ings of the LANS « model. For the Navier-Stokes equations
we have npopns) ©Re”* and, as we verified in Sec. IV, for
the LANS « model we have nDOF(a)=C(3)kaRe3/ 2127, 1f k, is
directly proportional to the Navier-Stokes dissipation wave
number k,], we arrive at

1
ko= Jky ™ Re, (27)

and, consequently,
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FIG. 13. (Color online) (a) Energy flux, Eq. (26), for three
DNSs with Re=3300 (black, solid), Re=670 (red, dotted), and
Re =500 (green, dashed). No inertial range is discernible in the flux
functions except for the highest-Reynolds-number case. The initial
plateau followed by a bump and another plateau (for the case at the
highest Reynolds number) is a result of the forcing employed. (b)
Energy flux at Re~3300 for both DNS and a model runs; DNS is
the black, solid line. See inset for LANS « parameters. The LANS
« model gives a reduced flux, which is linked to the significant
pileup of energy at high wave number as visible in the energy
spectrum (see Fig. 14). Plots of &, versus ¢ (not shown) also show
that flux decreases (on average, at long times) with increasing a.

f’l[ﬁEOSF(a) o R€9/4. (28)

Note that, for free a, npog(, (the DOF of the LANS «a
model) is much smaller than npops). But, to obtain an op-
timal LES, « is tied to k,,; then the resolution requirements
(nB%SF(a)) are different and the decrease in necessary compu-

tational resolution from employing the LANS « method is
fixed. In fact, for the forcing and boundary conditions em-
ployed, we find

1

”%%SF(Q) = 75 "DOF(NS) (29)
We note that Eq. (28) is consistent with theoretical predic-
tions given in Ref. [20]. Other LESs such as the similarity
model [43] and the nonlinear (or gradient) model [44,45]
have also exhibited the characteristic that they achieve only
moderate reductions in resolution and are, therefore, fre-
quently used in mixed models with a Smagorinsky term (see,
e.g., [3]). That such additional terms will be required for the
LANS « method to reproduce the energy spectrum of
high-Re flows, may not be a significant factor in its usability.
Note that the usual addition of extra dissipative subgrid-
stress terms (as in the Smagorinsky model) also introduces a
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FIG. 14. (Color online) Compensated energy spectra averaged
over 1[8,9], Re=~3300. DNS is the solid black line and grid-
independent LANS « solutions are shown as (red online) dotted
(k,=70), (green) dashed (k,=40), and (blue) dash-dotted (k,=13)
lines, respectively. A single LANS « LES is shown as a (pink)
dash-triple-dotted line (k,=40, N=384). The LES is seen to better
approximate the DNS spectrum than the grid-independent solution
for the same value of @ (27/40). As « is increased the energy
spectrum approaches the k' spectrum discussed in Sec. III B.

stronger dependence of the system of equations on the spatial
resolution, since the filter width in such models is often as-
sociated with the maximum wave number in the box, k.. In
that case, it can make more sense to use grid-dependent so-
lutions of LANS « (discussed at the beginning of Sec. V)
which give an optimal LANS « LES, and can as a result give
an extra gain in the computational costs.

We also conclude that, with the scale a being tied to the
dissipation scale 7, the LANS « model behaves more like a
quasi-DNS by opposition to a traditional LES. Note, how-
ever, that a factor of =2.3 in resolution gain translates into a
factor 27 in CPU time and a factor 12 in memory savings,
still a substantial gain.

VI. LANS @ MODEL AT VERY HIGH REYNOLDS
NUMBER

In this section, we compare and contrast LANS « and
Navier-Stokes solutions at high Reynolds number. Using re-
sults of previous sections for optimal resolution and the nec-
essary value of « to approximate DNS, we now evaluate
both grid-independent LANS « solutions and a single LANS
a LES for a highly turbulent flow (Re~ 3300, R, = 790). We
calculate grid-independent solutions for k,=70 (N=512), for
k,=40 (N=512), and for k,=13 (N=384). A LANS « LES
solution is computed for k,=40 (N=384). Averaged compen-
sated energy spectra are shown in Fig. 14. We see that the
optimal LANS a LES is a better approximation of the DNS
spectra than the grid-independent LANS « result for the
same value of a (27/40). We also see that, if « is increased
further, the energy spectrum approaches the k' spectrum dis-
cussed in Sec. III B.

Figure 15 is a perspective volume rendering of the enstro-
phy density w? (w-@ for LANS «) for the DNS, k,=70
LANS «, and k,=13 LANS « simulations. Due to the late
time depicted here (1=9, longer than a Lyapunov time) there
can be no point-by-point comparison between the simula-
tions. However, we note that the helical structure of the vor-
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(a)

FIG. 15. (Color online) Rendering of enstrophy density w?
(w-@ for LANS @ model). Due to the late time depicted here (¢
=9, longer than a Lyapunov time) there can be no point-by-point
comparison between the simulations. Instead, regions with approxi-
mately the same dimensions are selected around vortex tubes. Ve-
locity v field lines are also shown illustrating the helical nature of
the tubes, which is seen to be captured by the LANS « simulation.
(a) DNS. The thick bars represent, from top to bottom, the Taylor
scale N and the dissipative scale 7y, respectively. For LANS «
results the scale « is depicted between these two. (b) k,=70, N
=512. (¢) k,=13, N=384. We see that, for large values of a, the
vortex tubes become shorter and somewhat thicker.

tex tubes is preserved by the a model but that the tubes
themselves are shorter and somewhat thicker for large values
of a. As was noted for moderate Reynolds numbers, this is
due to the LANS « method suppressing vortex stretching
dynamics without changing its qualitative features [9]. This
is in contrast to 2D LANS « results, where the vorticity
structures are seen to get thinner as « increases [36]. This
could also be related to the scaling differences between 2D
and 3D LANS « models. It has been claimed that the devel-
opment of helical structures in turbulent flows can lead to the
depletion of nonlinearity and the quenching of local interac-
tions [46,47]. The depletion of energy transfer due to local
interactions at some cutoff in wave number is also believed
to bring about the bottleneck effect [22,48-50]. Consistent
with these results, in the 2D LANS « results (where the
vorticity structures are finer than Navier-Stokes) the spec-
trum is steeper, and in the 3D LANS « results (where the
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FIG. 16. (Color online) Compensated third-order structure func-
tion versus length [ (a horizontal line scales with [). Structure func-
tions corresponding to the Karman-Howarth theorem are depicted
[&; for DNS, &5=((u)?év) for LANS «]. Labels are as in Fig.
14. The dotted vertical lines indicate the various «’s. A small iner-
tial range for the DNS near /=1 is reproduced by the LANS «
simulation. The largest « (277/13) exhibits a second inertial range at
scales just smaller than a [{(8u)?8v) ~ I is consistent with Eq. (15)].

vorticity structures are shorter but fatter than Navier-Stokes),
the spectrum is shallower.

Figure 16 shows the third-order (mixed) structure func-
tions corresponding to the Karman-Howarth theorems versus
length [. For the DNS, we show &;=(&?) and &%
={((6u)?dv) for the LANS «a model. The dotted vertical lines
indicate the various a’s. A small inertial range for the DNS
near /=1 is reproduced by all LANS « results. The largest «
(27/13) exhibits a second inertial range at scales just smaller
than « [{(Su)?>dv)~1 is consistent with Eq. (15)]. We note
this is the first demonstration of third-order structure func-
tions in the LANS « results consistent with a K41 inertial
range followed by an « inertial range and finally a dissipa-
tive range. Next, we observe the scaling of the longitudinal
structure functions,

Sp(l) = <|5U|||p>’ (30)

where we again substitute the A norm for the L norm in the
case of LANS a,

Sp(1) = (| 6y 60 [”"). (31)

We utilize the extended self-similarity (ESS) hypothesis
[51-53] which proposes the scaling

S,(1) o< S5(D% (32)
or, for the LANS « model,
Se(l) o= {(ou)* vy (33)

We display our results in Fig. 17. We note that, for the LANS
a results, the third-order exponent is not equal to unity, in
contrast to the Navier-Stokes case. The Karman-Howarth
theorem implies that ((Su)>dv)~1, not S§(I)~1. We mea-
sured the deviation from linearity for each experiment (not
depicted here) and found that the LANS « model becomes
more intermittent as « increases (k,=13 is slightly more in-
termittent than the DNS). As artificially dropping the local
small-scale interactions gives enhanced intermittency
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FIG. 17. (Color online) Structure function scaling exponent &,
versus order p. Black X’s are shown for the DNS. Grid-independent
LANS « results are shown as (red online) boxes (k,=70), as
(green) triangles (k,=40), and as (blue) diamonds (k,=13). LANS
a LES (k,=40, N=384) is shown as (pink) asterisks. The dashed
line indicates K41 scaling and the solid line the She-Lévéque (SL)
formula [56].

[54,55], this increased intermittency is the expected result of
the LANS « model reducing interactions at scales smaller
than . We note, however, that even with such a large filter,
the LANS « simulation is a good approximation to the inter-
mittency properties of the DNS. This is surprising given its
energy spectrum and reduced flux in the inertial range. It is
probably linked to the fact that the LANS a method pre-
serves global properties (in an H' sense) of the Navier-
Stokes equations and that these properties are important to
the dynamics of small scales as measured by high-order
structure functions.

VII. CONCLUSIONS

We computed solutions of the Lagrangian-averaged
Navier-Stokes @ model in three dimensions for significantly
higher Reynolds numbers (up to Re=~8300) than have pre-
viously been accomplished, and performed numerous forced
turbulence simulations of the LANS « equations to study
their equilibrium states. The results were compared to DNSs
for Re~=~500, 670, 3300, and 8300, the last performed on a
grid of 20483 points. We note that there are two ways to view
the LANS « simulations: as converged or “grid-
independent” solutions of the LANS « equations or as large
eddy simulations (a LESs) that include grid effects. We
found a definite difference between the two approaches in
that the fully converged grid-independent LANS « method is
not the best approximation to a DNS of the Navier-Stokes
equations. Instead, the minimum error is a balance between
truncation errors and the approximation error due to using
the LANS « instead of the full Navier-Stokes equations. Be-
cause these errors are, in some sense, in opposition, the op-
timal o LES solution was found at a lower resolution than
the grid-independent solution (the error was low for a finite
range of N and « near the minimum, indicating that a LANS
a simulation viewed as a LES solution may perform well for
a range of parameters). Unlike the 2D case [36], the 3D
LANS « has been shown to be a subgrid model (i.e., it re-
duces the resolution requirements of a given computation).
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This difference between 2D and 3D LANS « methods indi-
cates that other a models [like the Lagrangian-averaged
magneto-hydrodynamics alpha (LAMHD «) [57,58] or the
barotropic vorticity alpha (BV «) equations [42]] may be-
have differently, and studies of these systems at high resolu-
tion may be required.

We confirm the presence of the theoretically predicted /3
scaling of the third-order structure function (corresponding
to a k7! scaling of the energy spectrum) [11,16,37] through
its bound on the number of degrees of freedom for the LANS
a model [11], in the structure functions of the smoothed
velocity in simulations with large «, and in the spectrum of
specific spatial portions of the flow. In so doing, we have
validated the predictive power of the bound npop
<Ca'Re*? for the numerical resolution for grid-
independent LANS « solutions and for optimal LANS «
LES (with a separate constant of proportionality). The great
utility of the prediction is that the single constant can be
determined cheaply at low and moderate Reynolds numbers
and predicts the resolution requirement for the highest Rey-
nolds numbers attainable. We further found no great change
in this single constant when employing the nonhelical
Taylor-Green or the maximally helical ABC forcings.

However, the small-scale (ka>>1) LANS « spectrum was
observed to be k*!. We attribute this to the frozen-in-
turbulence closure employed in deriving the @ model. For
scales smaller than «, portions of the smoothed flow u are
locked into rigid bodies. By “rigid bodies,” we mean that the
internal degrees of freedom are frozen and these portions
give no contribution to the energy cascade. This is consistent
both with the observed k™! spectrum and with field incre-
ments oy being observed to be approximately zero over a
large portion (compared to Navier-Stokes) of the flow. The
turbulent energy cascade occurs in the space between these
rigid portions. While the k™! portions are subdominant to the
k*! portions in the energy spectrum, they prevail in the cas-
cade and hence in both the structure functions and the de-
grees of freedom of the LANS « attractor.

We find that both of these scalings (k*' and k™!) contribute
to a reduction of flux at constant energy (i.e., the dissipation
is reduced as has previously been observed in 2D calcula-
tions [59]). This leads to a shallower (or even growing) en-
ergy spectrum as « increases. Thus, for the LANS a method
viewed as a LES to reproduce the Navier-Stokes energy
spectrum, it is necessary that a be not much larger than the
dissipation scale (a4 7k independent of Reynolds number);
in that sense, it can be considered as a quasi-DNS as opposed
to a traditional LES, substantially larger Reynolds numbers
being modeled in the latter case, leading to substantially
larger gain in resolution. As a consequence, the computa-
tional savings of the LANS « approach is fixed and not a
function of Reynolds number. (However, and unlike the 2D
case, the 3D a model does give a computational saving when
used as a LES.) This result was not accessible at lower Rey-
nolds numbers due to inadequate separation of scales. How-
ever, in one previous study for decaying turbulence with en-
ergy initially mostly at low wave numbers (k=3), it was
evident that as time evolved and energy moved to smaller
scales, the resolution requirements of the LANS « model
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increased [17]. Other LESs such as the similarity model [43]
and the nonlinear (or gradient) model [44,45] have also ex-
hibited the characteristic that resolution may be decreased
only modestly and are, therefore, frequently used in mixed
models with a Smagorinsky term (see, e.g., [3]). That such
additional terms will be required for the LANS a method to
reproduce the energy spectrum of high-Re flows may not be
a significant factor in its usability.

We compared and contrasted the LANS « simulation to a
DNS at Re=3300, considering both structures and high-
order statistics such as the longitudinal structure functions,
which are related to intermittency. With an appropriate
choice of @ we were able to observe a Navier-Stokes inertial
range followed by a LANS « inertial range at scales smaller
than «. For this second inertial range we again observed a
k*! energy spectrum. As « increased, we noted a change in
the aspect ratio of vortex tubes (they became shorter and
fatter). This can be related to quenching of local small-scale
interactions at scales smaller than « and, thus, to the shal-
lower spectrum for the 3D LANS a results [46-50,22].
Therefore, in the 2D LANS « method (where the vorticity
structures are finer than in the Navier-Stokes equations), the
spectrum is steeper [36] and in the 3D LANS « method
(where the vorticity structures are shorter but fatter than in
the Navier-Stokes results), the spectrum is shallower. Finally,
an examination of the longitudinal structure functions indi-
cate that intermittency is increased as the parameter « is
increased consistent with the suppression of local small-scale
interactions at scales smaller than « [54,55].

The elimination of the faster and faster interactions
among smaller and smaller scales through the modified non-
linearity in the LANS « method (together with the discrep-
ancy between its solutions and Navier-Stokes solutions)
highlights the importance of these interactions down to
scales only slightly larger than the dissipative scale. That is,
by removing these interactions anywhere in the inertial range
(e.g., aZ47y), the resulting energy spectrum was found to
differ from the DNS at scales larger than «. The intermit-
tency properties of the DNS, however, were well reproduced
even with large filters. Noting this, if the LANS « method’s
k' energy spectrum is not important for a given application,
much greater reductions in resolution can be achieved. Fu-
ture work should address whether this may be remedied in a
LANS « LES by the inclusion of another (dissipative) model
for these interactions, or (in the case of magnetohydrody-
namics [57,58]) whether this problem is less significant be-
cause of the presence of greater spectral nonlocality [60-62].
The effect of the LANS « method on the detailed scale-by-
scale energy transfer should also be investigated as our re-
sults indicate that a model for local small-scale interactions
would improve the & model. Another direction of future re-
search is to explore other reduced LANS a models, the Clark
a and Leray a models, which break the frozen-in-turbulence
closure and also the conservation of circulation. Finally, note
that, because of its greater mathematical tractability, the
LANS a model possibly allows for a better understanding of
multiscale interactions in turbulent flows thus modeled;
therefore, detailed studies such as the one presented here
may, in fine, allow for a better understanding of turbulence
itself.
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