Mathematical regularisation of the nonlinear terms in the Navier-Stokes
equations provides a systematic approach to deriving subgrid closures for
numerical simulations of turbulent flow. By construction, these subgrid
closures imply existence and uniqueness of strong solutions to the
corresponding modelled system of equations. We will consider the large eddy
interpretation of two such mathematical regularisation principles, i.e., Leray
and LANS−α regularisation. The Leray principle introduces a {\bfi
smoothed transport velocity} as part of the regularised convective
nonlinearity. The LANS−α principle extends the Leray formulation in a
natural way in which a {\bfi filtered Kelvin circulation theorem},
incorporating the smoothed transport velocity, is explicitly satisfied. These
regularisation principles give rise to implied subgrid closures which will be
applied in large eddy simulation of turbulent mixing. Comparison with filtered
direct numerical simulation data, and with predictions obtained from popular
dynamic eddy-viscosity modelling, shows that these mathematical regularisation
models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure