2,108 research outputs found
A RATional choice for translational research?
Future prospects continue to be strong for research using the rat as a model organism. New technology has enabled the proliferation of many new transgenic and knockout rat strains, the genomes of more than 40 rat strains have been sequenced, publications using the rat as a model continue to be produced at a steady rate, and discoveries of disease-associated genes and mechanisms from rat experiments abound, frequently with conservation of function between rats and humans. However, advances in genome technology have led to increasing insights into human disease directly from human genetic studies, pulling more and more researchers into the human genetics arena and placing funding for model organisms and their databases under threat. This, therefore, is a pivotal time for rat-based biomedical research – a timely moment to review progress and prospects – providing the inspiration for a new Special Collection focused on the impact of the model on translational science, launched in this issue of Disease Models & Mechanisms. What disease areas are most appropriate for research using rats? Why should the rat be favoured over other model organisms, and should the present levels of funding be continued? Which approaches should we expect to yield biologically and medically useful insights in the coming years? These are key issues that are addressed in the original Research Articles and reviews published in this Special Collection, and in this introductory Editorial. These exemplar articles serve as a landmark for the present status quo after a decade of major advances using the rat model and could help to guide the direction of rat research in the coming decade
Predicting preferential DNA vector insertion sites: implications for functional genomics and gene therapy
Viral and transposon vectors have been employed in gene therapy as well as functional genomics studies. However, the goals of gene therapy and functional genomics are entirely different; gene therapists hope to avoid altering endogenous gene expression (especially the activation of oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of either outcome depend on a vector's preference to integrate into genes or control regions, and these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors over viral vectors, and review methods to overcome barriers to delivery inherent to DNA vectors. We also review the tendencies of several classes of retroviral and transposon vectors to target DNA sequences, genes, and genetic elements with respect to the balance between insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect integration for various vectors will allow researchers to choose the vector with the most utility for their specific purposes. The three principle benefits from elucidating factors that affect preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe adverse effects years after treatment; in genomic studies, it allows one to discern random from selected integration events; and in gene therapy as well as functional genomics, it facilitates design of vectors that are better targeted to specific sequences, which would be a significant advance in the art of transgenesis
Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats
This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered designer rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size
Potentially Diagnostic Electron Paramagnetic Resonance Spectra Elucidate the Underlying Mechanism of Mitochondrial Dysfunction in the Deoxyguanosine Kinase Deficient Rat Model of a Genetic Mitochondrial DNA Depletion Syndrome
A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool
Lung Injury Pathways: Adenosine Receptor 2B Signaling Limits Development of Ischemic Bronchiolitis Obliterans Organizing Pneumonia
Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Materials and Methods: Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague–Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. Results: Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Conclusion: Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury
Determination of total plasma oxysterols by enzymatic hydrolysis, solid phase extraction and liquid chromatography coupled to mass-spectrometry
The potential use of cholesterol esterases was tested to avoid alkaline hydrolysis for cleavage of plasma esterified oxysterols. The enzymatic hydrolysis was optimized by testing two sources of enzyme—Pseudomonas and bovine pancreas, presence of surfactants, incubation time and amount of enzyme. Free forms of 4ß-, 7-, 24-, 25- and 27-hydroxycholesterol (HC) as well 7-ketocholesterol (7-KC) were analyzed by liquid chromatography and mass-spectrometry using the deuterated internal standard, 25-HC(d6). Enzymatic hydrolysis was more effective using the Pseudomonas enzyme and in presence of surfactants. Compared to alkaline hydrolysis, it generated a cleaner chromatographic baseline and better recovery of the internal standard. Oxysterols were assayed with detection limits between 7 and 31 pg/mL. Interassay coefficients of variation were lower than 10% and extraction recovery efficiencies, higher than 90%. The procedure was used to characterize plasma levels of Cyp7b1-deficient rat, where it showed increased plasma levels of 7, 24 and 25-HC. Due to the low volume of sample required, it may be used in other animal models, particularly rodents, as well as in pediatric samples where sample amount is always a problem. Thus, the proposed new method offers mild enzymatic processing that greatly facilitates oxysterol determinations to delineate their role in physiopathology
Toll-Like Receptor 7 Is Required for Lacrimal Gland Autoimmunity and Type 1 Diabetes Development in Male Nonobese Diabetic Mice.
Sjögren syndrome (SS) is an immunologically complex, chronic autoimmune disease targeting lacrimal and salivary glands. Nonobese diabetic (NOD) mice spontaneously develop inflammation of lacrimal and salivary glands with histopathological features similar to SS in humans including focal lymphocytic infiltrates in the affected glands. The innate immune signals driving lymphocytic infiltration of these glands are not well-defined. Here we evaluate the role of Toll-like receptor (TLR) 7 in the development of SS-like manifestations in NOD mice. We created a Tlr7 knockout NOD mouse strain and performed histological and gene expression studies to characterize the effects of TLR7 on autoimmunity development. TLR7 was required for male-specific lacrimal gland inflammation but not for female-specific salivary gland inflammation. Moreover, TLR7 was required for type 1 diabetes development in male but not female NOD mice. RNA sequencing demonstrated that TLR7 was associated with a type I interferon (IFN) response and a type I IFN-independent B cell response in the lacrimal glands. Together these studies identify a previously unappreciated pathogenic role for TLR7 in lacrimal gland autoimmunity and T1D development in male NOD mice adding to the growing body of evidence supporting sex differences in mechanisms of autoimmune disease in NOD mice
Double p52Shc/p46Shc Rat Knockout Demonstrates Severe Gait Abnormalities Accompanied by Dilated Cardiomyopathy
The ubiquitously expressed adaptor protein Shc exists in three isoforms p46Shc, p52Shc, and p66Shc, which execute distinctly different actions in cells. The role of p46Shc is insufficiently studied, and the purpose of this study was to further investigate its functional significance. We developed unique rat mutants lacking p52Shc and p46Shc isoforms (p52Shc/46Shc-KO) and carried out histological analysis of skeletal and cardiac muscle of parental and genetically modified rats with impaired gait. p52Shc/46Shc-KO rats demonstrate severe functional abnormalities associated with impaired gait. Our analysis of p52Shc/46Shc-KO rat axons and myelin sheets in cross-sections of the sciatic nerve revealed the presence of significant anomalies. Based on the lack of skeletal muscle fiber atrophy and the presence of sciatic nerve abnormalities, we suggest that the impaired gait in p52Shc/46Shc-KO rats might be due to the sensory feedback from active muscle to the brain locomotor centers. The lack of dystrophin in some heart muscle fibers reflects damage due to dilated cardiomyopathy. Since rats with only p52Shc knockout do not display the phenotype of p52Shc/p46Shc-KO, abnormal locomotion is likely to be caused by p46Shc deletion. Our data suggest a previously unknown role of 46Shc actions and signaling in regulation of gait
- …