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Advances in molecular biology in the second half of the 20th
century shifted the view of human biology from one that was
exclusively based on organ systems to one that emphasized
molecules. In the last decade or so, the view of human biol-
ogy has begun to shift again, this time towards an increas-
ing recognition that humans are molecular systems in which
molecules interact to take on emergent properties within the
context of cells and organ systems. The increasing recognition
that humans are molecular systems has led to the emergence of
the new scientific discipline of molecular systems medicine1.

One of the pillars of molecular systems medicine is the
integration of genome-scale molecular analysis, or omics, with
physiology. The idea of using omics to advance physiology is
not new. What is new is the unprecedented opportunity in this
area provided by the substantial expansion of omics toolbox and
knowledgebase in the last 10–15 years.

The first RNA-seq paper was published 15 years ago. Since
then, deep sequencing-based methods have been developed
for genome-scale analysis of chromatin conformation (e.g.,
Hi-C and Micro-C), chromatin accessibility (e.g., assay for
transposase-accessible chromatin with sequencing, or ATAC-
seq), histone binding (e.g., cleavage under targets and tagmenta-

tion, or CUT&Tag), and DNA methylation (e.g., reduced represen-
tation bisulfite sequencing, or RRBS). Methods for genome-scale
analysis of RNA (including RNA modifications, e.g., methylated
RNA immunoprecipitation sequencing, or MeRIP-seq), small
noncoding RNA, proteins, and metabolites have also continued
to advance. Many of these assays can now be performed in sin-
gle cells or single nuclei (i.e., single cell omics) as illustrated by
recent reports of pan-tissue single-cell transcriptome atlases in
humans2. Furthermore, several omic assays may be integrated
with spatial distribution of cells in native tissues (i.e, spatial
omics).

The power of multi-omics is enabled and amplified by
advances in bioinformatics and the integration with computa-
tional modeling. For example, a recent study used experimen-
tal analysis and mathematical modelling to quantify the effect
of long-range chromatin interactions on transcriptional activ-
ities in single cells3. The analysis revealed a nonlinear rela-
tion between the transcriptional effect of an enhancer and the
enhancer’s contact probabilities with the promoter, which might
arise from the transient nature of enhancer-promoter interac-
tions coupled with slower promoter bursting dynamics in indi-
vidual cells.
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Application of this ever-expanding multi-omics toolset has
led to the generation of extensive multi-omics knowledge-
bases. For example, ENCODE (The Encyclopedia of DNA Ele-
ments), along with NIH Roadmap Epigenomics, have devel-
oped laboratory and data standards for an array of epigenomic
assays and applied these assays to analyze several hundred cell
lines and tissue specimens4. A core product of this effort is
the Registry of candidate regulatory elements (cREs). The cur-
rent version of the Registry contains 1310152 human cREs and
527001 mouse cREs. The GTEx (Genotype-Tissue Expression)
program has established an extensive catalog of genetic vari-
ants associated with gene expression, which are called expres-
sion quantitative trait loci (eQTLs)5. The final dataset from
GTEx (V8) contains DNA data from 838 postmortem donors
and 17382 RNA-seq datasets across 54 tissue sites and two cell
lines.

The rapid expansion of multi-omics toolbox and knowl-
edgebase provides unprecedented opportunities to advance our
understanding of physiology and pathophysiology as illustrated
by an increasing number of studies. Gupta, et al., integrated
genetic fine mapping, genome editing in stem cells, and gene
expression and chromatin conformation analyses to identify
and study a DNA sequence variation associated with five vas-
cular diseases6. They found evidence for a long-range effect of
rs9349379, a common single nucleotide polymorphism, on the
expression of EDN1 (encoding endothelin 1) located more than
600 kb away.

In a study of human kidney biopsy specimens, we developed
an approach to perform small noncoding RNA deep sequenc-
ing analysis in several hundred glomerular and tubulointer-
stitial regions, each with a known pathological state7. The
analysis generated pathologically resolved small RNA maps
and revealed novel insights into kidney disease progression
such as the presence of substantial molecular changes in
patient glomeruli and tubulointerstitial regions that are histo-
logically indistinguishable from kidney tissue regions in healthy
people.

We recently performed an analysis of more than 26 000
single nucleotide polymorphisms in more than 1000 genomic
loci that had been associated with human blood pressure with
genome-wide significance8. The analysis integrated 14 data
types, including eQTL data from GTEx and enhancer data from
ENCODE, and incorporated a list of 251 genes that we called
“blood pressure physiology genes” as they had been associated
with blood pressure regulation in the literature. The analysis
provided a wide range of new insights into how genes relevant
to the physiology of blood pressure might be regulated at the
genome level.

Physiology and multi-omics are mutually beneficial. Multi-
omics provides global views of the molecular basis of physiol-
ogy and can reveal unsuspected dimensions of regulatory mech-
anisms important for understanding physiology and linking
physiology with genetics and disease. Physiology moves multi-
omics from cataloging molecular parts and features and study-
ing reductionist models to generating new insights into complex
organ systems function under normal, stressed, or diseased con-
ditions.

Studies that organically integrate multi-omics with physi-
ology will be especially powerful. Such integration will require
team science collaborations between forward-looking physiolo-
gists, genomicists, and computational biologists or, better yet,
scientists who are cross-trained in physiology, multi-omics, and
computational biology. The integration will benefit from precise
experimental interventions made possible by advanced genome

editing technologies and the development of model systems
that are highly relevant to human health and disease, includ-
ing animal models and human induced pluripotent stem cell
models. Just like the integration of physiology and multi-omics,
molecular perturbation in informative model systems is a pillar
of molecular systems medicine.

Molecular systems medicine is the future of medicine and
biomedicine. One must understand humans as molecular sys-
tems to truly understand human health and disease. Advancing
physiology with expanded multi-omics will help to put physiol-
ogy at the center of the molecular systems medicine revolution
and keep it there.
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