54 research outputs found
Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease
Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders
DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor.
Loss-of-function mutations in DJ-1 cause a subset of familial Parkinson disease (PD). However, the mechanism underlying the selective vulnerability in dopaminergic pathway due to the inactivation of DJ-1 is unclear. Previously, we have reported that DJ-1 is a neuroprotective transcriptional co-activator interacting with the transcriptional co-repressor pyrimidine tract-binding protein-associated splicing factor (PSF). Here we show that DJ-1 and PSF bind and regulate the human tyrosine hydroxylase (TH) promoter. Inactivation of DJ-1 by small interference RNA (siRNA) results in decreased TH expression and l-DOPA production in human dopaminergic cell lines. Consistent with its role as a transcriptional regulator, DJ-1 specifically suppresses the global SUMO-1 modification. High molecular weight sumoylated protein species, including PSF, accumulate in the lymphoblast cells from the patients carrying pathogenic DJ-1 mutations. DJ-1 elevates the TH expression by inhibiting the sumoylation of PSF and preventing its sumoylation-dependent recruitment of histone deacetylase 1. Furthermore, siRNA silencing of DJ-1 decreases the acetylation of TH promoter-bound histones, and histone deacetylase inhibitors restore the DJ-1 siRNA-induced repression of TH. Therefore, our results suggest DJ-1 as a regulator of protein sumoylation and directly link the loss of DJ-1 expression and transcriptional dysfunction to impaired dopamine synthesis
Activated Microglia in Cortical White Matter Across Cognitive Aging Trajectories
Activation of microglia, the primary mediators of inflammation in the brain, is a major component of gliosis and neuronal loss in a number of age-related neurodegenerative disorders, such as Alzheimerâs disease (AD). The role of activated microglia in white matter, and its relationship with cognitive decline during aging are unknown. The current study evaluated microglia densities in the white matter of postmortem specimens from cognitively normal young adults, cognitively normal older adults, and cognitive âSuperAgers,â a unique group of individuals over age 80 whose memory test scores are at a level equal to or better than scores of 50-to-65-year-olds. Whole hemisphere sections from cognitively normal old, young, and âSuperAgersâ were used to quantify densities of human leukocyte antigen-D related (HLA-DR)-positive activated microglia underlying five cortical regions. Statistical findings showed a significant main effect of group on differences in microglia density where cognitively normal old showed highest densities. No difference between SuperAgers and young specimens were detected. In two autopsied SuperAgers with MRI FLAIR scans available, prominent hyperintensities in periventricular regions were observed, and interestingly, examination of corresponding postmortem sections showed only sparse microglia densities. In conclusion, activated microglia appear to respond to age-related pathologic changes in cortical white matter, and this phenomenon is largely spared in SuperAgers. Findings offer insights into the relationship between white matter neuroinflammatory changes and cognitive integrity during aging
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (nâ„3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
The 5th international conference on alzheimer\u27s disease and related disorders in the middle east, 15-17 may 2009, limassol cyprus
Alzheimer\u27s disease is growing in prevalence worldwide. Though many Western countries have developed programs of surveillance and care around Alzheimer\u27s disease and dementia, certain regions of the world are beginning to recognize the magnitude of the disease burden in the general population. In the Middle East, there is growing awareness of the burden of Alzheimer\u27s disease and how it impacts health economics, care delivery, and research. Here we summarize the proceedings of the 5th International Conference on Alzheimer\u27s Disease in the Middle East. We had speakers from 20 countries updating the audience on progress toward improving healthcare and research related to AD in this region of the world. © 2012 -IOS Press and the authors
Recommended from our members
Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus
The anatomical organization of cholinergic markers such as acetylcholinesterase, choline acetyltransferase, and nerve growth factor receptors was investigated in the basal ganglia of the human brain. The distribution of choline acetyltransferaseâimmunoreactive axons and varicosities and their relationship to regional perikarya showed that the caudate, putamen, nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, red nucleus, and subthalamic nucleus of the human brain receive widespread cholinergic innervation. Components of the striatum (i.e., the putamen, caudate, olfactory tubercle, and nucleus accumbens) displayed the highest density of cholinergic varicosities. The next highest density of cholinergic innervation was detected in the red nucleus and subthalamic nucleus. The level of cholinergic innervation was of intermediate density in the globus pallidus and the ventral tegmental area and low in the pars compacta of the substantia nigra.
Immunoreactivity for nerve growth factor receptors (NGFr) was confined to the cholinergic neurons of the basal forebrain and their processes. Axonal immunoreactivity for NGFr was therefore used as a marker for cholinergic projections originating from the basal forebrain (Woolf et al., '89: Neuroscience 30:143â152). Although the vast majority of striatal cholinergic innervation was NGFrânegative and, therefore, intrinsic, the striatum also contained NGFrâpositive axons, indicating the existence of an additional cholinergic input from the basal forebrain. This basal forebrain cholinergic innervation was more pronounced in the putamen than in the caudate. The distribution of NGFrâpositive axons suggested that the basal forebrain may also project to the globus pallidus but probably not to the subthalamic nucleus, substantia nigra, or red nucleus. The great majority of cholinergic innervation to these latter three structures and to parts of the globus pallidus appeared to come from cholinergic neurons outside the basal forebrain, most of which are probably located in the upper brainstem.
These observations indicate that cholinergic neurotransmission originating from multiple sources is likely to play an important role in the diverse motor and behavioral affiliations that have been attributed to the human basal ganglia. © 1992 WileyâLiss, Inc
- âŠ