590 research outputs found

    Corporate Debt Financing under the Tax Law

    Get PDF

    Corporate Debt Financing under the Tax Law

    Get PDF

    Protoplanetary Disk Evolution around the Triggered Star Forming Region Cepheus B

    Full text link
    The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to study protoplanetary disk evolution and processes of sequential triggered star formation in the region. Out of ~400 pre-main sequence (PMS) stars selected with an earlier Chandra X-ray Observatory observation, 95% are identified with mid-infrared sources and most of these are classified as diskless or disk-bearing stars. The discovery of the additional >200 IR-excess low-mass members gives a combined Chandra+Spitzer PMS sample complete down to 0.5 Mo outside of the cloud, and somewhat above 1 Mo in the cloud. Analyses of the nearly disk-unbiased combined Chandra+Spitzer selected stellar sample give several results. Our major finding is a spatio-temporal gradient of young stars from the hot molecular core towards the primary ionizing O star HD 217086. This strongly supports the radiation driven implosion (RDI) model of triggered star formation in the region. The empirical estimate for the shock velocity of 1 km/s is very similar to theoretical models of RDI in shocked molecular clouds...ABRIDGED... Other results include: 1. agreement of the disk fractions, their mass dependency, and fractions of transition disks with other clusters; 2. confirmation of the youthfulness of the embedded CepB cluster; 3. confirmation of the effect of suppression of time-integrated X-ray emission in disk-bearing versus diskless systems.Comment: Accepted for publication in The Astrophysical Journal. 48 pages, 14 figures. For a version with high-quality figures, see http://www.astro.psu.edu/users/gkosta/RESEARCH/cepb_spitzer_chandra.pd

    New distance measures for classifying X-ray astronomy data into stellar classes

    Full text link
    The classification of the X-ray sources into classes (such as extragalactic sources, background stars, ...) is an essential task in astronomy. Typically, one of the classes corresponds to extragalactic radiation, whose photon emission behaviour is well characterized by a homogeneous Poisson process. We propose to use normalized versions of the Wasserstein and Zolotarev distances to quantify the deviation of the distribution of photon interarrival times from the exponential class. Our main motivation is the analysis of a massive dataset from X-ray astronomy obtained by the Chandra Orion Ultradeep Project (COUP). This project yielded a large catalog of 1616 X-ray cosmic sources in the Orion Nebula region, with their series of photon arrival times and associated energies. We consider the plug-in estimators of these metrics, determine their asymptotic distributions, and illustrate their finite-sample performance with a Monte Carlo study. We estimate these metrics for each COUP source from three different classes. We conclude that our proposal provides a striking amount of information on the nature of the photon emitting sources. Further, these variables have the ability to identify X-ray sources wrongly catalogued before. As an appealing conclusion, we show that some sources, previously classified as extragalactic emissions, have a much higher probability of being young stars in Orion Nebula.Comment: 29 page

    The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties

    Full text link
    Radial velocities, elemental abundances, and accretion properties of members of star-forming regions (SFRs) are important for understanding star and planet formation. While infrared observations reveal the evolutionary status of the disk, optical spectroscopy is fundamental to acquire information on the properties of the central star and on the accretion characteristics. 2MASS archive data and the Spitzer c2d survey of the Chamaeleon II dark cloud have provided disk properties of a large number of young stars. We complement these data with spectroscopy with the aim of providing physical stellar parameters and accretion properties. We use FLAMES/UVES+GIRAFFE observations of 40 members of Cha II to measure radial velocities through cross-correlation technique, Li abundances by means of curves of growth, and for a suitable star elemental abundances of Fe, Al, Si, Ca, Ti, and Ni using the code MOOG. From the equivalent widths of the Halpha, Hbeta, and the HeI-5876, 6678, 7065 Angstrom emission lines, we estimate the mass accretion rates, dMacc/dt, for all the objects. We derive a radial velocity distribution for the Cha II stars (=11.4+-2.0 km/s). We find dMacc/dt prop. to Mstar^1.3 and to Age^(-0.82) in the 0.1-1.0 Msun mass regime, and a mean dMacc/dt for Cha II of ~7*10^(-10) Msun/yr. We also establish a relationship between the HeI-7065 Angstrom line emission and the accretion luminosity. The radial velocity distributions of stars and gas in Cha II are consistent. The spread in dMacc/dt at a given stellar mass is about one order of magnitude and can not be ascribed entirely to short timescale variability. Analyzing the relation between dMacc/dt and the colors in Spitzer and 2MASS bands, we find indications that the inner disk changes from optically thick to optically thin at dMacc/dt~10^(-10) Msun/yr. Finally, the disk fraction is consistent with the age of Cha II.Comment: 21 Pages, 15 Figures, 7 Tables. Accepted for publication in Astronomy and Astrophysics. Abstract shortene

    VST processing facility: first astronomical applications

    Full text link
    VST--Tube is a new software package designed to process optical astronomical images. It is an automated pipeline to go from the raw exposures to fully calibrated co-added images, and to extract catalogs with aperture and PSF photometry. A set of tools allow the data administration and the quality check of the intermediate and final products. VST-Tube comes with a Graphical User Interface to facilitate the interaction between data and user. We outline here the VST--Tube architecture and show some applications enlightening some of the characteristics of the pipeline.Comment: Presented to the 54th Congress SAIt, 4-7 May 2010, Naples, Ital

    Research model robot-hexapod under static and dynamic loads

    Get PDF
    In the paper the stress-strain state of hexapod robot is considered in order to clarify its dynamical characteristics. Full-size model of hexapod robot is built in the SolidWorks program complex. The state of the robot was analyzed in an extremely dangerous location at static loading. Dynamic analysis was conducted to clarify oscillation of the support unit in the robot’s construction. The results of the survey show that such robot design cannot be used in the environments with the vibrating background below 5 Hz

    X-Ray flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks

    Full text link
    We study the properties of powerful X-ray flares from 161 pre-main sequence (PMS) stars observed with the Chandra X-ray Observatory in the Orion Nebula region. Relationships between flare properties, protoplanetary disks and accretion are examined in detail to test models of star-disk interactions at the inner edge of the accretion disks. Previous studies had found no differences in flaring between diskfree and accreting systems other than a small overall diminution of X-ray luminosity in accreting systems. The most important finding is that X-ray coronal extents in fast-rotating diskfree stars can significantly exceed the Keplerian corotation radius, whereas X-ray loop sizes in disky and accreting systems do not exceed the corotation radius. This is consistent with models of star-disk magnetic interaction where the inner disk truncates and confines the PMS stellar magnetosphere. We also find two differences between flares in accreting and diskfree PMS stars. First, a subclass of super-hot flares with peak plasma temperatures exceeding 100 MK are preferentially present in accreting systems. Second, we tentatively find that accreting stars produce flares with shorter durations. Both results may be consequences of the distortion and destabilization of the stellar magnetosphere by the interacting disk. Finally, we find no evidence that any flare types, even slow-rise flat-top flares are produced in star-disk magnetic loops. All are consistent with enhanced solar long-duration events with both footprints anchored in the stellar surface.Comment: Accepted for publication in ApJ (07/17/08); 46 pages, 14 figures, 2 table
    corecore