821 research outputs found

    Radiocarbon dating of alkenones from marine sediments : II. Assessment of carbon process blanks

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2005. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 47 (2005): 413-424.We evaluate potential process blanks associated with radiocarbon measurement of microgram to milligram quantities of alkenones at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Two strategies to constrain the contribution of blanks to alkenone 14C dates were followed: 1) dating of samples of known age and 2) multiple measurements of identical samples. We show that the potential contamination associated with the procedure does not lead to a systematic bias of the results of alkenone dating to either younger or older ages. Our results indicate that alkenones record Δ14C of ambient DIC with an accuracy of approximately 10‰. A conservative estimate of measurement precision is 17‰ for modern samples. Alkenone 14C ages are expected to be reliable within 500 yr for samples younger than 10,500 14C yr.This research was funded by NSF grant # OCE-0327405 and DFG project # SCHN621 and a WHOI-NOSAMS postdoctoral scholarship to GM

    First year of routine measurements at the AWI MICADAS 14C dating facility.

    Get PDF
    In November 2016, the first Mini-Carbon-Dating-System (MICADAS) manufactured by Ionplus AG was delivered and installed at the Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research (AWI), Germany. After one year of establishing the instrument and preparation methods, we started routine operation for scientific purposes in January 2018. The new facility includes a graphitization unit (AGE3) connected to an elemental analyser (EA) or a carbonate handling system (CHS), and a gas inlet system (GIS). The facility at AWI focuses on analysing carbonaceous materials from samples of marine sediments, sea-ice, and water to investigate various aspects of the global carbon cycle. A particular emphasis will be on sediments from high-latitude oceans, in which radiocarbon-based age models are often difficult to obtain due to the scarcity of carbonate microfossils (e.g., foraminifera). One advantage of the MICADAS is the potential to analyse samples as CO2 gas, which allows radiocarbon measurements on samples containing as little as 10 µgC. For example, it is possible to determine 14C ages of foraminifera from carbonate-lean sediments allowing paleoclimate reconstructions in key locations for the Earth’s climate system, such as the Southern Ocean. Likewise, compound-specific 14C analyses receive growing attention in carbon cycle studies and require handling of small samples of typically <100 µgC. The wide range of applications including gas analyses (e.g., foraminifera and isolated compounds), and graphite targets require establishing routine protocols for various methods including sample preparation and precise blank assessment. We report on our standard procedures for dating organic matter from sediments or water including carbonate removal, combustion and graphitization using the AGE3 coupled to the EA, as well as on the methodology applied for carbonate samples using the CHS system and the GIS. We have investigated different sample preparation protocols and present the results using international standard reference materials (e.g., IAEA-C2 F14C = 0.4132 + 0.0052 (n= 14); Ref = 0.4114 + 0.0003). Additionally, we present the first results of process blanks for sediments (Eocene Messel shale F14C= 0.0007; equivalent to an conventional 14C age of > 52000yr (n=29)), as well as Eemian foraminifera (F14C = 0.005; equivalent to an conventional 14C age of >42700yr (n=98)). We are also presenting results of samples processed and analysed as graphite and directly as gas showing a good reproducibility irrespective of the method used

    Radiocarbon dating of methane

    Get PDF
    Methane (CH4) is the most abundant organic compound in the atmosphere and its influence on the global climate is subject to widespread and ongoing scientific discussion. Two sources of atmospheric methane are the release of methane from the ocean seafloor, as well as from thawing permafrost. In recent years the origin, sediment and water column processes and subsequent pathways of methane have received growing interest in the scientific community. 13C/12C ratio measurements can be used to determine the methane source (biogenic or thermogenic), but potential formation/alteration processes by microbes are not yet fully understood. Radiocarbon analysis can help to understand these carbon cycling processes. The presented method is a novel approach for the radiocarbon age determination of methane. A modified PreConn is used to separate methane from other gases such as CO2 in a gaseous sample. Afterwards, the purified methane is transferred to a furnace and oxidized to CO2. Subsequently, produced CO2 is concentrated on a custom-made zeolite trap, which can be connected to a novel sampling unit implemented into the GIS system (by Ionplus AG) for direct CO2 measurements on a MICADAS. The zeolite trap has ¼“ quick-fit connectors (Swagelok) that allow to detach the trap from the oxidation unit and to re-attach it in the GIS. Initial testing showed minimal blank carbon incorporation associated with sample storage, transfer and handling of the custom-build zeolite trap. Here we will present the setup of the method, first results of the blank determination as well as precision of common standard gases

    Estimating bioturbation from replicated small-sample radiocarbon ages.

    Get PDF
    Marine sedimentary records are a key archive when reconstructing past climate; however, mixing at the seabed (bioturbation) can strongly influence climate records, especially when sedimentation rates are low. By commingling the climate signal from different time periods, bioturbation both smooths climate records, by damping fast climate variations, and creates noise when measurements are made on samples containing small numbers of individual proxy carriers, such as foraminifera. Bioturbation also influences radiocarbon-based age-depth models, as sample ages may not represent the true ages of the sediment layers from which they were picked. While these effects were first described several decades ago, the advent of ultra-small-sample 14C dating now allows samples containing very small numbers of foraminifera to be measured, thus enabling us to directly measure the age-heterogeneity of sediment for the first time. Here, we use radiocarbon dates measured on replicated samples of 3-30 foraminifera to estimate age-heterogeneity for five marine sediment cores with sedimentation rates ranging from 2-30 cm / kyr. From their age-heterogeneities and sedimentation rates we infer mixing depths of 10-20 cm for our core sites. Our results show that when accounting for age-heterogeneity, the true error of radiocarbon dating can be several times larger than the reported measurement. We present estimates of this uncertainty as a function of sedimentation rate and the number of individuals per radiocarbon date. A better understanding of this uncertainty will help us to optimise radiocarbon measurements, construct age models with appropriate uncertainties and better interpret marine paleo records

    Establishment of routine sample preparation protocols at the newly installed MICADAS 14C dating facility at AWI

    Get PDF
    In November 2016, the first Mini-Carbon-Dating-System (MICADAS) manufactured by Ionplus AG was delivered and installed at the Alfred-Wegener-Institute (AWI), Germany. The new facility includes a graphitization unit (AGE3) connected with an elementar analyser (EA), a carbonate handling system (CHS), and a gas inlet system (GIS). The main goal for the facility at AWI will be the precise and independent dating of carbonaceous materials in marine sediments, sea-ice, and water to address various processes of the global carbon cycling. A particular focus will be on sediments from the high latitude oceans, in which radiocarbon-based age models are often difficult to obtain due to the scarcity of carbonate microfossils. One advantage of the MICADAS is the potential to analyse samples, which contain only a small amount of carbon as CO2 gas. For example, it will be possible to determine 14C ages of samples of foraminifera from carbonate-lean sediments, allowing for paleoclimate reconstructions in key locations for Earth’s climate system such as the Southern ocean. Likewise, compound-specific 14C analyses receive growing attention in carbon cycle studies and require handling of small samples of typically <100µg carbon. The wide range of applications encompassing gas analyses of foraminifera and compound-specific analysis as well as analyses of graphite targets requires establishing routine protocols of various methods of sample preparation, as well as thorough assessment of the respective carbon blanks. We report on our standard procedures for samples of organic matter from sediments or water including carbonate removal, combustion and graphitization using the AGE3 coupled to the EA, as well as on the methodology applied for carbonate samples using the CHS system and the GIS. We have investigated different sample preparation protocols and present the initial results using materials of known age. Additionally, we present the first results of our assessment of process blanks

    Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 Over the Last 32,000 Years

    Get PDF
    It is widely assumed that the ventilation of the Southern Ocean played a crucial role in driving glacial‐interglacial atmospheric CO2 levels. So far, however, ventilation records from the Indian sector of the Southern Ocean are widely missing. Here we present reconstructions of water residence times (depicted as ΔΔ14C and Δδ13C) for the last 32,000 years on sediment records from the Kerguelen Plateau and the Conrad Rise (~570‐ to 2,500‐m water depth), along with simulated changes in ocean stratification from a transient climate model experiment. Our data indicate that Circumpolar Deep Waters in the Indian Ocean were part of the glacial carbon pool. At our sites, close to or bathed by upwelling deep waters, we find two pulses of decreasing ΔΔ14C and δ13C values (~21–17 ka; ~15–12 ka). Both transient pulses precede a similar pattern in downstream intermediate waters in the tropical Indian Ocean as well as rising atmospheric CO2 values. These findings suggest that 14C‐depleted, CO2‐rich Circumpolar Deep Water from the Indian Ocean contributed to the rise in atmospheric CO2 during Heinrich Stadial 1 and also the Younger Dryas and that the southern Indian Ocean acted as a gateway for sequestered carbon to the atmosphere and tropical intermediate waters

    Radiocarbon and 230Th data reveal rapid redistribution and temporal changes in sediment focussing at a North Atlantic drift

    Get PDF
    In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649–2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing

    Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming

    Get PDF
    During the last deglaciation (18–8 kyr BP), shelf flooding and warming presumably led to a large-scale decomposition of permafrost soils in the mid-to-high latitudes of the Northern Hemisphere. Microbial degradation of old organic matter released from the decomposing permafrost potentially contributed to the deglacial rise in atmospheric CO2 and also to the declining atmospheric radiocarbon contents (Δ14C). The significance of permafrost for the atmospheric carbon pool is not well understood as the timing of the carbon activation is poorly constrained by proxy data. Here, we trace the mobilization of organic matter from permafrost in the Pacific sector of Beringia over the last 22 kyr using mass-accumulation rates and radiocarbon signatures of terrigenous biomarkers in four sediment cores from the Bering Sea and the Northwest Pacific. We find that pronounced reworking and thus the vulnerability of old organic carbon to remineralization commenced during the early deglaciation (~16.8 kyr BP) when meltwater runoff in the Yukon River intensified riverbank erosion of permafrost soils and fluvial discharge. Regional deglaciation in Alaska additionally mobilized significant fractions of fossil, petrogenic organic matter at this time. Permafrost decomposition across Beringia's Pacific sector occurred in two major pulses that match the Bølling-Allerød and Preboreal warm spells and rapidly initiated within centuries. The carbon mobilization likely resulted from massive shelf flooding during meltwater pulses 1A (~14.6 kyr BP) and 1B (~11.5 kyr BP) followed by permafrost thaw in the hinterland. Our findings emphasize that coastal erosion was a major control to rapidly mobilize permafrost carbon along Beringia's Pacific coast at ~14.6 and ~11.5 kyr BP implying that shelf flooding in Beringia may partly explain the centennial-scale rises in atmospheric CO2 at these times. Around 16.5 kyr BP, the mobilization of old terrigenous organic matter caused by meltwater-floods may have additionally contributed to increasing CO2 levels

    A radiocarbon-based assessment of the preservation characteristics of crenarchaeol and alkenones from continental margin sediments

    Get PDF
    Author Posting. © Elsevier B.V. , 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 39 (2008): 1039-1045, doi:10.1016/j.orggeochem.2008.02.006.Crenarchaeotal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids and alkenones are two types of biomarkers derived from planktonic marine micro-organisms which are used for reconstruction of sea-surface temperatures. We determined the radiocarbon contents of the archaeal GDGT crenarchaeol and of alkenones isolated from continental margin sediments. Systematic differences were found between the two biomarkers, with higher radiocarbon contents in crenarchaeol than in the phytoplankton-derived alkenones. These differences can be explained by variable contributions of pre-aged, laterally advected material to the core sites. Crenarchaeol appears to be more efficiently degraded during transport in oxygen-replete environments than alkenones. Whether this reflects the influence of chemical structure or mode of protection (e.g., particle association) is not yet known.This work was funded by a Spinoza grant of NWO to J.S.S.D. and by NSF-grant OCE-0327405 to T.I.E.

    Utilization, release, and long-term fate of ancient carbon from eroding permafrost coastlines

    Get PDF
    About 34% of global coast lines are underlain by permafrost. Rising temperatures cause an acceleration in erosion rates of up to 10s of meters annually, exporting increasing amounts of carbon and nutrients to the coastal ocean. The degradation of ancient organic carbon (OC) from permafrost is an important potential feedback mechanism in a warming climate. However, little is known about permafrost OC degradation after entering the ocean and its long term-fate after redeposition on the sea floor. Some recent studies have revealed CO2 release to occur when ancient permafrost materials are incubated with sea water. However, despite its importance for carbon feedback mechanisms, no study has directly assessed whether this CO2 release is indeed derived from respiration of ancient permafrost OC. We used a multi-disciplinary approach incubating Yedoma permafrost from the Lena Delta in natural coastal seawater from the south-eastern Kara Sea. By combining biogeochemical analyses, DNA-sequencing, ramped oxidation, pyrolysis and stable and radiocarbon isotope analysis we were able to: 1) quantify CO2 emissions from permafrost utilization; 2) for the first time demonstrate the amount of ancient OC contributing to CO2 emissions; 3) link the processes to specific microbial communities; and 4) characterize and assess lability of permafrost OC after redeposition on the sea floor. Our data clearly indicate high bioavailability of permafrost OC and rapid utilization after thawed material has entered the water column, while observing only minor changes in permafrost OC composition over time. Microbial communities are distinctly different in suspended Yedoma particles and water. Overall, our results suggest that under anthropogenic Arctic warming, enhanced coastal erosion will result in increased greenhouse gas emissions, as formerly freeze-locked ancient permafrost OC is remineralized by microbial communities when released to the coastal ocean
    corecore