280 research outputs found

    Edge atoms effects on the perpendicular anisotropy of ultrathin magnetic layers

    Get PDF
    The present work reports experimental and theoretical results for electrodeposited Co/Au(111) ultrathin layers with very specific magnetic behavior. We show that the observed two peaks in the out-of-plane magnetization versus deposition time variation could be explained by the remarkably high perpendicular anisotropy of the perimeter atoms of low- dimensional islands formed during the layer-by-layer growth, as compared to that of the surface atoms. Our results indicate that it is possible to sustain high anisotropy in very small grains without coming across the superparamagnetic limit, opening excellent opportunities for materials engineering

    Comment on “Thickness dependence of exchange bias and coercivity in a ferromagnetic layer coupled with an antiferromagnetic layer” [J. Appl. Phys. 94, 2529 (2003)]

    Get PDF
    Hu, Jin, and Ma have proposed a theoretical investigation on the influence of the antiferromagnetic layer thickness on the magnetic properties of ferromagnetic/ antiferromagnetic bilayers [J. Appl. Phys. 94, 2529 (2003)], considering both the bilinear and biquadratic exchange couplings, and have claimed that from their formulas for the hysteresis loop displacement and coercivity many interesting conclusions can be extracted. Unfortunately, the mathematical procedure used to find the equilibrium of the system is based on inadequate stability conditions and has led to nonphysical results. More importantly, the simple phenomenological model, employed by the authors, is intrinsically not capable to give the antiferromagnetic layer thickness dependence of the magnetic properties of such exchange-coupled bilayers

    Edge atoms effects on the perpendicular anisotropy of ultrathin magnetic layers

    Get PDF
    The present work reports experimental and theoretical results for electrodeposited Co/Au(111) ultrathin layers with very specific magnetic behavior. We show that the observed two peaks in the out-of-plane magnetization versus deposition time variation could be explained by the remarkably high perpendicular anisotropy of the perimeter atoms of low-dimensional islands formed during the layer-by-layer growth, as compared to that of the surface atoms. Our results indicate that it is possible to sustain high anisotropy in very small grains without coming across the superparamagnetic limit, opening excellent opportunities for materials engineering

    Magnetoelectric effect and phase transitions in CuO in external magnetic fields

    Get PDF
    Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has been observed so far as direct crosstalk between bulk magnetization and electric polarization counterparts. Here we demonstrate that high magnetic fields of about 50 T are able to suppress the helical modulation of the spins in the multiferroic phase and dramatically affect the electric polarization. Furthermore, just below the spontaneous transition from commensurate (paraelectric) to incommensurate (ferroelectric) structures at 213 K, even modest magnetic fields induce a transition into the incommensurate structure and then suppress it at higher field. Thus, remarkable hidden magnetoelectric features are uncovered, establishing CuO as prototype multiferroic with abundance of competitive magnetic interactions.Comment: 26 pages, 5 figure

    Size effects in near-ultraviolet Raman spectra of few-nanometer-thick silicon-oninsulator nanofilms

    Get PDF
    We have fabricated Si-on-insulator (SOI) layers with a thickness h1 of a few nanometers and examined them by Raman spectroscopy with 363.8 nm excitation. We have found that phonon and electron confinement play important roles in SOI with h1<10 nm. We have confirmed that the first-order longitudinal optical phonon Raman band displays size-induced major homogeneous broadening due to phonon lifetime reduction as well as minor inhomogeneous broadening due to wave vector relaxation (WVR), both kinds of broadening being independent of temperature. Due to WVR, transverse acoustic (TA) phonons become Raman-active and give rise to a broad band in the range of 100–200 cm 1. Another broad band appeared at 200–400 cm 1 in the spectrum of SOI is attributed to the superposition of 1st order Raman scattering on longitudinal acoustic phonons and 2nd order scattering on TA phonons. Suppression of resonance-assisted 2-nd order Raman bands in SOI spectra is explained by the electron-confinement-induced direct band gap enlargement compared to bulk Si, which is confirmed by SOI reflection spectra. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947021
    corecore