49 research outputs found

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    Get PDF
    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites

    Pharmacokinetics and pharmacodynamics of curcumin.

    No full text
    Curcuma spp. contain turmerin, essential oils, and curcuminoids, including curcumin. Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is regarded as the most biologically active constituent of the spice turmeric and it comprises 2-8% of most turmeric preparations. Preclinical data from animal models and phase I clinical studies performed with human volunteers and patients with cancer have demonstrated low systemic bioavailability following oral dosing. Efficient first-pass metabolism and some degree of intestinal metabolism, particularly glucuronidation and sulfation of curcumin, might explain its poor systemic availability when administered via the oral route. A daily oral dose of 3.6 g of curcumin is compatible with detectable levels of the parent compound in colorectal tissue from patients with cancer. The levels demonstrated might be sufficient to exert pharmacological activity. There appears to be negligible distribution of the parent drug to hepatic tissue or other tissues beyond the gastrointestinal tract. Curcumin possesses wide-ranging anti-inflammatory and anticancer properties. Many of these biological activities can be attributed to its potent antioxidant capacity at neutral and acidic pH, its inhibition of cell signaling pathways at multiple levels, its diverse effects on cellular enzymes, and its effects on cell adhesion and angiogenesis. In particular, curcumin's ability to alter gene transcription and induce apoptosis in preclinical models advocates its potential utility in cancer chemoprevention and chemotherapy. With regard to considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat or prevent human diseases, curcumin is currently a leading agent

    Pre-formulation studies of resveratrol

    No full text

    PPAR delta status and Apc-mediated tumourigenesis in the mouse intestine

    No full text
    Based on recent reports that peroxisome proliferator-activated receptor delta (PPARdelta) activation promotes tumourigenesis, we have investigated the role of this protein in Apc-mediated intestinal tumourigenesis. We demonstrate that the inactivation of Apc in the adult small intestine, while causing the expected nuclear accumulation of beta-catenin, does not cause the expected increase in PPARdelta mRNA or protein but conversely, the levels of PPARdelta mRNA and protein are lowered. Furthermore, we find that Apc(Min)PPARdelta-null mice exhibit an increased predisposition to intestinal tumourigenesis. Our data suggest that PPARdelta is not directly regulated by beta-catenin, and that inhibition of PPARdelta activity is unlikely to be an appropriate strategy for the chemoprevention or chemotherapy of intestinal malignancies
    corecore