198 research outputs found

    Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1

    Get PDF
    Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2 380 intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of ¿dangling¿ water molecules were detected in two different states of the protein using H2 18O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm−1) and with the other O-H group medium (3440 cm−1) to moderately strongly (3300 cm−1) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the ¿dangling¿ water molecules within the protein, providing a better understanding of their functional relevance in CaChR1

    High cholesterol levels change the association of biomarkers of neurodegenerative diseases with dementia risk: findings from a population‐based cohort

    Get PDF
    Introduction This study assessed whether in a population with comorbidity of neurodegenerative and cerebrovascular disease (mixed pathology) the association of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau181 (p-tau181) with dementia risk varied depending on levels of total cholesterol and apolipoprotein E (APOE) ε4 genotype. Methods Plasma biomarkers were measured using Simoa technology in 768 participants of a nested case-control study embedded within an ongoing population-based cohort. Logistic and spline regression models, and receiver operating characteristic curves were calculated. Results The strength of the association between GFAP and NfL with risk of a clinical diagnosis of dementia changed depending on cholesterol levels and on APOE ε4 genotype. No significant association was seen with p-tau181. Discussion In individuals with mixed pathology blood GFAP and NfL are better predictors of dementia risk than p-tau181, and their associations with dementia risk are amplified by hypercholesterolemia, also depending on APOE ε4 genotype. HIGHLIGHTS Cholesterol levels changed the association of blood biomarkers with dementia risk. Blood biomarkers seem to perform differently in community- and clinic-based cohorts. Neurofilament light chain might be a biomarker candidate for dementia risk after stroke

    Subjective cognitive complaints and blood biomarkers of neurodegenerative diseases: a longitudinal cohort study

    Get PDF
    Background Subjective cognitive complaints (SCC) have been mostly studied in the context of Alzheimer’s disease in memory clinic settings. The potential of combining SCC with genetic information and blood biomarkers of neurodegenerative diseases for risk assessment of dementia and depression in the absence of dementia among community-dwelling older adults has so far not been explored. Methods Data were based on a population-based cohort of 6357 participants with a 17-year follow-up (ESTHER study) and a clinic-based cohort of 422 patients. Participants of both cohorts were grouped according to the diagnosis of dementia (yes/no) and the diagnosis of depression in the absence of dementia (yes/no). Participants without dementia included both cognitively unimpaired participants and cognitively impaired participants. Genetic information (APOE ε4 genotype) and blood-based biomarkers of neurodegenerative diseases (glial fibrillary acidic protein; GFAP, neurofilament light chain; NfL, phosphorylated tau181; p-tau181) were available in the ESTHER study and were determined with Simoa Technology in a nested case–control design. Logistic regression models adjusted for relevant confounders were run for the outcomes of all-cause dementia and depression in the absence of dementia. Results The results showed that persistent SCC were associated both with increased risk of all-cause dementia and of depression without dementia, independently of the diagnostic setting. However, the results for the ESTHER study also showed that the combination of subjective complaints with APOE ε4 and with increased GFAP concentrations in the blood yielded a substantially increased risk of all-cause dementia (OR 5.35; 95%CI 3.25–8.81, p-value < 0.0001 and OR 7.52; 95%CI 2.79–20.29, p-value < 0.0001, respectively) but not of depression. Associations of NfL and p-tau181 with risk of all-cause dementia and depression were not statistically significant, either alone or in combination with SCC, but increased concentrations of p-tau181 seemed to be associated with an increased risk for depression. Conclusion In community and clinical settings, SCC predict both dementia and depression in the absence of dementia. The addition of GFAP could differentiate between the risk of all-cause dementia and the risk of depression among individuals without dementia

    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.COST (European Cooperation in Science and Technology)Portuguese Foundation for Science and TechnologyNational Research Fund of Luxembourg (FNR)China Scholarship Council (CSC)BOKU Core Facilities Multiscale ImagingDeutsche Forschungsgemeinschaft (DFG, German Research Foundation
    corecore