25 research outputs found

    DNA repair modulates the vulnerability of the developing brain to alkylating agents

    Get PDF
    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag[superscript −/−]) or O6-methylguanine methyltransferase (Mgmt[superscript −/−]), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt−/− neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag[superscript −/−] neurons were for the most part significantly less sensitive than wild type or Mgmt[superscript −/−] neurons to MAM and HN2. Aag[superscript −/−] neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt[superscript −/−] mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag[superscript −/−] or MGMT-overexpressing (Mgmt[superscript Tg+]) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt[superscript Tg+] mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.United States. Army Medical Research and Materiel Command (Contract/Grant/Intergovernmental Project Order DAMD 17-98-1-8625)United States. National Institutes of Health (grants CA075576)United States. National Institutes of Health (RO1 C63193)United States. National Institutes of Health (P30 CA043703

    Comparação bayesiana de modelos de previsão de diferenças esperadas nas progênies no melhoramento genético de gado Nelore Bayesian comparison of forecasting models to expected progenies difference in Nelore cattle genetic breeding

    Get PDF
    O objetivo deste trabalho foi realizar uma análise bayesiana de modelos auto-regressivos de ordem p, AR(p), para dados em painel referentes às diferenças esperadas nas progênies (DEP) de touros da raça Nelore publicados de 2000 a 2006. Neste trabalho, adotou-se o modelo AR(2), indicado pela análise prévia da função de autocorrelação parcial. As comparações entre as prioris, realizadas por meio do Fator de Bayes e do Pseudo-Fator de Bayes, indicaram superioridade da priori independente t-Student multivariada - Gama inversa em relação à priori hierárquica Normal multivariada - Gama inversa e a priori de Jeffreys. Os resultados indicam a importância de se dividir os animais em grupos homogêneos de acordo com a acurácia. Constatou-se também que, em média, a eficiência de previsão dos valores de DEP para um ano futuro foi próxima de 80%.<br>The objective of this work was to accomplish a bayesian analysis of an autoregressive, AR(p), panel data model from Nelore sires' expected progenie difference (EPD) observed during 2000-2006. The AR(2) model was used due to the results of partial autocorrelation function analysis. The prior comparisons were performed through Bayes Factor and Pseudo-Bayes Factor, and the results showed the independent t-Student multivariate - inverse Gamma superiority in relation to the hierarchical multivariate Normal - inverse Gamma and Jeffreys prior. Results indicate the importance of sires grouping by accuracy values, and also show forecast efficiency around 80%
    corecore